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Aiming at solving the problem of firing angle calculation for the multiple launch rocket system (MLRS) under both standard
and actual atmospheric conditions, an efficient method based on large sample data and metamodel is proposed. The polynomial
response surface, Kriging, and the ensemble of metamodels are used to establish the functional relations between the firing angle,
themaximumrange angle, themaximumrange, and various influencing factors under standard atmospheric conditions, and related
processes are described in detail. On this basis, the initial values for the first two iterations are determined with the meteorological
data beingmade full use of in the six degrees of freedom trajectory simulation, and then the firing angle corresponding to a specific
range is automatically and iteratively calculated. The efficient method of firing angle calculation for the typical MLRS has been
extensively tested with three cases. The results show that the high-order polynomial response surface, the Kriging predictors with
Cubic, Gauss, and Spline correlation functions, and the ensemble of above four individual metamodels have better performances
for predicting the firing angle under standard atmospheric conditions compared with those of other metamodels under identical
conditions, and execution times of the above four individual metamodels with a training sample size of 9000 are all less than 0.9ms,
which verifies the effectiveness and feasibility of the proposed method for calculating the firing angle under standard atmospheric
conditions. Moreover, the number of iterations is effectively reduced by using the proposed iterative search approach under actual
atmospheric conditions. This research can provide guidance for designing the fire control and command control system of the
MLRS.

1. Introduction

As the primary suppressed weapon of the army, the MLRS
plays an increasingly important role in the long-range pre-
cision strike. In the modern and future wars, it is crucial
to improve the survivability of the MLRS, and reducing
the launch preparation time to improve the rapid reaction
capability has been becoming one of the most interesting
research areas.Therefore, it is especially important to develop
a rapid method for calculating the aiming parameters of the
MLRS.

Two primary aiming parameters including the firing
angle and azimuth are determined before the fire mission [1].

The north-based azimuth can be calculated according to the
given geographical positions of the launcher and target (lat-
itude and longitude), and several existing methods available
can be applied to calculate the accurate azimuth [2], such as
the Bessel’s method, Rainsford’s method, Vincenty’s method,
and Karney’s method. It is desirable to choose a method
for calculating the azimuth according to the advantages and
limitations of variousmethods. In addition, thewhole process
of calculating the azimuth is relatively simple and less time-
consuming.

The process of calculating the firing angle, however,
is relatively complicated. There are two commonly used
approaches for obtaining the firing angle: the traditional
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firing table approach and the iterative search approach via
a trajectory program, of which the former can be realized
by interpolating or approximating the tabular data under
standard conditions then applying correction factors [3, 4].
Currently, the linear and quadratic interpolations are still two
commonly used interpolation approaches for calculating the
firing angle [5], and one of commonly used approximation
approaches is the polynomial response surface (PRS) [3],
particularly the polynomials of orders 1 through 4. With
the exception of PRS, the feed forward neural network has
also been successfully applied to predicting the firing angle
of an artillery rocket [6]. However, other approximation
techniques such as Kriging [7–9], radial basis function (RBF)
[10], extreme learning machine (ELM) [11], and support
vector machine (SVM) [12] are rarely used to predict the
firing angle. The calculation result by using the firing table
approach can meet the accuracy requirement within a certain
range. However, when the actual atmospheric conditions are
quite different from the standard atmospheric conditions, the
firing angle obtained by using the firing table approach is
rather inaccurate [13], which will lead to the firing mission
failure of the free and simple controlled rockets with limited
maneuverability.

The iterative search approach is another method for
calculating the firing angle by employing the trajectory
program and iterative algorithm, which is applicable to the
firing angle calculation under both standard and actual
atmospheric conditions. The calculation efficiency depends
strongly on the trajectory model, the iterative initial value,
and the iterative algorithm. As one of the most well-known
fire control software, the NATO Armaments Ballistic Kernel
(NABK) [14, 15] searches for a firing angle corresponding
to a specified range by utilizing the modified point mass
or the five degrees of freedom (DOF) trajectory program
[16] and the iterative algorithm. Despite the significant
improvements that have been achieved, the details of the
algorithms are mostly confidential and limited publications
are currently available. By employing the six DOF trajectory
program and an improved iterative search approach, L. J.
Zhou et al. proposed amethod for calculating the firing angle
of the MLRS, which can reduce the number of iterations
substantially [17]. D. H. Zhao et al. presented a method to
determine the firing angle of the artillery based on the three-
DOF trajectory program and binary search method [18]. P.
Chusilp et al. came up with four iterative search algorithms
and compared the calculation efficiency of four algorithms
with the firing angle calculation of M107 projectile as a case
study [19]. In addition, W. Charubhun et al. put forward an
efficient method of firing angle calculation for theMLRSwith
the six DOF trajectory program and iterative binary search
method by having prior knowledge of the ranges versus the
firing angles [20].

Without considering various types of systematic and ran-
dom errors, the firing angle is determined by six influencing
factors, including the latitude of launcher 𝐵0, the elevation
of launcher 𝐻0, the target azimuth 𝐴𝑇, the range between
the launcher and target 𝑅𝐺, the elevation of target 𝐻𝑇,
and the propellant temperature 𝑇𝑠. Moreover, the functional
relation between the firing angle and six influence factors

is highly nonlinear. Taking various influencing factors into
consideration, conducting the research on a rapid and high-
accuracy method for calculating the firing angle under
standard atmospheric conditions is of great significance
in the state of the art. On the one hand, the calculation
result can be directly taken as the firing angle of the MLRS
armed with guided rockets, which are capable of handling
various types of systematic and random errors, such as
aiming errors, manufacturing errors, aerodynamic errors,
and wind induced errors. On the other hand, the calculation
result can be used as the initial value of the iterative search
approach.

An efficient method for calculating the firing angle of the
MLRSbased on large sample data andmetamodel is proposed
in this paper, which can solve the problem of calculating the
firing angle under both standard and actual atmospheric con-
ditions. The PRS, Kriging, and the ensemble of metamodels
(EM) [21–25] are used to establish the functional relations
between the firing angle, the maximum range angle, the
maximum range, and various influencing factors. Here, the
metamodel is an engineering method that fits the collection
of input-output pairs from runs of a simulation model, and
it can be fully exploited rather than the more expensive and
time-consuming simulation code [26, 27]. It turns out that the
metamodel has beenwidely applied to the engineering design
optimization problems [28–31].

The outline of this paper is as follows. In the next
section, the basic theories are introduced in detail including
metamodels such as the PRS, Kriging and EM, the teaching-
learning-based optimization algorithm [32, 33], and evalu-
ation methods of the prediction accuracy of metamodels.
Thereafter, three different kinds of problems of the firing
angle calculation are defined, which includes the problem
of calculating the firing angle under standard atmospheric
conditions, the problem of calculating the maximum range
angle under standard atmospheric conditions, and the prob-
lem of calculating the firing angle under actual atmospheric
conditions. Here, the maximum range angle is the firing
angle corresponding to the maximum range under specific
constraint conditions. Subsequently, the results of applying
the proposed method of firing angle calculation to three
different kinds of problems are given. Finally, conclusions are
provided in the end.

2. Basic Theories

2.1. Metamodels

2.1.1. PRS. The PRS is a metamodel that conducts the func-
tion fitting via the statistical regression analysis, which has
the advantages of low computational complexity and good
robustness, and it is widely applied to the engineering
design optimization problems. For the sake of simplicity and
convenience, assuming that the response is one-dimensional,
the expression of PRS can be written as

𝑦 (𝑥) = 𝑓 (𝑥)T 𝛽 = 𝛽0 + 𝑛∑
𝑖=1

𝛽𝑖𝑥𝑖 + 𝑛∑
𝑖=1

𝑛∑
𝑗≥𝑖

𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + ⋅ ⋅ ⋅ (1)
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Table 1: Common correlation functions.

Correlation function 𝑅𝑗 (𝜃𝑗, 𝑑𝑗)
Cubic 1 − 3𝜉2𝑗 + 2𝜉3𝑗 , 𝜉𝑗 = min {1, 𝜃𝑗 𝑑𝑗}
Exp 𝑒−𝜃𝑗 |𝑑𝑗|
Gauss 𝑒−𝜃𝑗𝑑2𝑗
Lin max {0, 1 − 𝜃𝑗 𝑑𝑗}
Spherical 1 − 1.5𝜉𝑗 + 0.5𝜉3𝑗 , 𝜉𝑗 = min {1, 𝜃𝑗 𝑑𝑗}
Spline

{{{{{{{{{{{

1 − 15𝜃2𝑗𝑑2𝑗 + 30𝜃3𝑗 𝑑𝑗3 0 ≤ 𝜃𝑗 𝑑𝑗 ≤ 0.2
1.25 (1 − 𝜃𝑗 𝑑𝑗)3 0.2 < 𝜃𝑗 𝑑𝑗 < 1
0 𝜃𝑗 𝑑𝑗 ≥ 1

where 𝑦(𝑥) is the predicted value at the point 𝑥, 𝑥𝑖 is the ith
component of the vector 𝑥 of length n, and 𝛽 denotes the
vector of regression parameters.

2.1.2. Kriging. Kriging is a spatial interpolation method
originating from the field of geostatistics [34], which is
currently used to approximate deterministic data obtained by
measurements or computer simulations. The mathematical
formula of Kriging is given as follows:

𝑦 (𝑥) = 𝑓 (𝑥)T 𝛽 + 𝑧 (𝑥) (2)

where 𝑓(𝑥)T𝛽 is a trend function providing global approxi-
mation and 𝑧(𝑥) is the realization of a stochastic process with
mean 0 and variance 𝜎2. The spatial covariance for design
points 𝑤 and 𝑥 is defined as

cov (𝑧 (𝑤) , 𝑧 (𝑥)) = 𝜎2𝑅 (𝜃,𝑤,𝑥) (3)

where 𝑅(𝜃,𝑤,𝑥) is a correlation function with the parameter
vector 𝜃, expressed as

𝑅 (𝜃,𝑤,𝑥) = 𝑛∏
𝑗=1

𝑅𝑗 (𝜃𝑗, 𝑤𝑗 − 𝑥𝑗) = 𝑛∏
𝑗=1

𝑅𝑗 (𝜃𝑗, 𝑑𝑗) (4)

where dj=wj−xj and 𝜃𝑗 > 0. Numerous correlation functions
are available in the literature [7] including Cubic function,
Exp function, Gauss function, Lin function, Spherical func-
tion, and Spline function, as shown in Table 1. Besides the
most commonly used correlation functions shown in Table 1,
the Matern class of correlation functions might prove more
effective in practice [35], and it is possible that two cases of
great interest are 𝜐 = 3/2 (Matern32) and 𝜐 = 5/2 (Matern52),
for which

𝑅 (𝜃,𝑤,𝑥)𝜐=3/2 = (1 + √3𝑙) 𝑒−√3𝑙 (5)

𝑅 (𝜃,𝑤,𝑥)𝜐=5/2 = (1 + √5𝑙 + 5𝑙23 ) 𝑒−√5𝑙 (6)

where 𝑙 = √∑𝑛𝑗=1 𝜃𝑗𝑑2𝑗 .

2.1.3. EM. The EM, also known as the weighted average
metamodel, has attracted much attention due to its good
approximation capability [21], and it is generally expressed as

𝑦𝑒 (𝑥) = 𝑀∑
𝑖=1

𝜔𝑖𝑦𝑖 (𝑥) (7)

where 𝑦𝑒(𝑥) is the predicted response by the EM, M denotes
the number of individual metamodels, 𝑦𝑖(𝑥) is the predicted
response by the ith individual metamodel, and 𝜔𝑖 denotes
the weight corresponding to the ith individual metamodel.
Obviously, the individual metamodel with higher prediction
accuracy has larger weight and vice versa, and the sum of the
weights is equal to 1; namely, ∑𝑀𝑖=1 𝜔𝑖 = 1.

In general, the weights calculation is a key to the estab-
lishment of EM. There are currently a variety of weights cal-
culation methods available in the literature, e.g., the heuristic
calculation method, weights calculation method based on
prediction variance, and combining metamodels method
by minimizing the error [21–23]. The weights calculation
method based on error minimization is employed in this
paper, which takes the weights calculation process as an
optimization problem.The design variables and optimization
objective are the weights and the minimum prediction error
of the EM, respectively, and the optimization problem can be
formulated as

Find: 𝜔𝑖
Min: 𝐸𝑒 = Err {𝑦𝑒 (𝜔𝑖, 𝑦𝑖 (𝑥)) , 𝑦 (𝑥)}
S.t.: 𝑀∑

𝑖=1

𝜔𝑖 = 1
(8)

where Err{} denotes the chosen error metric for measuring
the accuracy of the response predicted by the EM and 𝑦(𝑥)
is the actual response value at the point 𝑥. The root mean
squared error is selected as the error metric Err{}. During
the training process of the EM, there are two commonly
used validation techniques, including the cross-validation
technique and the validation technique with independent
samples, of which the latter has lower computation cost
compared with the former for large training samples. Conse-
quently, the validation technique with independent samples
is preferred, and the large testing samples are directly used as
the independent validation samples in this paper. Based on
the established individual metamodels, the weights of the EM
are optimized by using the teaching-learning based algorithm
[32, 33].

2.2. Teaching-Learning-Based Optimization Algorithm.
Teaching-learning-based optimization (TLBO) algorithm
is a population-based optimization method that is inspired
by and based on the effect of the influence of a teacher on
learners, and it is proposed by Rao et al. in 2011 [32]. In the
basic TLBO algorithm, a group of learners is regarded as the
current population, of which the best individual represents
the teacher and the other individuals are regarded as the
students. The process of basic TLBO algorithm consists
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of two parts, namely, ‘teacher phase’ and ‘learner phase’.
The ‘teacher phase’ and ‘learner phase’ mean learning
from the teacher and learning by the interaction between
learners, respectively. The brief description of the basic
TLBO algorithm is given as follows.

2.2.1. Teacher Phase. During the teacher phase, the learners
gain and update their knowledge according to the following
expressions:

𝑋𝑗,𝑘,𝑖 = 𝑋𝑗,𝑘,𝑖 + 𝑟𝑎𝑛𝑑1 (0, 1) ∗ (𝑋𝑗,𝑘𝑏𝑒𝑠𝑡,𝑖 − 𝑇𝐹𝑀𝑗,𝑖) (9)

𝑇𝐹 = 𝑟𝑜𝑢𝑛𝑑 [1 + 𝑟𝑎𝑛𝑑2 (0, 1) {2-1}] (10)

where 𝑋𝑗,𝑘,𝑖 and 𝑋𝑗,𝑘,𝑖 denote the populations after and
before learning from the teacher respectively; 𝑟𝑎𝑛𝑑1(0, 1) and𝑟𝑎𝑛𝑑2(0, 1) are the randomnumbers between 0 and 1;𝑋𝑗,𝑘𝑏𝑒𝑠𝑡,𝑖
denotes the current best individual; 𝑇𝐹 denotes the teaching
factor with the value being either 1 or 2; 𝑀𝑗,𝑖 is the mean
individual of the population before learning from the teacher;
round[X] denotes each element ofX is rounded to the nearest
integer.

2.2.2. Learner Phase. Having finished the teacher phase, the
learners enhance their knowledge just via the interaction
among themselves. A learner interacts randomly with other
learners for increasing his or her knowledge. In the case of
minimization problems, the updated learner 𝑋𝑗,𝑃,𝑖 can be
defined as

𝑋𝑗,𝑃,𝑖 = {{{
𝑋𝑗,𝑃,𝑖 + 𝑟𝑎𝑛𝑑3 (0, 1) ∗ (𝑋𝑗,𝑃,𝑖 − 𝑋𝑗,𝑄,𝑖) 𝑓 (𝑋𝑗,𝑃,𝑖) < 𝑓 (𝑋𝑗,𝑄,𝑖)𝑋𝑗,𝑃,𝑖 + 𝑟𝑎𝑛𝑑3 (0, 1) ∗ (𝑋𝑗,𝑄,𝑖 − 𝑋𝑗,𝑃,𝑖) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (11)

where 𝑋𝑗,𝑃,𝑖 and 𝑋𝑗,𝑄,𝑖 are two randomly selected learners;𝑓(𝑋𝑗,𝑃,𝑖) and 𝑓(𝑋𝑗,𝑄,𝑖) are the fitness values of the learners𝑋𝑗,𝑃,𝑖 and 𝑋𝑗,𝑄,𝑖, respectively; 𝑟𝑎𝑛𝑑3(0, 1) denotes the ran-
dom number between 0 and 1.

2.3. Evaluation Methods of the Prediction Accuracy of Meta-
models. Three different metrics are applied to evaluate the
prediction accuracies of various metamodels, including the
maximum absolute error (MAE), maximum relative error
(MRE), and root mean squared error (RMSE), expressed as,
respectively,

MAE = max 𝑦 (𝑥) − 𝑦 (𝑥) (12)

MRE = max
𝑦 (𝑥) − 𝑦 (𝑥)𝑦 (𝑥) × 100% (13)

RMSE = √ 1𝑁𝑡𝑒𝑠𝑡
𝑁𝑡𝑒𝑠𝑡∑
𝑖=1

(𝑦 (𝑥) − 𝑦 (𝑥))2 (14)

where𝑁𝑡𝑒𝑠𝑡 is the number of testing samples.

3. An Efficient Method for
Calculating the Firing Angle of the
MLRS Based on Metamodels

3.1. Firing Angle Calculation under Standard Atmospheric
Conditions. Under standard atmospheric conditions, the
actual process of firing angle calculation for the MLRS based
on themetamodel is shown in Figure 1, and the following two
specific steps are involved.

Step 1 (build the trajectory model). The accuracy of the
firing angle calculation is directly determined by the tra-
jectory model. We apply the six DOF trajectory model,
and the effects of the oblateness and rotation of the Earth
are taken into account. Moreover, the fudge factors are
used. Consequently, the calculation results by utilizing
the six DOF trajectory model agree well with flight test
results.

Step 2. Establish the functional relation between the firing
angle and 𝐵0, 𝐻0, 𝐴𝑇, 𝑅𝐺, 𝐻𝑇, 𝑇𝑠 via metamodels, and the
whole process mainly includes obtaining a dataset through
Latin hypercube sampling (LHS) [36] and computer simula-
tions, selecting the metamodel type, building the metamodel,
and validating the metamodel. Here, the LHS is especially
suitable for very large designs.

Once the geographical positions of launcher and target
are given, the detailed process of the firing data calculation
under standard atmospheric conditions consists of the fol-
lowing steps,

Step 1. Calculate 𝐴𝑇 and 𝑅𝐺 according to the given latitude,
longitude, and elevation of the launcher and target.

Step 2. Calculate the firing angle by using the established
functional relation between the firing angle and 𝐵0, 𝐻0, 𝐴𝑇,𝑅𝐺,𝐻𝑇, 𝑇𝑠.

With regard to the firing angles corresponding to various
design points under standard atmospheric conditions, they
are obtained via the iterative search approach and six DOF
trajectory program, and the following six specific steps are
involved.

Step 1. Calculate the firing angle 𝜃1 corresponding to the
given 𝑅𝐺 and𝐻0 by using the Lagrange method [37] and take𝜃1 as the initial value of the iteration.
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Six influencing factors, including latitude of launcher,
elevation of launcher, target azimuth, range between launcher and 
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1

Figure 1: Calculation procedure of the firing angle under standard atmospheric conditions.

Step 2. Calculate the range 𝑅1 corresponding to the 𝜃1 via the
six DOF trajectory program, as well as the difference between𝑅1 and 𝑅𝐺 by 𝑑1 = 𝑅𝐺 − 𝑅1.
Step 3. Estimate the step length Δ𝜃1 according to 𝑑1 and
calculate the firing angle of the second iteration by 𝜃2 =𝜃1 + Δ𝜃1.
Step 4. Calculate the range 𝑅2 corresponding to the 𝜃2 via the
six DOF trajectory program.

Step 5. Determine the firing angle with higher accuracy
according to the following iteration formula:

𝜃𝑘 = 𝜃𝑘−1 + 𝜃𝑘−1 − 𝜃𝑘−2𝑅𝑘−1 − 𝑅𝑘−2 (𝑅𝐺 − 𝑅𝑘−1) (15)

where 𝜃𝑘, 𝜃𝑘−1, and 𝜃𝑘−2 are the firing angles at the kth,
(k-1)th and (k-2)th iterations, respectively; 𝑅𝑘−1 and 𝑅𝑘−2
are the ranges corresponding to firing angles 𝜃𝑘−1 and 𝜃𝑘−2,
respectively. Based on formula (15), the iterative calculation
of the firing angle is conducted with the six-DOF trajectory
program, until the following convergence criterion is met:

𝑅𝑘 − 𝑅𝐺 ≤ 4𝑅𝐺10000 (16)

where 𝑅𝑘 is the range corresponding to 𝜃𝑘. Thereafter, 𝑅𝐺 is
replaced by 𝑅𝑘 in the sample.

Step 6. Iterate from Step 1 to Step 5, until the calculation
processes corresponding to all design points have been
finished.

There is a special case that 𝑅𝐺 is greater than the
maximum range corresponding to the given 𝐵0, 𝐻0, 𝐴𝑇,𝐻𝑇, and 𝑇𝑠. In this case, it only needs to iterate the firing
angle to the maximum range angle by the iterative method
in Section 3.2, and then replace 𝑅𝐺 by the maximum range.

3.2. Maximum Range Angle Calculation under Standard
Atmospheric Conditions. Without considering various types
of systematic and random errors, the maximum range angle
andmaximum range under standard atmospheric conditions
are determined by𝐵0,𝐻0,𝐴𝑇,𝐻𝑇 and𝑇𝑠. Prior to establishing
the functional relations for the maximum range angle and
maximum range, the training samples and testing samples are
obtained, which consists of the following two specific steps.

Step 1. Calculate themaximum range angle with variable step
sizes, which consists of four rounds of iterations with step
sizes of 1.000, 0.100, 0.010, and 0.001, respectively. In the ith
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round, let 𝜃𝑖1, 𝑢𝑖, and 𝜃+𝑖2 be the initial value of the iteration,
the step size, and the assumed firing angle of the second
iteration, respectively, where 𝜃+𝑖2 = 𝜃𝑖1 + 𝑢𝑖, and the ranges
corresponding to 𝜃+𝑖2 and 𝜃𝑖1 are 𝑋+𝑖2 and 𝑋𝑖1, respectively.
Then the kth firing angle 𝜃𝑖𝑘 can be expressed as

𝜃𝑖𝑘 = {{{
𝜃𝑖1 + 𝑘𝑢𝑖 𝑋+𝑖2 > 𝑋𝑖1𝜃𝑖1 − 𝑘𝑢𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (17)

where k denotes the number of iterations. For each round,
iterate formula (17), until the maximum range angle is
reached. For the subsequent round, 𝜃𝑖1 is initialized by the
final output of the (i-1)th round. After four rounds of iterative
calculations, output the corresponding maximum range.

Step 2. Iterate Step 1, until the calculation processes corre-
sponding to all design points have been finished.

After obtaining the training samples and testing samples,
the functional relations between the maximum range angle,
the maximum range, and various influencing factors are
established by using different metamodels.

3.3. Firing Angle Calculation under Actual Atmospheric Con-
ditions. Compared with various types of systematic and ran-
domerrors, themeteorological data has a greater influence on
the accuracy of the firing angle of the MLRS armed with free
and simple controlled rockets. Consequently, it is essential to
make full use of the meteorological data available, including
the actual atmospheric pressure, virtual temperature, wind
velocity and wind direction.

There are a number of iterative formulas available to
calculate the accurate firing angle under actual atmospheric
conditions [19].The formulas have been extensively tested for
the 155mm M107 projectile as a case study, by comparison
with results from other formulas. It has been proven that
formula (15) is preferred to other iterative formulas, and it
is just the iterative formula (15) that we use in this paper.
Once the iterative formula is determined, the initial values
for the first two iterations are of great importance to the
minimization of the number of iterations, of which the
firing angle 𝜃1 for the first iteration is obtained by using the
established functional relation between the firing angle and
various influencing factors.

Let 𝑅1 be the range corresponding to 𝜃1 under actual
atmospheric conditions, and 𝜃∗1 is the firing angle corre-
sponding to 𝑅1 under standard atmospheric conditions.
Let 𝜃2 be the firing angle corresponding to the range 𝑅2
under actual atmospheric conditions, and 𝑅∗2 is the range
corresponding to 𝜃2 under standard atmospheric conditions.
Two basic assumptions are given as follows.

Assumption 1. The difference between 𝑅1 and 𝑅𝐺 is equal to
the difference between 𝑅𝐺 and𝑅∗2 ; namely,𝑅1−𝑅𝐺 = 𝑅𝐺−𝑅∗2 .
Assumption 2. The difference between 𝜃1 and 𝜃∗1 is equal to
the difference between 𝜃2 and 𝜃1; namely, 𝜃1 − 𝜃∗1 = 𝜃2 − 𝜃1.

However, there is an unavoidable case that 𝑅𝐺 is near
the minimum or maximum ranges, which may result in 𝑅1
and 𝑅∗2 being less than the minimum range 𝑅𝑀𝑖𝑛 or greater
than the maximum range 𝑅𝑀𝑎𝑥 under standard atmospheric
conditions. In this case, if metamodels are still used to
predict 𝜃2, it may lead to the sharp decrease of the prediction
accuracy. Aiming at solving this problem, an efficient method
for calculating 𝜃2 according to the ranges 𝑅1 and 𝑅∗2 is
proposed, as shown below.

If there is 𝑅1 ≤ 𝑅𝑀𝑖𝑛 or 𝑅1 ≥ 𝑅𝑀𝑎𝑥 such that 𝑅𝑀𝑖𝑛 ≤ 𝑅∗2 ≤𝑅𝑀𝑎𝑥, then followAssumption 1 to calculate𝑅∗2 by𝑅∗2 = 2𝑅𝐺−𝑅1 aswell as the corresponding firing angle 𝜃∗2 under standard
atmospheric conditions, and subsequently 𝜃2 is obtained by𝜃 = 𝜃∗2 . Similarly, if there exists 𝑅∗2 ≤ 𝑅𝑀𝑖𝑛 or 𝑅∗2 ≥ 𝑅𝑀𝑎𝑥
such that 𝑅𝑀𝑖𝑛 ≤ 𝑅1 ≤ 𝑅𝑀𝑎𝑥, then follow Assumption 2
to calculate the 𝜃2 directly by 𝜃2 = 2𝜃1 − 𝜃∗1 . Regarding
other cases where 𝑅𝑀𝑖𝑛 ≤ 𝑅∗2 ≤ 𝑅𝑀𝑎𝑥 and 𝑅𝑀𝑖𝑛 ≤ 𝑅1 ≤𝑅𝑀𝑎𝑥, 𝜃2 is then calculated by 𝜃2 = (𝜃∗2 + 2𝜃1 − 𝜃∗1 )/2 based
on Assumptions 1 and 2. To sum up, we get the following
expression for 𝜃2,

𝜃2 =
{{{{{{{{{{{{{

𝜃∗2 𝑅1 < 𝑅𝑀𝑖𝑛 𝑜𝑟 𝑅1 > 𝑅𝑀𝑎𝑥
2𝜃1 − 𝜃∗1 𝑅∗2 < 𝑅𝑀𝑖𝑛 𝑜𝑟 𝑅∗2 > 𝑅𝑀𝑎𝑥
(𝜃∗2 + 2𝜃1 − 𝜃∗1 )2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(18)

The detailed steps for calculating the firing angle under
actual atmospheric conditions are summarized as follows.

Step 1. Based on the established functional relation between
the firing angle and various influencing factors, calculate the
firing angle 𝜃1 corresponding to the given 𝐵0,𝐻0,𝐴𝑇,𝑅𝐺,𝐻𝑇,
and 𝑇𝑠.
Step 2. By utilizing the six DOF trajectory program, calculate
the range 𝑅1 corresponding to 𝜃1 under actual atmospheric
conditions.

Step 3. Based on the established functional relation between
themaximumrange and various influencing factors, calculate
the maximum range 𝑅𝑀𝑎𝑥 corresponding to the given 𝐵0,𝐻0,𝐴𝑇,𝐻𝑇, and 𝑇𝑠.
Step 4. Check whether 𝑅1 satisfies 𝑅𝑀𝑖𝑛 ≤ 𝑅1 ≤𝑅𝑀ax, and if yes, calculate the firing angle 𝜃∗1 corre-
sponding to 𝑅1 based on the established functional rela-
tion between the firing angle and various influencing
factors.

Step 5. Calculate the distance difference between 𝑅1 and 𝑅𝐺
by Δ𝑅1 = 𝑅1 − 𝑅𝐺, and then calculate the range 𝑅∗2 by 𝑅∗2 =𝑅𝐺 − Δ𝑅1.
Step 6. Check whether 𝑅∗2 satisfies 𝑅𝑀𝑖𝑛 ≤ 𝑅∗2 ≤ 𝑅𝑀ax,
and if yes, calculate the firing angle 𝜃∗2 corresponding to the𝑅∗2 based on the established functional relation between the
firing angle and various influencing factors.
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Table 2: Influencing factors and their variation ranges.

Factors Units Lower bound Upper bound
B0

∘ 0.00 70.00
H0 m 0.00 5000.00
AT mil 0.00 6400.00
RG km 80.00 300.00
HT m 0.00 5000.00
Ts

∘C -45.00 55.00

Step 7. Calculate 𝜃2 by the following equation:

𝜃2 =
{{{{{{{{{{{

𝜃∗2 𝑅1 < 𝑅𝑀𝑖𝑛 𝑜𝑟 𝑅1 > 𝑅𝑀𝑎𝑥2𝜃1 − 𝜃∗1 𝑅∗2 < 𝑅𝑀𝑖𝑛 𝑜𝑟 𝑅∗2 > 𝑅𝑀𝑎𝑥(𝜃∗2 + 2𝜃1 − 𝜃∗1 )2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(19)

and then calculate the range 𝑅2 corresponding to 𝜃2 under
actual atmospheric conditions by utilizing the six DOF
trajectory program.

Step 8. Having obtained the iterative initial values 𝜃1, 𝜃2 and
their corresponding ranges 𝑅1, 𝑅2, based on the six DOF
trajectory program, iterate formula (15) until the convergence
criterion (16) is met.

4. Case Studies

The case studies considered here seek to reveal the effective-
ness of the firing angle calculation method for the MLRS
under both standard and actual atmospheric conditions.
Table 2 provides the influencing factors and their variation
ranges, where the mil is a unit of angular measurement used
in artillery equal to 1/6400.00 of a complete revolution.

4.1. Case 1:Firing Angle Calculation under Standard Atmo-
spheric Conditions. The six DOF trajectory simulation is
based on the International Standard Atmosphere (ISO
2533:1975). The design of experiments is carried out for
six influencing factors by using the LHS, and the total
numbers of training samples and testing samples are 9000
and 5000, respectively. The firing angles corresponding to
various design points are obtained by employing the iterative
search approach and six DOF trajectory program described
in Section 3.1.

Table 3 shows the prediction accuracies of the PRS with
different orders. As for the orders of PRS ranging from 1 to
9, the prediction accuracy can be improved significantly with
the increase of the order. It is easily seen that the prediction
power is relatively low for the commonly used orders of PRS
ranging from 1 to 4. Regarding the prediction of the firing
angle, the MAE, MRE, and RMSE of the 4th-order PRS are
7.055mil, 0.701%, and 1.424mil, respectively, which indicates
that the low-order PRS lacks the capability of approximating
the highly complicated functional relation. Compared with
the low-order PRS, the high-order PRS has higher prediction
accuracy of the firing angle, and the MAE, MRE, and RMSE

of the 9th PRS are 1.047mil, 0.101%, and 0.103mil, respectively.
Furthermore, in order to further evaluate the prediction
accuracies of the PRS with different orders, the range error
induced by the prediction error of the firing angle is analyzed
simultaneously, which has the same changing trend as that
of the firing angle, and the MAE, MRE, and RMSE of the
9th PRS are 291.49m, 0.185%, and 51.08m, respectively. Thus,
high-order PRS is preferable to the establishment of a highly
nonlinear functional relation between the firing angle and 𝐵0,𝐻0, 𝐴𝑇, 𝑅𝐺,𝐻𝑇, 𝑇𝑠.

In terms of the prediction of firing angle, the correla-
tion function significantly affects the prediction accuracy of
Kriging with the trend function of 4th PRS, as illustrated
in Table 4. Obviously, the Kriging predictors with different
correlation functions all have higher prediction accuracies
by comparison with the prediction results of the low-order
PRS under identical conditions. Nevertheless, the correlation
function still plays a significant role in Kriging. The Gauss,
Spline and Cubic correlation functions of great interest
demonstrate a promising capability to predict the firing angle,
which have a parabolic behavior near the origin. In particular,
the Gauss and Spline correlation functions are quite similar
in terms of the prediction accuracy. However, if Linear,
Exp, and Spherical functions with a linear behavior near the
origin are selected as the correlation functions, the prediction
performances are relatively poor.

The high-order PRS (PRSho, order=9) and Kriging pre-
dictors with Cubic (KRcub), Exp (KRexp), Gauss (KRgau),
Linear (KRlin), Matern32 (KRmat32), Matern52 (KRmat52),
Spherical (KRsph), and Spline (KRspl) correlation functions
are used to construct the EM. The weights of the EM
are calculated by using the TLBO algorithm and initialize
the optimization parameters of the population size NP=30
and the number of generations NG=600. The optimized
weights corresponding to the PRSho, KRcub, KRexp, KRgau,
KRlin, KRmat32, KRmat52, KRsph, and KRspl are 0.139072,
0.146959, 0.000076, 0.363127, 0.000073, 0.000255, 0.000681,
0.000082, and 0.349675, respectively, and the sum of the
weights corresponding to the PRSho, KRcub, KRgau, and
KRspl is 0.998833, which indicates that the above four
metamodels play a key role in the construction of the EM.
With regard to the prediction of firing angle, the MAE,
MRE, and RMSE of the EM are 0.698 mil, 0.068%, and
0.071mil, respectively. In terms of the range error induced
by the prediction error of firing angle, the MAE, MRE,
and RMSE of the EM are 195.08m, 0.076%, and 35.92m,
respectively. Obviously, the EM outperforms other individual
metamodels. In light of the above analysis, we can conclude
that the PRSho, KRcub, KRgau, KRspl, and EM have higher
prediction accuracies.

The distributions of absolute errors of the firing angle
and range of five metamodels are shown in Figures 2 and
3. According to Figure 2, for each of the five metamodels,
the testing samples with the absolute error of firing angle
being less than 0.15mil and 0.30mil account for over 91.16%
and 98.24%, respectively. As illustrated in Figure 3, the
proportions of testing samples with the absolute error of
range being less than 50m and 100m makes up over 70.00%
and 95.48%, respectively. The above results further verify the
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Table 3: Effect of the order of PRS on prediction accuracy of firing angle.

Order Firing angle Range
MAE (mil) MRE (%) RMSE (mil) MAE (m) MRE (%) RMSE (m)

1 58.774 5.562 13.584 18751.03 12.476 7165.87
2 27.953 3.535 8.638 12062.80 9.439 4817.94
3 11.159 1.383 2.721 4410.95 3.394 1463.24
4 7.055 0.701 1.424 2893.34 1.362 752.29
5 4.789 0.463 0.673 1436.73 0.695 336.77
6 2.976 0.288 0.372 898.42 0.512 180.78
7 2.122 0.204 0.215 589.93 0.232 102.04
8 1.509 0.146 0.137 422.01 0.244 64.78
9 1.047 0.101 0.103 291.49 0.185 51.08
10 2.052 0.248 0.166 1308.71 0.501 94.99

Table 4: Effect of the correlation function of Kriging on prediction accuracy of firing angle.

Correlation function Firing angle Range
MAE (mil) MRE (%) RMSE (mil) MAE (m) MRE (%) RMSE (m)

Cubic 0.809 0.080 0.099 286.63 0.108 51.45
Exp 2.242 0.223 0.227 664.52 0.250 85.75
Gauss 0.865 0.083 0.084 243.33 0.094 39.71
Linear 2.426 0.233 0.233 674.98 0.262 93.47
Matern32 1.667 0.161 0.150 465.00 0.180 60.81
Matern52 1.192 0.115 0.121 332.74 0.152 53.66
Spherical 2.330 0.224 0.221 649.45 0.251 83.96
Spline 0.738 0.074 0.087 262.95 0.103 44.97

effectiveness of the firing angle calculation method under
standard atmospheric conditions.

The execution time of a program depends strongly on
the programming environment and the computing platform
used. Based on the established metamodels PRSho, KRcub,
KRgau, KRspl, and EM for the prediction of firing angle,
five programs are written in Microsoft Visual C++ 6.0. Each
program operates on a PC with an Intel(R) Core(TM) i5-
6300HQ CPU @ 2.30GHz, 4GB RAM, Windows 7 (64bit).
The execution times of various metamodels for a calculation
of the firing angle are given in Figure 4, where the execution
time of each metamodel is the average time of the execution
times of 5000 testing cases. It is quite obvious that the
execution times of four individual metamodels are all less
than 0.9ms, and the PRSho and KRspl are the fastest and
slowest metamodels with execution times being 0.03676ms
and 0.82525ms, respectively. Regarding the execution time
of the EM, it is 2.23317ms, which is still far less than the
required time of the fire control system that is measured in
seconds.Therefore, based on the above analysis of the rapidity
of the firing angle prediction, the feasibility of the firing angle
calculation method under standard atmospheric conditions
is verified.

Figures 5 and 6 clearly illustrate how the prediction
performances of metamodels depend on the training sample
size. The training samples with different sizes are generated
independently based on the LHS. The PRSho predictors
corresponding to the training sample size ranging from

3000 to 21000 with an increment of 3000 have the orders
of 7, 8, 9, 9, 10, 10, and 10, respectively. The EMs of the
firing angle corresponding to different training samples are
constructed in the same way as the EM with 9000 training
samples, and thus the optimized weights corresponding
to different training samples are different. Regarding the
prediction error of the firing angle and its inducing range
error, not surprisingly, the RMSE of each metamodel shows a
downward trend with the training sample size. In particular,
if the number of the training samples is less than 9000,
the RMSE of each metamodel decreases significantly with
the increase of training sample size, which indicates that
the prediction performance can be improved remarkably
with an increasing training sample size, and the PRSho has
the most significant decrease. However, while the training
sample size is more than 9000, the RMSE of each metamodel
decreases relatively slowly, which indicates that 9000 training
samples are enough to achieve reasonably good prediction
performance. The MAE and MRE of each metamodel have
the similar changing trends, and theKRgau is then taken as an
example. Regarding the prediction of firing angle, the MAE
andMRE of the KRgau are 1.494mil and 0.150%, respectively,
at a training sample size of 3000, but they decrease to 0.865mil
and 0.083% with 9000 training samples and further decrease
to 0.451mil and 0.043% with 21000 training samples.

4.2. Case 2: Calculations of Maximum Range Angle and
Maximum Range under Standard Atmospheric Conditions.
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Figure 2: Distributions of the absolute error of firing angle of five metamodels.
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Figure 3: Distributions of the absolute error of range of five metamodels.
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Figure 5: Variation of the prediction accuracy of firing angle with
the training sample size.
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The research on calculation methods of the maximum range
angle and maximum range under standard atmospheric
conditions is carried out by using the PRS, Kriging, and
EM. The LHS is selected as the method for the design of
experiments, and the variation ranges of influencing factors𝐵0,𝐻0,𝐴𝑇,𝐻𝑇, and𝑇𝑠 are shown inTable 2.Then the training
samples and testing samples are obtained with the sizes of
500 and 1000, respectively.Thereafter, the functional relations
betweenmaximum range angle, maximum range, and 𝐵0,𝐻0,𝐴𝑇,𝐻𝑇, 𝑇𝑠 are established.

The effect of the order of PRS on prediction accuracy of
maximum range angle is illustrated in Table 5. Obviously,
for the order within the range of 1 to 5, the prediction per-
formance can be improved substantially with an increasing
order, and the 5th PRS has the best prediction performance.
In terms of the prediction of maximum range angle, the
MAE,MRE, and RMSE of 5th PRS are 0.949mil, 0.090%, and
0.122mil, respectively. Meanwhile, the maximum range error
induced by the prediction error of maximum range angle is
analyzed to further evaluate the prediction performance, and
the MAE, MRE, and RMSE of 5th PRS are 202.86m, 0.089%,
and 29.81m, respectively. Compared with prediction results
of 5th PRS, the prediction accuracy of 6th PRS decreases
significantly. While the order of PRS is more than 6, the
available training samples are not enough, resulting in an
inaccurate estimation of regression parameters. Therefore,
based on the analysis above, we draw the conclusion that
the appropriate order is of significant importance to the
improvement of the prediction accuracy of PRS.

Considering the actual need of predicting the maximum
range corresponding to the given 𝐵0, 𝐻0, 𝐴𝑇, 𝐻𝑇, and𝑇𝑠 under standard atmospheric conditions, the functional
relation between the maximum range and the above five
influencing factors is established directly by using the PRS,
and the prediction results are illustrated in Table 6. It is easily
seen that the prediction accuracy with the order has the same
changing trend as that of PRS for predicting the maximum
range angle, and the 5th PRS has the highest prediction
accuracy with the MAE, MRE, and RMSE being 746.63m,
0.314%, and 77.39m, respectively.

Regarding the prediction of maximum range angle,
Table 7 gives the influence of the correlation function on
prediction accuracy of the Kriging with the trend function
of 2th PRS. It is easily noticed that the Kriging predictors
with different correlation functions all demonstrate good
prediction performance. In terms of various correlation
functions, the Spline ranks first in prediction performance,
which illustrates that the Spline correlation function is the
most preferable for the prediction of maximum range angle,
and it is followed Cubic, Gauss, Matern52, and Matern32 in
turn. Furthermore, each of Kriging predictors with above five
correlation functions has better prediction performance by
comparison with that of 5th PRS under identical conditions.
However, the Kriging predictors with the Exp, Linear, and
Spherical correlation functions demonstrate similar predic-
tion capability to the 5th PRS.

Table 8 shows how the performance of Kriging for
predicting the maximum range depends on the correla-
tion function. Obviously, the correlation function has an

important influence on the prediction performance, and the
prediction performance with the correlation function has
the same changing trend as that of Kriging for predicting
the maximum range angle. Compared with the 5th PRS, the
Kriging predictors with eight correlation functions all have
better prediction performances, and especially the prediction
performances of Kriging predictors with Cubic and Spline
correlation functions are much better than those of Kriging
predictors with other correlation functions, which illustrates
that the Kriging predictors with Spline and Cubic correlation
functions are quite capable of predicting themaximum range.

The PRSho (order=5) and Kriging predictors with eight
correlation functions are used to construct the EM of
maximum range angle, and the corresponding weights
are obtained by using the TLBO algorithm with the ini-
tial parameters of NP=22 and NG=500. The optimized
weights corresponding to the PRSho, KRcub, KRexp, KRgau,
KRlin, KRmat32, KRmat52, KRsph, and KRspl are 0.004214,
0.288490, 0.004953, 0.199488, 0.003182, 0.017866, 0.173068,
0.005553, and 0.303186, respectively. Thus, the KRspl ranks
first in the proportion, and it is followed by KRcub, KRgau,
and KRmat52 in turn. Moreover, the sum of the weights
corresponding to the KRcub, KRgau, KRmat52, and KRspl
is 0.964232, which indicates that the above four metamodels
play a major role in the construction of the EM. Regarding
the prediction of maximum range angle, the MAE, MRE,
and RMSE of the EM are 0.259mil, 0.026%, and 0.045mil,
respectively, and the maximum range error induced by the
prediction error of the maximum range angle is analyzed
simultaneously with the MAE, MRE, and RMSE being
50.07m, 0.021%, and 10.93m, respectively. Thus, the EM is
clearly superior to other individual metamodels. Based on
the above analysis, we can conclude that the KRcub, KRgau,
KRmat52, KRspl, and EM have higher prediction accuracies.

Similarly, the EM of the maximum range is constructed
in the above way, and the optimized weights are obtained,
among which the optimized weights corresponding to the
KRcub and KRspl are 0.292025 and 0.696638, respectively.
With the exception of the KRcub and KRspl, the sum of the
optimized weights corresponding to the PRSho and Kriging
predictors with other correlation functions is 0.011337, which
is mainly due to the fact that the KRcub and KRspl have
obviously higher prediction accuracies than those of PRSho
and Kriging predictors with other correlation functions, and
consequently the prediction accuracy of EMmainly depends
on prediction accuracies of the KRcub and KRspl.TheMAE,
MRE, and RMSE of the EM are 46.84m, 0.019%, and 10.47m,
respectively. Obviously, the prediction accuracy of EM is
improved slightly compared with that of the KRspl.

4.3. Case 3: Firing Angle Calculation under Actual Atmo-
spheric Conditions. Based on the monthly meteorological
data below 30km provided by a dozen observation stations
during the period from 1990 to 1995, the case study on the
firing angle calculation under actual atmospheric conditions
is conducted to validate the method described in Section 3.3.
Themeteorological data are adequate in spatial coverage, and
it includes various meteorological variables such as tempera-
ture, atmospheric pressure, relative humidity, wind velocity,
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Table 5: Effect of the order of PRS on prediction accuracy of maximum range angle.

Order Maximum range angle Maximum range
MAE (mil) MRE (%) RMSE (mil) MAE (m) MRE (%) RMSE (m)

1 11.441 1.124 4.231 3328.52 1.362 1041.31
2 8.509 0.873 3.077 2501.27 1.059 767.22
3 3.690 0.350 0.692 864.47 0.382 171.82
4 2.605 0.259 0.499 697.64 0.300 124.37
5 0.949 0.090 0.122 202.86 0.089 29.81
6 1.787 0.168 0.174 479.80 0.195 43.12

Table 6: Effect of the order of PRS on prediction accuracy of
maximum range.

Order MAE (m) MRE (%) RMSE (m)
1 5929.71 2.249 1995.12
2 4084.98 1.456 1285.65
3 2431.36 0.988 369.05
4 1102.10 0.392 220.33
5 746.63 0.314 77.39
6 1028.23 0.410 110.31

wind direction, virtual temperature, and solar radiation.
Under each of varieties of actual atmospheric conditions,
the latitude, elevation, and ground surface temperature of
the position of the meteorological observation station are
selected as the latitude of launcher, the elevation of launcher,
and the propellant temperature, respectively, and the LHS is
adopted to generate 100 design points for influencing factors𝐴𝑇,𝑅𝐺, and𝐻𝑇with variation ranges being shown in Table 2.
If the given 𝑅𝐺 is greater than the maximum range under
actual atmospheric conditions, it only needs to calculate the
number of iterations corresponding to the maximum range.
Based on the established functional relations in Sections 4.1
and 4.2 with the sample sizes of 9000 and 500, respectively, of
which the functional relation between maximum range and𝐵0,𝐻0, 𝐴𝑇,𝐻𝑇, 𝑇𝑠 is established by using the KRspl, and the
distributions of the number of iterations are finally obtained,
as illustrated in Figures 7 and 8.

Figure 7 describes the distributions of the number of iter-
ations of five metamodels merely considering the meteoro-
logical variables of atmospheric pressure and virtual temper-
ature. Regarding the firing angle calculation corresponding to
each of five metamodels, the maximum number of iterations
is 4, and the proportions corresponding to the number of
iterations 1, 2, 3, and 4 are over 1.49%, 78.19%, 18.05%, and
0.08%, respectively. Thus, the number of iterations 2 and 3
rank first and second in the proportion, and they are followed
by the number of iterations 1 and 4 in turn. However, as for
the commonly used 4th PRS, the proportions corresponding
to the number of iterations 1, 2, 3, and 4 are 1.13%, 47.48%,
51.16%, and 0.23%, respectively. Obviously, the calculation
efficiency of each of five metamodels is much higher than that
of 4th PRS, and the order of the calculation efficiency from
high to low in turn is EM, KRgau, KRspl, PRSho, and KRcub.

Figure 8 shows the distributions of the number of itera-
tions of five metamodels considering the atmospheric pres-
sure, virtual temperature, wind velocity, and wind direction.
It is easily seen that themaximumnumber of iterations is 5 for
each of five metamodels and the proportions corresponding
to the number of iterations less than 4 are over 99.88%.
Furthermore, the number of iterations 2 and 3 account for
the largest proportion (over 94.81%), whereas the proportions
corresponding to the number of iterations 1 and 5 are quite
small, representing less than 0.96% and 0.12% of all testing
samples, respectively. By contrast, with regard to the 4th PRS,
the proportions corresponding to the number of iterations 1,
2, 3, 4, and 5 are 0.78%, 32.45%, 60.29%, 6.29%, and 0.19%,
respectively.Thus, the efficiency of the firing angle calculation
of each of five metamodels is improved significantly by
comparison with that of 4th PRS, and the order of the
calculation efficiency from high to low in turn is still EM,
KRgau, KRspl, PRSho, and KRcub.

On the other hand, by comparing the distributions of
the number of iterations shown in Figure 7, we can see that
the maximum number of iterations increases for each of five
metamodels if the wind velocity and wind direction are taken
into consideration, and the proportions corresponding to
the numbers of iterations 1 and 2 are markedly reduced, of
which the latter has a reduction of over 30.01%. However,
the proportions corresponding to the numbers of iterations
3 and 4 are significantly increased, of which the former has
an increment of over 26.41%.

5. Conclusion

Based on the large sample data, the functional relation
between the firing angle and six influencing factors is estab-
lished by using the PRS, Kriging and EM, which effectively
deals with the problem of the rapid calculation of firing angle
for the MLRS under standard atmospheric conditions. On
this basis, together with the established functional relation
between the maximum range and five influencing factors, by
utilizing the proposed iterative search approach and six DOF
trajectory program, the problem of firing angle calculation
under actual atmospheric conditions has been effectively
solved as well. The main conclusions of this study are as
follows.(1) Regarding the firing angle calculation under standard
atmospheric conditions, the PRSho, KRcub, KRgau, KRspl,
and EM have higher prediction accuracies by comparison
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Table 7: Effect of the correlation function of Kriging on prediction accuracy of maximum range angle.

Correlation function Maximum range angle Maximum range
MAE (mil) MRE (%) RMSE (mil) MAE (m) MRE (%) RMSE (m)

Cubic 0.318 0.032 0.062 93.58 0.037 15.53
Exp 0.720 0.074 0.121 213.22 0.088 30.26
Gauss 0.385 0.036 0.073 95.81 0.039 18.29
Linear 0.753 0.079 0.122 223.23 0.090 30.40
Matern32 0.613 0.064 0.099 182.36 0.075 24.29
Matern52 0.427 0.040 0.076 103.39 0.043 18.87
Spherical 0.686 0.072 0.121 207.54 0.084 29.95
Spline 0.309 0.029 0.060 58.02 0.025 14.71
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Figure 7: Distributions of the number of iterations merely considering the atmospheric pressure and virtual temperature.
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Figure 8: Distributions of the number of iterations considering the atmospheric pressure, virtual temperature, wind velocity, and wind
direction.
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Table 8: Effect of correlation function of Kriging on prediction
accuracy of maximum range.

Correlation function MAE (m) MRE (%) RMSE (m)
Cubic 61.45 0.025 11.53
Exp 363.70 0.124 59.98
Gauss 135.14 0.057 31.80
Linear 372.36 0.127 60.67
Matern32 286.50 0.104 46.79
Matern52 146.48 0.061 33.42
Spherical 351.18 0.147 59.27
Spline 50.56 0.021 10.56

with those of other metamodels, and the order of the
prediction accuracy at a training sample size of 9000 from
high to low in turn is EM, KRgau, KRspl, KRcub, and PRSho.
In addition, for the training sample size less than 9000, the
prediction accuracy of each of the above five metamodels
improves significantly with the increase of training sample
size, whereas it improves slightly when the training sample
size is over 9000.(2) The KRcub, KRgau, KRmat52, KRspl, and EM have
better performances for predicting the maximum range angle
under standard atmospheric conditions compared with those
of other metamodels at a training sample size of 500, and the
KRcub and KRspl are especially suitable for predicting the
maximum range.(3) The methods for calculating the firing angle and
maximum range angle based on metamodels feature high
accuracy and fast speed, which can provide a new solution to
the calculation of the firing data for theMLRS under standard
atmospheric conditions.(4) The proposed method of firing angle calculation
under actual atmospheric conditions can effectively reduce
the number of iterations, and thus the rapid reaction capa-
bility of the MLRS is improved significantly.

With the rapid development of technologies such as
artificial intelligence and machine learning, the research and
application of the firing angle calculation for the MLRS will
also gain significant developments in the near future.
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