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To improve the bearings diagnosis accuracy considering multiple fault types with small samples, a new approach that combined
adaptive local iterative filtering (ALIF), multiscale entropy features, and kernel sparse representation classification (KSRC) is put
forward in this paper. ALIF is used to adaptively decompose the nonlinear, nonstationary vibration signals into a sum of intrinsic
mode functions (IMFs). Multiple entropy features such as sample entropy, fuzzy entropy, and permutation entropy with multiscale
are computed from the first three IMFs and a total of one hundred and eighty features are obtained. After normalization, the features
are employed to train and test the classifier KSRC, respectively. Finally, the proposed approach is evaluated with two experimental
tests. One is concerned with different types of bearing faults from the centrifugal pump; and the other is fromCaseWestern Reserve
University (CWRU) considering 12 bearing fault states. Experimental results have proved that the proposed approach is efficient
for bearing fault diagnosis, and high accuracy will be obtained with high dimensional features through small samples.

1. Introduction

The rolling bearings are mostly used in rotating machinery
and their working conditions are concerned with mainte-
nance of machines and safety of workers. Since the faults
in bearings are always companied with the vibration which
is easy to measure, many works are focused on the fault
diagnosis based on the vibration analysis. Generally, the
procedure for bearing fault diagnosis is composed of four
steps: (1) preprocessing based on adaptive mode decom-
position for nonlinear and nonstationary vibration signals,
(2) extract features that are relatively insensitive to the data
length and immune to the noise, (3) dimension reduction
of the feature matrix based on principal component analysis
(PCA) or Laplacian scores (LS), etc., and (4) fault pattern
identification with the classifier. For example, Zhao et al. [1]
computed multiscale permutation entropy of subbands by
wavelet packet decomposition (WPD) and employed hidden
Markov model (HMM) to identify the fault pattern of the
rolling bearing. Yang et al. [2] extracted the energy entropy

from the intrinsic mode functions (IMFs) by empirical mode
decomposition (EMD) [3] as features and employed artificial
neural network (ANN) to identify the fault types. Li et
al. [4] utilized local mean decomposition (LMD) [5] for
preprocessing, improvedmultiscale fuzzy entropy as features,
Laplacian scores for feature selection, and improved support
vector machine based binary tree for bearing fault diagnosis.
Yang et al. [6] combined variational mode decomposition
(VMD) [7], local linear embedding (LLE) with support
vector machine (SVM) to diagnose mechanical faults of the
rotor-bearing-casing system. Good effects in bearing fault
diagnosis have been realized to some extent from the above
description; however, some problems still exist and need to
be investigated further.

The first problem is concerned with adaptive mode
decomposition [8]. WPD needs to prespecify the basis func-
tion and could not decompose the signals adaptively. The
representative approach for adaptive decomposition is EMD,
which could decompose a complicated signal into the sum of
some certain IMFs, yet it is subjected to the problems of end
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effect and mode mixing. Some modifications are proposed
following EMD, such as LMD and VMD. Recently, a new
approach called adaptive local iterative filtering (ALIF) was
proposed by Cicone in 2016 [9, 10]. It follows the structure
of EMD and has advantages of the adaptive filter adjusted
with the Fokker-Planck (FP) equation and an adaptive filter
length. Authors in [11] have successfully applied ALIF and
approximate entropy forwind turbine bearing. Consequently,
ALIF will be more suitable to process the faulty vibration
signals of the rolling bearings.

The next problem is how to extract efficient features
for classification with high accuracy [12]. The traditional
features are from time domain, frequency domain, and time-
frequency domain. To deal with the nonlinear dynamic
characteristics of bearing fault signals, entropy is introduced
[13], such as approximate entropy (ApEn) [11, 14], sample
entropy (SaEn) [15, 16], fuzzy entropy (FuEn) [17, 18], and
permutation entropy (PE) [19, 20]. However, they all estimate
the complexity of signals at a single scale, which may be not
conducive to the extraction of signal features. To overcome
this drawback, multiscale entropy (MSE) was proposed by
Costa et al. to measure the complexity of signals over a range
of scales [21, 22]. Based on MSE, multiscale sample entropy
(MSaE), multiscale fuzzy entropy (MFE), and multiscale
permutation entropy (MPE) are proposed, which have been
proved to have better performance compared with SaEn,
FuEn, and PE in application of diagnosis on rolling bearing
fault [23–25]. However, it is not ideal to use the entropy
features directly for classification because of the influence of
noise and interference harmonics in the vibration signals.
Hence, ALIF is utilized to decompose the original signals into
a sum of IMFs, which reduce the interference of noise and
harmonics and highlight the effect of the fault information.
In the following, the three multiscale entropy features are
computed with the IMFs containing the most fault infor-
mation. Considering the advantages of the three multiscale
entropy features in feature extraction and characteristics of
the following classifier, all of them are employed in this paper.

Before classification, feature selection like LS or dimen-
sionality reduction like PCA and LLE should be performed.
In the following, classifiers such as HMM [1], ANN [2],
SVM [6], and multiclass relevance vector machine [20]
are carried out for identification of the fault type. Though
theories of them are well established, the inherent limitations
have confined them to some extent. For example, ANN and
VPMCD [26] need large training samples to obtain high
classification accuracy; also, the SVM is a binary classifier
which requires a classification strategy such as one against
one, one versus all, and binary tree.Nevertheless, this is a two-
stage combined feature reduction and classifiers. In addition,
the training samples in the practical application are small,
but with multiple features. Hence, a sparse representation
classifier [27] is introduced to achieve the two stages at one
time and realize feature selection through regularization.The
classifier is firstly proposed to recognize human faces viewed
in front considering cases of varying expression and illumi-
nation. Its advantage lies in the requirement of a sufficiently
large number of features for high classification accuracy,
but the number of samples. To modify the classification

accuracy with high dimensional features, kernel approach
is introduced and KSRC is proposed and applied in face
recognition [28, 29]. Hence, KSRC is employed in this paper
to identify bearing fault states combinedwithALIF-enhanced
multiple entropy features.

The organization of this paper is as follows. Theoretical
backgrounds including ALIFDMMPE, and KSRC are briefly
introduced in Sections 2, 3, and 4.The illustration concerning
the proposed method based on the theoretical backgrounds
is presented in Section 5. Experiment datasets are employed
to verify the proposed method in Section 6, and in Section 7
the conclusions are finally drawn.

2. Adaptive Local Iterative Filtering

Given a nonstationary, nonlinear signal 𝑥(𝑡), it could be
reconstructed as the sum of several IMFs and the residue:

𝑥 (𝑡) = 𝑁∑
𝑖=1

𝑐𝑖 (𝑡) + 𝑟 (𝑡) , (1)

where 𝑐𝑖(𝑡) represents the IMF, 𝑁 is the number of IMFs
and the IMF should satisfy two conditions [3]: (1) extrema
in the whole data set must have the same number with zero
crossings or differ by one at most; and (2) at any point,
the mean value of the upper envelope connecting all the
local maxima and the lower envelope connecting all the
local minima is zero. Generally, the decomposition process
consists of two loops: the inner loop and the outer loop,
where the former is used for IMF extraction, while the latter
is used to determine the number of IMFs and the residual. In
EMD algorithm, the cubic spline interpolation is employed
for the upper and the lower envelope functions, which will be
susceptible to singularities. Consequently, iterative filtering
computes the moving average Θ(𝑥(𝑡)) of the signal 𝑥(𝑡) by
the convolution

Θ (𝑥 (𝑡)) = 𝑥 (𝑡) ∗ 𝑓 (𝑡) = ∫𝑙
−𝑙

𝑥 (𝑡 + 𝜏) 𝑓 (𝜏) 𝑑𝜏 (2)

in lieu of the envelop functions. In (2), ∗ represents the
convolution operator, 𝑓(𝑡) constrained with ∫𝑙

−𝑙
𝑓(𝜏)𝑑𝜏 = 1

is a low pass filter, and 𝑙 is the mask length. Afterwards by the
sifting process, the first IMF is generated:

𝑐1 (𝑡) = lim
𝑛󳨀→∞

Θ1,𝑛 (𝑥𝑛 (𝑡)) , (3)

where 𝑛 is the iterative number, 𝑥1(𝑡) = 𝑥(𝑡), and 𝑥𝑛(𝑡) =Θ1,𝑛−1(𝑥𝑛−1(𝑡)). Since the number 𝑛 is impossible to achieve
infinite in (3), so (4) is adopted as a stop criterion for
iterations: 󵄩󵄩󵄩󵄩Θ𝑖,𝑛 − Θ𝑖,𝑛−1󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩Θ𝑖,𝑛−1󵄩󵄩󵄩󵄩2 ≤ 𝜉, (4)

whereΘ𝑖,𝑛 represents themoving average of the 𝑛-th iteration
of the 𝑖-th IMF and 𝜉 is a prespecified parameter. If 𝜉 is large,
rough decomposed results may be obtained. However, if 𝜉 is
too small, the computation will be expensive and noise will
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Figure 1: Time-domain waveforms of simulation signals.

be introduced. Finally, 0.001 is determined to 𝜉 after trials. In
the next step, the second IMF will be obtained by repetition
of the previous iterative process to the residual signal 𝑟(𝑡) =𝑥(𝑡) − 𝑐1(𝑡). With the same manner, all the subsequent IMFs
are produced by

𝑐𝑘 (𝑡) = lim
𝑛󳨀→∞

Θ𝑘,𝑛 (𝑥𝑛 (𝑡)) , (5)

Finally, if 𝑟(𝑡) does not satisfy the two conditions of IMF, then
treat it as the residual and stop the iteration.

The ALIF method is improved from the iterative filtering
technique, which could adaptively adjust the filter with
the FP equation and adaptively compute the filter length.
Consequently, the above equation (2) can be rewritten as

Θ (𝑥 (𝑡)) = 𝑥 (𝑡) ∗ 𝑓 (𝑡) = ∫𝑙(𝑡)
−𝑙(𝑡)

𝑥 (𝑡 + 𝜏) 𝑓 (𝑡, 𝜏) 𝑑𝜏, (6)

which is subjected to

∫𝑙(𝑡)
−𝑙(𝑡)

𝑓 (𝑡, 𝜏) 𝑑𝜏 = 1, (7)

where 𝑓(𝑡, 𝜏), 𝜏 ∈ [−𝑙(𝑡), 𝑙(𝑡)], is the filter at time 𝑡, and 𝑙(𝑡) is
the mask length varying with 𝑡.

To show the advantage of ALIF in signal decomposition,
a simulation is performed. Signals of the rolling bearing are
written as

𝑥 (𝑡) = 𝑥1 (𝑡) + 𝑥2 (𝑡) + 𝑥3 (𝑡) , (8)

in which 𝑥1(𝑡) = 2𝑒−1256𝑡×mod (𝑡,𝑇0) sin(4000𝜋𝑡) is the periodic
exponential decay signals, mod (⋅, ⋅) is the surplus function,
and 𝑇0 = 1/20000; 𝑥2(𝑡) = 1.5 sin(400𝜋𝑡) and 𝑥3(𝑡) =0.5 sin(100𝜋𝑡 + 𝜋/6) are harmonic interferences. Then the
mixed signals with its components in the time interval 𝑡 =0 : 0.25 are shown in Figure 1.

The decomposition results of ALIF and EMD are shown
in Figures 2 and 3. In Figure 2, IMF1, IMF2, and IMF3
correspond to the components 𝑥1, 𝑥2, and 𝑥3. Moreover, the
decomposed components from IMF4 to IMF8 are residuals.
However, the IMF1 by EMD corresponding to the 𝑥1 is
distorted in Figure 3, and IMF2 and IMF4 are corresponding
to 𝑥2 and 𝑥3 because IMF3 is a false component.The absolute
error is employed to compare the decomposition results of
ALIF with EMD. From the comparison in Figure 4, ALIF
outperforms EMD.

3. Multiscale Entropy Features

Following the preprocess of signals with ALIF, entropy
features will be extracted from the IMFs for the preparation
of fault diagnosis. Since a fault type with more features
could be better represented, yet with the consideration of
computation efficiency, hence sample entropy, fuzzy entropy,
and permutation entropy are just introduced.

3.1. Sample Entropy. Considering a time series {𝑥(𝑘), 𝑘 =1, 2, . . . , 𝑁}, then the 𝑚 dimensional vector at time 𝑖 can be
constructed as

𝑥
(𝑚)
𝑖 = {𝑥 (𝑖) , 𝑥 (𝑖 + 𝜏) , . . . , 𝑥 (𝑖 + (𝑚 − 1) 𝜏)} ,

𝑖 = 1, 2, . . . , 𝑁 − (𝑚 − 1) 𝜏, (9)

where 𝜏 is the time delay.The distance between 𝑥(𝑚)𝑖 and 𝑥(𝑚)𝑗
is defined as

𝑑𝑚𝑖𝑗 = 𝑑 [𝑥(𝑚)𝑖 ,𝑥(𝑚)𝑗 ]
= max
𝑘=0,1,2,...,𝑚−1

[󵄨󵄨󵄨󵄨𝑥 (𝑖 + 𝑘) − 𝑥 (𝑗 + 𝑘)󵄨󵄨󵄨󵄨] ,
(𝑖 = 1, 2, . . . , 𝑁 − 𝑚, 𝑗 ̸= 𝑖) .

(10)
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Figure 2: Decomposition results of ALIF.

Set the threshold 𝑟, and the ratio of distance less than 𝑟 is
defined as

𝐵(𝑚)𝑖 (𝑟) = # {𝑑 [𝑥(𝑚)𝑖 ,𝑥(𝑚)𝑗 ] < 𝑟}
𝑁 − 𝑚 − 1 , (11)

with the mean

𝐵(𝑚) (𝑟) = 1𝑁 − 𝑚
𝑁−𝑚∑
𝑖=1

𝐵(𝑚)𝑖 (𝑟) . (12)

Repeat the above steps for 𝐵(𝑚+1)𝑖 (𝑟) and obtain the mean𝐵(𝑚+1)(𝑟); then the sample entropy is

𝑆𝑎𝐸𝑛 (𝑚, 𝑟) = lim
𝑁󳨀→∞

[− ln 𝐵(𝑚+1) (𝑟)𝐵(𝑚) (𝑟) ] . (13)

Since 𝑁 is a finite value, (13) can be rewritten as

𝑆𝑎𝐸𝑛 (𝑚, 𝑟,𝑁) = [− ln 𝐵(𝑚+1) (𝑟)𝐵(𝑚) (𝑟) ]
= ln𝐵(𝑚) (𝑟) − ln𝐵(𝑚+1) (𝑟) .

(14)

3.2. Fuzzy Entropy. The distance in (10) is used to measure
the fuzzy similarity as follows:

𝐷(𝑚)𝑖𝑗 = 𝜇 (𝑑(𝑚)𝑖𝑗 , 𝑛, 𝑟) = exp[
[−(𝑑(𝑚)𝑖𝑗𝑟 )

𝑛]
] . (15)

Define the function at 𝑚:

𝜙(𝑚) (𝑛, 𝑟) = 1𝑁 − 𝑚
𝑁−𝑚∑
𝑖=1

[
[

1𝑁 − 𝑚 − 1
𝑁−𝑚∑
𝑗=1,𝑗 ̸=𝑖

𝐷(𝑚)𝑖𝑗 ]
] , (16)

and the function at 𝑚 + 1:
𝜙(𝑚+1) (𝑛, 𝑟)

= 1𝑁 − 𝑚
𝑁−𝑚∑
𝑖=1

[
[

1𝑁 − 𝑚 − 1
𝑁−𝑚∑
𝑗=1,𝑗 ̸=𝑖

𝐷(𝑚+1)𝑖𝑗 ]
] , (17)

and then the fuzzy entropy is

𝐹𝑢𝑧𝑧𝑦𝐸𝑛 (𝑚, 𝑛, 𝑟)
= lim
𝑁󳨀→∞

[ln𝜙(𝑚) (𝑛, 𝑟) − ln𝜙(𝑚+1) (𝑛, 𝑟)] . (18)
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Figure 3: Decomposition results of EMD.
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decomposed components by ALIF and EMD.

When 𝑁 is a finite number, (18) is rewritten as

𝐹𝑢𝑧𝑧𝑦𝐸𝑛 (𝑚, 𝑛, 𝑟,𝑁) = ln𝜙(𝑚) (𝑛, 𝑟)
− ln𝜙(𝑚+1) (𝑛, 𝑟) . (19)

3.3. Permutation Entropy. Let 𝜋𝑗 = (𝑟0, 𝑟1, . . . , 𝑟𝑚−1); then
𝑥(𝑚)𝑖 has a permutation 𝜋𝑗 if it satisfies the fact that

𝑥 (𝑖 + 𝑟0𝜏) ≤ 𝑥 (𝑖 + 𝑟1𝜏) ≤ ⋅ ⋅ ⋅ ≤ 𝑥 (𝑖 + 𝑟𝑚−1𝜏) , (20)

where 0 ≤ 𝑟𝑛 ≤ 𝑚 − 1, and 𝑟𝑛−1 < 𝑟𝑛 when 𝑥(𝑡 + 𝑟𝑛−1𝜏) =𝑥(𝑡 + 𝑟𝑛𝜏).
For each permutation 𝜋𝑗, 1 ≤ 𝑗 ≤ 𝑚!, the relative

frequency can be defined as

𝑝 (𝜋𝑗) = # {𝑖 | 𝑖 ≤ 𝑁 − (𝑚 − 1) 𝜏, 𝑥𝑚𝑖 ℎ𝑎𝑠 𝑡𝑦𝑝𝑒 𝜋𝑗}𝑁 − (𝑚 − 1) 𝜏 , (21)

where # represents the number of 𝑥(𝑚)𝑖 belonging to the type
𝜋𝑗.Then the definition of PEwith𝑚dimension can bewritten
as

𝑃𝐸 (𝑚) = −𝑚!∑
𝑗=1

𝑝 (𝜋𝑗) ln [𝑝 (𝜋𝑗)] . (22)

3.4. Coarse Grained Process. The multiple scales are realized
through the coarse-grained process for better feature extrac-
tion. Further, the length of the coarse-grained time series
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Table 1: Prespecified parameters in the entropy computation.

Entropy 𝑁 𝑠 𝑚 𝜏 𝑟 𝑛
Sample

2048 20
2 1 0.2×SD --

Fuzzy 2 1 0.2×SD 2
Permutation 4 1 -- --

s=2

s=3

x1 x2 x3 x4 x5 x6

y(2)
1 y(2)

2 y(2)
3

y(3)
1 y(3)

2 y(3)
j = (xi + xi+1 + xi+2) /3

y(2)
j = (xi + xi+1) /2

xi xi+1

xi+2x1 x2 x3 x4 x5 x6 xi xi+1

Figure 5: Illustration of the coarse-grained process.

depends on the length of the original time series divided
by the corresponding scale factor, which is illustrated in
Figure 5. Hence, the coarse grained time series 𝑦(𝑠)𝑗 at a scale
factor of 𝑠 can be constructed according to

𝑦(𝑠)𝑗 = 1𝑠
𝑗𝑠∑

𝑖=(𝑗−1)𝑠+1

𝑥 (𝑖) , 1 ≤ 𝑗 ≤ 𝑁𝑠 . (23)

Then SaEn, FuEn, and PE of each coarse-grained time series
are calculated based on (14), (19), and (22) and, respectively,
plotted them as functions of the scale factor 𝑠:

𝑀𝑆𝑎𝐸 (𝑥, 𝑠, 𝑚, 𝜏, 𝑟) = 𝑆𝑎𝐸𝑛 (𝑦(𝑠)𝑗 , 𝑚, 𝜏, 𝑟) (24)

𝑀𝐹𝐸 (𝑥, 𝑠, 𝑚, 𝜏, 𝑟, 𝑛) = 𝐹𝑢𝐸𝑛 (𝑦(𝑠)𝑗 , 𝑚, 𝜏, 𝑟, 𝑛) (25)

𝑀𝑃𝐸 (𝑥, s, 𝑚, 𝜏) = 𝑃𝐸 (𝑦(𝑠)𝑗 , 𝑚, 𝜏) (26)

In this paper, the prespecified parameters are set in Table 1.
Especially, SD represents the standard deviation (std.) of the
original signals.

4. Kernel Sparse Representation Classifier

4.1. Sparse Representation Classification. Let a matrix𝐴𝑖 rep-
resent features of the 𝑖th class for auxiliary training samples,
namely,𝐴𝑖 = [𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑛𝑖] ∈ R𝑚×𝑛𝑖 , where𝑚 is the feature
dimension, and 𝑛𝑖 is the number of auxiliary training samples
of the ith class.The auxiliary testing samples𝑦𝑖 ∈ R𝑚 from the
same class could be approximately expressed as

𝑦𝑖 = 𝛼𝑖1𝑣𝑖1 + 𝛼𝑖2𝑣𝑖2 + ⋅ ⋅ ⋅ + 𝛼𝑖𝑛𝑖𝑣𝑖𝑛𝑖 . (27)

Considering the overall 𝑞 object classes and the whole
training sets of the 𝑛 auxiliary training samples with 𝑛 =𝑛1 + 𝑛2 + ⋅ ⋅ ⋅ + 𝑛𝑞, then the total matrix 𝐴 can be formed as

𝐴 = [𝐴1,𝐴2, . . . ,𝐴𝑞] = [𝑣11, 𝑣12, . . . , 𝑣𝑞𝑛𝑞] . (28)

Consequently, the linear representation of 𝑦 along with all
auxiliary training samples is expressed as

𝑦 = 𝐴𝛼0, (29)

where 𝛼0 = [0, . . . , 0, 𝛼𝑖1, 𝛼𝑖2, . . . , 𝛼𝑖𝑛𝑖 , 0, . . . , 0]𝑇 ∈ R𝑛 is a
coefficient vector, in which the entries are zero if they do not
belong to the 𝑖th class.

The sparse solution to 𝑦 = 𝐴𝛼 can be achieved by
optimizing the following 𝑙1-minimization problem:

𝛼̂1 = argmin
𝛼

‖𝛼‖1 ,
subject to 𝐴𝛼 = 𝑦. (30)

When considering small noise, a noise term 𝑧 ∈ R𝑚 with‖𝑧‖2 < 𝜀 is introduced to (29) and the formula can be
modified as

𝑦 = 𝐴𝛼 + 𝑧. (31)

The flexible 𝑙1-minimization problem for a sparse solution 𝛼
is

𝛼̂1 = argmin
𝛼

‖𝛼‖1 ,
subject to 󵄩󵄩󵄩󵄩𝐴𝛼 − 𝑦󵄩󵄩󵄩󵄩2 ≤ 𝜀. (32)

When a new sample is for testing, it could be expressed as 𝑦̂𝑖 =𝛿𝑖(𝛼̂1), where 𝛿𝑖(𝛼̂1) ∈ R𝑛 is a vector in which parts of entries
associated with class 𝑖 are nonzero but the rest are zeros, and𝛿𝑖(⋅) : R𝑛 󳨀→ R𝑛 is a function that achieves coefficients
selection related to the i-th class. Finally, the object class of
the new testing sample could be identified with the residual
between 𝑦 and 𝑦̂𝑖:

min
𝑖

𝑟𝑖 (𝑦) = 󵄩󵄩󵄩󵄩𝑦 − 𝐴𝛿𝑖 (𝛼̂1)󵄩󵄩󵄩󵄩2 , (33)

The algorithm for SRC is summarized as follows.

(1) Input: a matrix of auxiliary training samples 𝐴 =[𝐴1,𝐴2, . . . ,𝐴𝑞] ∈ R𝑚×𝑛 for 𝑞 classes, auxiliary testing
samples 𝑦 ∈ R𝑚, and an optional error tolerance𝜀 > 0.

(2) Normalize the columns of 𝐴 to have unit 𝑙2-norm.
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(3) Solve the 𝑙1-minimization problem: 𝛼̂1 = argmin𝛼‖𝛼‖1
subject to ‖𝐴𝛼 − 𝑦‖2 ≤ 𝜀.

(4) Compute the residual 𝑟𝑖(𝑦) = ‖𝑦 − 𝐴𝛿𝑖(𝛼̂1)‖2, for 𝑖 =1, . . . , 𝑞.
(5) Output: identity(y) = argmin𝑖 𝑟𝑖(𝑦).

4.2. Kernel Sparse Representation Classification. By means of
the kernel trick, SRC is extended to KSRC for nonlinearity.
Suppose a nonlinear mapping 𝜙: R𝑚 󳨀→ 𝐻, 𝑣 󳨀→𝜙(𝑣), which realizes the transformation of auxiliary training
samples from the original feature space R𝑚 into the kernel
feature space 𝐻. Similar to SRC, the 𝑙1-norm minimization
problem of (32) can be reformulated as

𝛽̂1 = argmin
𝛽

󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩1 ,
subject to 󵄩󵄩󵄩󵄩Φ𝛽 − 𝜙 (𝑦)󵄩󵄩󵄩󵄩2 ≤ 𝜀. (34)

Since Φ and 𝜙(𝑦) are unknown, (34) cannot be solved
directly. But, according to Theorem 1, (34) can be trans-
formed as

𝛽̂1 = argmin
𝛽

󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩1 ,
subject to 󵄩󵄩󵄩󵄩𝐾𝛽 − 𝑌󵄩󵄩󵄩󵄩2 ≤ 𝛿, (35)

where

𝐾 = Φ𝑇Φ =
[[[[[[
[

𝑘 (𝑣1, 𝑣1) 𝑘 (𝑣2, 𝑣1) ⋅ ⋅ ⋅ 𝑘 (𝑣𝑛, 𝑣1)𝑘 (𝑣1, 𝑣2) 𝑘 (𝑣2, 𝑣2) ⋅ ⋅ ⋅ 𝑘 (𝑣𝑛, 𝑣2)... ... d
...

𝑘 (𝑣1, 𝑣𝑛) 𝑘 (𝑣2, 𝑣𝑛) ⋅ ⋅ ⋅ 𝑘 (𝑣𝑛, 𝑣𝑛)

]]]]]]
]

, (36)

𝑌 = Φ𝑇𝜙 (𝑦) = [𝑘 (𝑦, 𝑣1) 𝑘 (𝑦, 𝑣2) ⋅ ⋅ ⋅ 𝑘 (𝑦, 𝑣𝑛)]𝑇 , (37)

and a kernel function is defined as 𝑘(𝑣𝑖, 𝑣𝑗) = ⟨𝜙(𝑣𝑖), 𝜙(𝑣𝑗)⟩ =𝜙(𝑣𝑖)𝑇𝜙(𝑣𝑗). In this paper, the linear kernel 𝑘(𝑣𝑖, 𝑣𝑗) = 𝑣𝑖𝑇𝑣𝑗
is used. Solution of (35) is achieved with the software package
of disciplined convex programming [35]. Finally, the new
testing sample can be assigned to one prespecified class by
minimizing the residual between Φ𝑇𝜙(𝑦) and Φ𝑇Φ𝛽̂𝑖1, (𝑖 =1, 2, . . . , 𝑞):

min
𝑖

𝑅𝑖 (𝑦) = 󵄩󵄩󵄩󵄩󵄩󵄩Φ𝑇𝜙 (𝑦) −Φ𝑇Φ𝛽̂𝑖1󵄩󵄩󵄩󵄩󵄩󵄩2 . (38)

Theorem 1. For any 𝜀 ≥ 0, there must exist 𝛿 ≥ 0 such that we
have ‖Φ𝛽 − 𝜙(𝑦)‖2 ≤ 𝜀, as long as ‖Φ𝑇Φ𝛽 −Φ𝑇𝜙(𝑦)‖2 ≤ 𝛿 is
satisfied.

The algorithm for KSRC is summarized as follows.

(1) Input: a matrix of auxiliary training samples 𝐴 =[𝐴1,𝐴2, . . . ,𝐴𝑞] ∈ R𝑚×𝑛 for 𝑞 classes, auxiliary testing
samples 𝑦 ∈ R𝑚, and an optional error tolerance 𝜀 > 0.

(2) Normalize the columns of 𝐴 to have unit 𝑙2-norm.
(3) Calculate𝐾 and 𝑌 by (36) and (37).

(4) Solve the 𝑙1-minimization problem in (35).
(5) Compute the residuals 𝑅𝑖(𝑦) defined in (38).
(6) Output: identity(𝑦) = argmin𝑖 𝑅𝑖(𝑦).

5. Illustration of the Proposed Method

Since the proposed method could simultaneously perform
feature selection and multiclass classification, the corre-
sponding procedure based on ALIF enhanced multiscale
entropy features and KSRC is set up, and the steps are as
follows.

(1) Collect vibration signals of bearings with healthy
and different defective types, in addition to different
defect sizes for each defective type.

(2) Decompose the vibration signals into a sum of IMFs
with ALIF.The first three IMFs containing prominent
fault information are selected to extract multiscale
entropy features and they are used to construct feature
vectors after normalization with

Γ𝑖𝑗 = (𝜌𝑖𝑗 − (𝜌𝑖⋅)min)((𝜌𝑖⋅)max − (𝜌𝑖⋅)min) , (39)

where 𝜌 represents all features in one sample, 𝑖
denotes the sequence of samples, and 𝑗 is the sequence
of features in each sample.

(3) Set the number of training samples and testing sam-
ples. The training samples are randomly selected for
KSRC. It is noted that the number of training samples
includes the number of auxiliary training sample 𝑛
and the number of auxiliary testing samples.

(4) After successful training, KSRC is used to test samples
and identify the fault patterns with different severity
levels.
The illustration of the proposed approach is shown in
Figure 6.

6. Experimental Verification

To validate the capability of the proposed approach, two cases
concerning bearing faults are investigated. One is about the
bearing in the centrifugal pump considering different fault
types [16]. The other is about rolling bearings in the test rig
fromCWRUwith different fault categories and severity levels
[36].

6.1. Bearing Fault of the Centrifugal Pump. The centrifugal
pump test system is shown in Figure 7, and the experimental
details can be found in [16]. Five commonly occurring faults
in the centrifugal pump were set, including normal, bearing
roller wearing (BRW), bearing inner race wearing (BIRW),
bearing outer race wearing (BORW), and centrifugal pump
impeller wearing (PIW). Vibration signals at the five fault
states are shown in Figure 8, and the corresponding first five
IMFs by ALIF are shown in Figure 9. From the comparison,
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Figure 6: Illustration of bearing fault classification.
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Figure 7: Centrifugal pump data acquisition system.

it is shown that the first three IMFs contain the most part of
energy. Hence, multiscale entropy features including MSaE,
MFE, andMPEover 20 scales of the first three components by
ALIF are extracted according to the parameters prespecified
in Table 1, and a total of 180 entropy features are obtained
corresponding to one sample.

Labels of fault types are specified for classification, and
description of bearing fault states can be found in Table 2.
Each fault type has 50 samples, and the average of each
entropy feature of fifty samples in each fault type is shown
in Figure 10. In each test, 10 random samples are selected to
train the SRC classifier, and the rest 40 samples are utilized
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Table 2: Description of the experimental data.

Fault type Training samples Testing samples Classification labels
Normal 10 40 1
BRW 10 40 2
BIRW 10 40 3
BORW 10 40 4
PIW 10 40 5
Number of samples 𝑇𝑡𝑟 = 50 𝑇𝑡𝑒 = 200
for test. The accuracy formula of testing samples is defined
as

𝐴 𝑡𝑒 = 𝑅𝑡𝑒𝑇𝑡𝑒 , (40)

and the accuracy formula of training samples is

𝐴 𝑡𝑟 = 𝑅𝑡𝑟𝑇𝑡𝑟 , (41)

where 𝑅𝑡𝑒 is the number of right classified testing samples;𝑇𝑡𝑒 is the number of testing samples; 𝑅𝑡𝑟 is the number of

Table 3: Result of bearing fault diagnostic accuracy.

Train Test

Accuracy (%) Mean 100 96.95
Std. 0 0.98

right classified training samples; 𝑇𝑡𝑟 is the number of training
samples. As listed in Table 3, mean of the testing classification
accuracy by (40) with repetitions of ten times is 96.95% with
std. 0.98%, and mean of the training classification accuracy
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Table 4: Diagnostic accuracy of ten times.

Times Classification labels Total Test Accuracy
1 2 3 4 5 (%)

1 37 37 40 40 40 194 97
2 38 33 40 40 40 191 95.5
3 38 38 40 40 40 196 98
4 38 36 40 39 39 192 96
5 37 39 40 39 40 195 97.5
6 39 38 40 40 39 196 98
7 38 36 40 40 40 194 97
8 38 38 40 40 40 196 98
9 38 34 40 40 39 191 95.5
10 39 37 40 40 38 194 97

Table 5: A comparative study of different features on the effect of diagnostic accuracy.

Features MSaE MFE MPE MSaE+MFE MSaE+MPE MFE+MPE MSaE+MFE+MPE

Accuracy (%)
Train Mean 100 100 100 100 100 100 100

Std. 0 0 0 0 0 0 0

Test Mean 79.7 88.45 92.65 92.90 94.95 96.35 96.95
Std. 3.55 3.88 1.93 2.12 1.62 1.55 0.98

by (41) is 100% with std. 0. In Table 4, accuracies of the
ten tests are listed, and the maximum accuracy could reach
98%. The corresponding classification result of the proposed
method at accuracy 98% is shown in Figure 11. Compared
with [16], their mean accuracy varies from 94.58% to 97.08%
according to ratio of the std. of the added noise in ensemble
empirical mode decomposition (EEMD); moreover, the ratio
of training samples in [16] is 40%, yet it is 20% in our
paper. To show the advantage of high dimensional features in
KSRC for accuracy improvement of bearing fault diagnosis,

a comparison is performed as listed in Table 5. The sequence
of the effect in accuracy from small to large, respectively, is
MSaE, MFE, and MPE, and in pairs.

6.2. Artificially Seeded Damage Bearing. The bearing data
are obtained from Bearing Data Centre of CWRU, and the
bearing test system is shown in Figure 12. The drive end
bearing 6205-2RS JEM SKF is investigated, which is seeded
with single point faults using electrodischarge machining.
There are four states, including norm, ball fault (BF), inner
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Table 6: Description of the experimental data.

Fault type Defect size (inch) Number of training samples Number of testing samples Classification labels
0 HP 0HP 2HP

Normal 0 10 40 50 1

BF

0.007 10 40 50 2
0.014 10 40 50 3
0.021 10 40 50 4
0.028 10 40 50 5

IRF

0.007 10 40 50 6
0.014 10 40 50 7
0.021 10 40 50 8
0.028 10 40 50 9

ORF
0.007 10 40 50 10
0.014 10 40 50 11
0.021 10 40 50 12

Number of samples 𝑇𝑡𝑟 = 120 𝑇𝑡𝑒 = 480 𝑇𝑡𝑒 = 600
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Figure 11: Classification result of the proposed method at accuracy 98%.

Drive end bearing Torque transducer/encoder

Induction motor Dynamometer

Figure 12: Bearing experiment system.

race fault (IRF), and outer race fault (ORF) (at the 6
o’clock position). Vibration signals are collected from the

accelerometers placed at the drive end of the motor housing
with the sampling frequency 12 kHz.The defective bearing at
0 HP is investigated in this case. The sampling time is 10s in
each state, and the overall length of the collected vibration
signals is divided into nonoverlapping segments. Vibration
signals of normal, BF, IRF, and ORF at defect size 0.007 inch
and load 0 HP are shown in Figure 13, as well as the first five
IMFs by ALIF in Figure 14.

Considering the defect size, labels of fault types corre-
sponding to12 bearing fault states are specified for classifi-
cation, and description of bearing fault states can be found
in Table 6. Each state has 50 samples, and MSaE, MFE, and
MPE over 20 scales of the first three components by ALIF
are averaged from the fifty samples as shown in Figure 15.
It is shown that the distances among different types of the
three entropy features are not distinct; hence a combination is
considered. To prove the accuracy of the proposed approach,
ten repetitive tests are performed with randomly selected
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Table 7: Result of bearing fault diagnostic accuracy.

Train (0 HP) Test (0 HP) Test (2 HP)

Accuracy (%) Mean 100 98.48 89.73
Std. 0 0.7 2.02

samples. As listed in Table 7, mean of the testing classification
accuracy by (40) with repetitions of ten times is 98.48% with
std. 0.7%, and mean of the training classification accuracy
by (41) is 100% with std. 0. Furthermore, in each time, 10
random samples are selected to train the SRC classifier, and
the rest 40 samples are utilized for test. In Table 8, accuracies
of the ten tests with mean 98.48% and std. 0.7% are listed,
and the maximum accuracy could reach 99.38% at 0 HP. For
better illustration, the corresponding classification result of
the proposed method at accuracy 99.38% with 0 HP is shown
in Figure 16.

In addition, another condition at 2 HP is considered to
test the flexibility of the proposed approach with different

loads. Ten random samples of load 0 HP are used to train
KSRC and all samples of load 2 HP are used to test. Ten
tests are performed as above and the results are listed in
Table 9.Themean diagnostic accuracy at 2 HP is 89.73% with
std. 2.02%, and the maximum accuracy is 92.83% with the
corresponding illustration in Figure 17. The high accuracy
rate of diagnosis demonstrates the usefulness of the proposed
approach under different loads.

Since the multiscale entropy features in Figure 15 are not
easy to be distinguished fromothers due to themultiple faults,
a comparison is performed considering different combina-
tions of features in Table 10. Ten tests with different random
testing samples as above are carried out as well. The mean
and the std. corresponding to different features are listed
in Table 10. The results have verified the advantage of the
combination of MSaE, MFE, and MPE.

Besides, a list of literatures using the CWRU bearing
data is collected in Table 11, and they are arranged accord-
ing to the classified states. Based on the comparisons in
Table 11 and our work, respectively, it is shown that the
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Figure 16: Classification result of the proposed method at classification accuracy 99.38% and load 0 HP.

Table 8: Diagnostic accuracy of ten times at 0 HP.

Times Classification labels Total Test accuracy
1 2 3 4 5 6 7 8 9 10 11 12 (%)

1 40 38 39 30 37 40 40 40 40 40 40 40 464 96.67
2 40 40 37 39 37 40 40 40 40 40 40 40 473 98.54
3 40 40 39 37 37 40 40 40 40 40 40 40 473 98.54
4 40 38 38 39 39 40 40 40 40 40 40 40 474 98.75
5 40 39 39 39 40 40 40 40 40 40 40 40 477 99.38
6 40 40 40 38 37 40 40 40 40 40 40 40 475 98.96
7 40 40 40 35 38 40 40 40 40 40 40 40 473 98.54
8 40 39 38 39 37 40 40 40 40 40 40 40 473 98.54
9 40 40 35 39 40 40 40 40 40 40 40 40 474 98.75
10 40 39 37 39 37 40 40 40 40 40 40 40 472 98.33
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Table 9: Diagnostic accuracy of ten times at 2 HP.

Times 1 2 3 4 5 6 7 8 9 10
Accuracy (%) 85.83 91.17 90.17 88.83 92.83 91.33 90.17 90.17 89.50 87.33

Table 10: A comparative study of different features on the effect of diagnostic accuracy.

Features MSaE MFE MPE MSaE+MFE MSaE+MPE MFE+MPE MSaE+MFE+MPE

Accuracy (%)

Train Mean 100 100 100 100 100 100 100
(0 HP) Std. 0 0 0 0 0 0 0
Test Mean 95.69 96.27 97.48 97.13 97.9 98.15 98.48

(0 HP) Std. 1.09 1.23 0.99 0.81 1.32 0.74 0.7
Test Mean 74.83 78.22 77.42 82.67 87.18 88.33 89.73

(2 HP) Std. 4.99 2.64 4.24 4.25 5.30 2.75 2.02
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Figure 17: Classification result of the proposed method at classification accuracy 92.83% and load 2 HP.

entropy-based features, especiallyMPE, are mostly employed
for bearing fault diagnosis and good results could be
obtained. When considering more classified classes, com-
binations of multiscale entropy features will be a solution.
Though the result of the proposed approach could not
reach 100% like in [34] with 12 classified states as well, the
proposed approach avoids the problem of feature selection
and parameter optimization of SVM. Compared with the
remaining researches, the proposed approach could deal with
more classified states with high accuracy.

7. Conclusion

To improve accuracy of the bearing fault diagnosis con-
sidering multiple fault states with small samples, a novel
bearing fault diagnosis method based on ALIF-enhanced
multiscale entropy features and KSRC is proposed in this
paper. Adaptive local iterative filtering could decompose
the nonlinear and nonstationary vibration signals adaptively
into a sum of IMFs with different scales. MSaE, MFE, and
MPE values of the first three IMFs by ALIF are computed
and normalized. Further, KSRC could accurately identify

multiple faulty types of roller bearings with the normalized
entropy features and realized features selection through
regularization. Eventually, the proposed method is evaluated
with experimental data concerning bearing faults in the cen-
trifugal pump and multiple bearing faults from CWRU. The
comparison shows that high dimensional features through
small samples could achieve high accuracy of bearing fault
diagnosis at 0 HP as well as varying working condition 2 HP.
The results demonstrate that the proposed method is feasible
and effective in bearing fault diagnosis.

Data Availability

The bearing data used to support the findings of this
study have been, respectively, deposited in the following:
6.1 Bearing fault of the centrifugal pump https://www
.researchgate.net/profile/Chen Lu15/publications 6.2 Artif-
icially Seeded Damage Bearing http://csegroups.case.edu/
bearingdatacenter/pages/apparatus-procedures. In addition,
the references concerning the data have been clearly cited in
the paper.

https://www.researchgate.net/profile/Chen_Lu15/publications
https://www.researchgate.net/profile/Chen_Lu15/publications
http://csegroups.case.edu/bearingdatacenter/pages/apparatus-procedures
http://csegroups.case.edu/bearingdatacenter/pages/apparatus-procedures
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