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Based on the robust chaos theorem of S-unimodal maps, this paper studies a kind of cubic polynomial discrete maps (CPDMs)
and sets up a novel theorem.This theorem gives general conditions for the occurrence of robust chaos in the CPDMs. By using the
theorem, we construct a CPDM.The parameter regions of chaotic robustness of the CPDMare larger than these of Logistic map. By
using a fixed point arithmetic, we investigate the cycle lengths of the CPDMand a Logistic map.The results show that themaximum
cycle lengths of 1000 chaotic sequenceswith length 3×107 generatedby different initial value conditions exponentially increasewith
the resolutions. When the resolutions reach 10−7 ∼ 10−13, the maximum cycle lengths of the cubic polynomial chaotic sequences
are significantly greater than these of the Logistic map. When the resolution reaches 10−14, there is the situation without cycle for1000 cubic polynomial chaotic sequences with length 3 × 107. By using the CPDM and Logistic map, we design four chaos-based
pseudorandom number generators (CPRNGs): CPRNGI, CPRNGII, CPRNGIII, and CPRNGIV.The randomness of two 1000 key
streams consisting of 20000 bits is tested, respectively, generated by the four CPRNGs.The result suggests that CPRNGIII based on
the cubic polynomial chaotic generalized synchronic system has better performance.

1. Introduction

Chaos is one type of complex dynamic behaviors displaying
similarly random happenings within a determined nonlinear
system or process. Chaotic systems are mainly defined and
analyzed in continuous or discrete phase spaces. And they
exhibit properties such as sensitive dependent on initial con-
ditions and system parameters and ergodicity and long time’s
chaotic behaviors are not predictable [1]. In 1975, Li-Yorke
first formally introduced the term chaos into mathematics
[2]. They established a criterion for the existence of chaos
in one-dimensional difference equations and the famous
example is that “period three implies chaos”.

Pseudorandom numbers have wide range of applications
in many fields, such as physical systems simulation [3–6],
information encryption [7–13], entertainment [14, 15], and
computer simulation [16–20]. In the practical applications,
pseudorandom algorithm has almost replaced the stochas-
tic indicator and random number generator based on the
hardware. John von Neumann was the first scholar who

has made outstanding contributions to designing computer-
based pseudorandom number generator. Currently, the
known statistical test criterions of random number gen-
erator/pseudorandom number generators (RNGs/PRNGs)
containDIEHARD test [21] and FIPS 140 test [22] and SP 800-
22 test [23] released by theNational Institute of Standards and
Technology (NIST).

In order to construct a chaotic quadratic polynomial,
Zhou and Song set up a necessary and sufficient condition
to determine the 3-periodic points of a quadratic polynomial
[24], based on Li-Yorke’s criterion. This research is a perfect
application of Li-Yorke’s theorem, but it is not suitable for
researching the chaotic properties of cubic polynomial. Based
on the theorem given in [25], Andrecut and Ali derived some
general conditions and practical procedures for generating
robust chaos in smooth unimodal maps [26].

Based on the robust chaos theorem of S-unimodal maps,
this paper sets up a chaos criterion theorem for cubic polyno-
mial discrete maps and constructs a novel cubic polynomial
discrete map. Using this theorem and numerical simulations
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verifies that the parameter regions of chaotic robustness of
the cubic polynomial discrete map are larger than these
of Logistic map. The maximum cycle lengths of the cubic
polynomial chaotic sequences are significantly greater than
these of Logistic map, when the resolutions reach 10−7 ∼10−13. Using the cubic polynomial discrete map and Logis-
tic map constructs two 6-dimensional chaotic generalized
synchronic systems (6DCGSS). Four chaos-based pseudo-
random number generators CPRNGI, CPRNGII, CPRNGIII,
and CPRNGIV, respectively, are designed by the cubic poly-
nomial discrete map, Logistic map, and two 6DCGSS. The
results of pseudorandomness tests suggest that CPRNGIII
has better performance.

The rest of this paper is organized as follows. Section 2
introduces the robust chaos theorem of S-unimodal maps,
and sets up a chaos criterion theorem of cubic polynomial
discrete maps. Section 3 constructs a novel cubic polynomial
discrete map. Numerical simulations analyze bifurcation and
cycle lengths of the novel cubic polynomial discrete map
and Logistic map. Section 4 presents two 6DCGSS based on
the GS theorem. Section 5 designs four chaos-based pseudo-
random number generators CPRNGI, CPRNGII, CPRNGIII,
and CPRNGIV and makes the statistic tests for the four
CPRNGs. Finally, Section 6 concludes the article.

2. Robust Chaos of Cubic Polynomial Maps

Robust chaos refers that, during the system parameter dis-
turbances in a certain range, the system can guarantee the
characteristics of chaos and still does not change the overall
performance of the system. The robust chaos theorem of S-
unimodal maps is introduced as follows.

Theorem 1 (see [26]). Letting 𝜑V(𝑥) : 𝐽 = [𝑎, 𝑏] 󳨀→ 𝐽 be a
parametric S-unimodal map with the unique maximum at 𝑐 ∈(𝑎, 𝑏) and 𝜑V(𝑐) = 𝑏, ∀V ∈ (V𝑚𝑖𝑛, V𝑚𝑎𝑥), then 𝜑V(𝑥) generates
robust chaos for V ∈ (V𝑚𝑖𝑛, V𝑚𝑎𝑥).

Based on the above theorem, we set up the robust chaos
theorem of cubic polynomial discrete maps.

Theorem2. Let a kind of cubic polynomial discrete maps have
the following general form:𝑓 (𝑥) = 𝑝3𝑥3 + 𝑝2𝑥2 + 𝑝1𝑥 (1)

If the parameters set 𝑆 = {𝑝3, 𝑝2, V} this satisfies one of the
following cases:

Case (1) 𝑝3 > 0𝑝2 < 0
V ≥ 256𝑝22 = V𝑝3𝑝1
𝑝1 = − 27 (1 − √1 − 4/V)

V ⋅ [4 − 18/V − 4 (1 − 3/V)3/2]

(2)

Case (2)

𝑝3 < 0𝑝2 > 0
V < 0
𝑝22 = V𝑝3𝑝1
𝑝1 = − 27 (1 + √1 − 4/V)

V ⋅ [4 − 18/V + 4 (1 − 3/V)3/2]
(3)

Case (3)

𝑝3 < 0𝑝2 < 0
V < 0
𝑝22 = V𝑝3𝑝1
𝑝1 = − 27 (1 − √1 − 4/V)

V ⋅ [4 − 18/V − 4 (1 − 3/V)3/2]
(4)

Then 𝑓 : 𝐽 = [0, 𝑏] 󳨀→ 𝐽 is the S-unimodal map. And it
has the unique maximum at 𝑐 ∈ (0, 𝑏), and 𝑓(𝑐) = 𝑏, 𝑏 =(−𝑝2−√𝑝22 − 4𝑝3𝑝1)/(2𝑝3), 𝑐 = (−𝑝2−√𝑝22 − 3𝑝3𝑝1)/(3𝑝3).𝑓
satisfiesTheorem 1.That is,𝑓 is robust chaos.The proof progress
is shown in the Appendix.

Three cases of robust chaos, respectively, correspond to
the three surfaces. The robust chaos regions of case (1), (2)
and (3) of the cubic polynomial discrete map are shown in
Figure 1. The three surfaces are the robust chaos regions.

3. Comparison of Bifurcation and Cycle
Lengths between the Cubic Polynomial
Chaotic Map and Logistic Map

Based on the case (1) ofTheorem 2, we construct a novel cubic
polynomial discrete chaotic map:

𝑥𝑘+1 = 𝑝3𝑥3𝑘 + 𝑝2𝑥2𝑘 + 𝑝1𝑥𝑘 (5)

where V = 5, 𝑝1 = −{27(1 − √1 − 4/V)}/{V ⋅ [4 − 18/V − 4(1 −3/V)3/2]}, 𝑝2 = −3, 𝑝3 = 𝑝22/(V𝑝1).
We consider Logistic map:

𝑦𝑘+1 = 𝑎𝑦𝑘 (1 − 𝑦𝑘) (6)

where 𝑎 = 3.99.
The evolution of state variables 𝑘 − 𝑥𝑘 of the novel cubic

polynomial discrete chaotic map with V = 5 is shown
in Figure 2. The evolution of state variables 𝑘 − 𝑦𝑘 of the
Logistic map is shown in Figure 3. Extensive numerical
simulations show that the dynamic behaviors of the chaotic
map demonstrate chaotic attractor features.
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Figure 1: The robust chaos regions of cubic polynomial discrete
map.
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Figure 2:The evolution of state variables 𝑘 − 𝑥𝑘.
3.1. Comparison of Bifurcation between the Cubic Polynomial
Chaotic Map and Logistic Map. The calculated Lyapunov
exponent of the chaotic maps (5) is 0.69135, which is bigger
than 0.63927, and the Lyapunov exponent of Logisticmap (6).

The chaotic map (5) is robust chaos for parameter V >25/6 with 𝑝2 = −3 from the case (1) of Theorem 2. The
bifurcation diagram of the 𝑥 as a function of the parameter
V is shown in Figure 4.

In 2009, Zhou and Song set up a theorem for the necessary
and sufficient condition of determination 3-periodic points of
a quadratic polynomial.

Theorem 3 (see [24]). A quadratic polynomial 𝑓(𝑥) = 𝑎𝑥2 +𝑏𝑥+𝑐 (𝑎 ̸= 0) has real 3-periodic points if and only if 𝑏2−4𝑎𝑐−2𝑏 ≥ 7.
Now we use the theorem to determine the parameter

regions of robust chaos of Logistic map.

Proof. Let Logistic map 𝑓(𝑥) = −𝑎𝑥2 + 𝑎𝑥, 0 < 𝑎 < 4, and𝑥 ∈ 𝐼 = [0, 1]. Based on Theorem 3 and Li-Yorke’s criterion
that period three implies chaos, Logistic map is chaos if and
only if
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Figure 3: The evolution of state variables 𝑘 − 𝑦𝑘.
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Figure 4: The bifurcation diagram showing the 𝑥 as a function of
the parameter V.

𝑎2 − 2𝑎 ≥ 7 ⇐⇒
𝑎 < 1 − 2√2

or 𝑎 > 1 + 2√2
(7)

Thence Logistic map is chaos if and only if 1 + 2√2 < 𝑎 <4.
The bifurcation diagram of Logistic map about the

parameter 𝑎 is shown in Figure 5. Logisticmap is robust chaos
for the parameter regions 𝑎 ∈ (1 + 2√2, 4). Compared with
Logistic map, the bifurcation of chaotic map (5) is uniform
distributed. And the cubic polynomial map is robust chaos
for the parameter regions V ∈ (25/6, +∞) with 𝑝2 = −3 from
the case (1) of Theorem 2. Clearly, the parameter regions of
robust chaos of the cubic polynomial discrete map are larger
than these of Logistic map.

3.2. Comparison of Cycle Lengths between the Cubic Polyno-
mial Chaotic Map and Logistic Map. When chaotic systems
are realized under finite precision, the periodic cycles will
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Table 1: Cycle lengths (CL) of the cubic polynomial chaotic map and Logistic map about resolutions.

resolutions 10−6 10−7 10−8 10−9 10−10 10−11 10−12 10−13 10−14
Max CL Map (5) 442 3,726 27,803 29,305 53,139 263,658 435,974 2,007,259 > 3 × 107

Map (6) 1,112 1,702 4,000 14,060 51,485 249,204 344,356 375,446 13,893,500

Mean CL Map (5) 428 1,315 26,991 25,708 46,6337 220,644 177,736 1,599,595 11,960,668
Map (6) 1,079 1,286 2,275 10,886 47,511 241,890 323,336 280,082 4,593,987

Min CL Map (5) 63 71 820 1,525 4,417 24,689 80,581 878,343 4,593,987
Map (6) 23 25 651 1,653 6,547 66,343 2,907 46,140 58,072
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Figure 5: The bifurcation diagram of Logistic map about the
parameter 𝑎.
occur due to rounding errors. Reference [27] investigates
the maximum cycle lengths of Logistic map with respect to
different initial condition values.

Using the algorithm proposed in [27] for fixed point
realizations analyzes the cycle lengths of the cubic polynomial
chaotic map (5) and Logistic map (6). During analysis,1000 uniformly distributed random initial condition values
are used to generate 1000 chaotic sequences with length3 × 107, where the resolutions are from 10−6 to 10−14, and
the rounding type selects rounded towards zero (fix) and
regardless of the iteration to fixed point.

The maximum, mean, and minimum of the cycle lengths
for the cubic polynomial chaotic sequences and Logistic
sequences are listed in Table 1. The cycle lengths of chaotic
sequences increase with the resolutions. When the reso-
lution reaches 10−14, there is the situation without cycle
for 1000 cubic polynomial chaotic sequences with length3 × 107. That is, the maximum of the cycle lengths for1000 cubic polynomial chaotic sequences is larger than3 × 107.

The change diagrams of maximum, mean, and minimum
of cycle lengths are shown in Figures 6, 7, and 8, respectively.
The red line represents the change of cycle lengths for
the cubic polynomial chaotic map (5), and the blue line
represents the change of cycle lengths for the Logistic map
(6). According to the three figures, the maximum of cycle
lengths exponentially increases with the resolutions. And
the maximum of cycle lengths of cubic polynomial chaotic
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Figure 6: The change diagram of maximum of cycle lengths for
different decimal resolutions from 6 to 13.
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Figure 7:The change diagram of mean of cycle lengths for different
decimal resolutions from 6 to 13.
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Figure 8: The change diagram of minimum of cycle lengths for
different decimal resolutions from 6 to 13.
sequences is significantly larger than these of the Logistic
sequences when resolutions are from 7 to 13.
4. 6-Dimensional Chaotic Generalized
Synchronic Systems

Based on the cubic polynomial map (5) and the Logistic map
(6), we consider the following 3-dimensional discrete chaotic
map as the driving part:

𝑋 (𝑘 + 1) = [[[
𝑥1 (𝑘 + 1)𝑥2 (𝑘 + 1)𝑥3 (𝑘 + 1)

]]]
= [[[[

𝑝3𝑥1 (𝑘)3 + 𝑝2𝑥1 (𝑘)2 + 𝑝1𝑥1 (𝑘)𝑥1 (𝑘) − 2 sin (𝑥2 (𝑘)) sin (𝑥3 (𝑘))
sin (𝑥1 (𝑘)) + 2 sin (𝑥2 (𝑘) 𝑥3 (𝑘))

]]]]
(8)

𝑍 (𝑘 + 1) = [[[
𝑧1 (𝑘 + 1)𝑧2 (𝑘 + 1)𝑧3 (𝑘 + 1)

]]]
= [[[[

3.99𝑧1 (𝑘) (1 − 𝑧1 (𝑘))𝑧1 (𝑘) − 2 sin (𝑧2 (𝑘)) sin (𝑧3 (𝑘))
sin (𝑧1 (𝑘)) + 2 sin (𝑧2 (𝑘) 𝑧3 (𝑘))

]]]]
(9)

where V = 5, 𝑝1 = −{27(1 − √1 − 4/V)}/{V ⋅ [4 − 18/V − 4(1 −3/V)3/2]}, 𝑝2 = −3, and 𝑝3 = 𝑝22/(V𝑝1).
The calculated Lyapunov exponents of the chaotic map

(8) are {0.69088, 0.39203, −0.81092}. The calculated Lya-
punov exponents of the chaotic map (9) are {0.63823,0.43349, −1.1883}.

In order to construct a GS driven system, define an
invertible transformation : R3 󳨀→ R3:

𝐻(𝑋) = 𝐴𝑋 ≜ (ℎ1 (𝑋) , ℎ2 (𝑋) , ℎ3 (𝑋)) (10)

𝐻(𝑍) = 𝐴𝑍 ≜ (ℎ1 (𝑍) , ℎ2 (𝑍) , ℎ3 (𝑍)) (11)

where

𝐴 = ( 1 3 112 4 −5−3 1 6 ) (12)

is an invertible matrix. Now let the driven part have the form:

𝑌 (𝑘 + 1) = [[[
𝑦1 (𝑘 + 1)𝑦2 (𝑘 + 1)𝑦3 (𝑘 + 1)

]]]
= 𝐴𝑋 (𝑘 + 1) − 17 (𝐴𝑋 (𝑘) − 𝑌 (𝑘))

(13)

𝑊 (𝑘 + 1) = [[[
𝑤1 (𝑘 + 1)𝑤2 (𝑘 + 1)𝑤3 (𝑘 + 1)

]]]
= 𝐴𝑍 (𝑘 + 1) − 17 (𝐴𝑍 (𝑘) −𝑊 (𝑘))

(14)

From (13) and (14), it follows that the error equations𝑞(𝑋,𝑌) and 𝑞(𝑍,𝑊) can be represented by 𝑒(𝑘)/7 =(1/7)(𝐴𝑋(𝑘) − 𝑌(𝑘)) and 𝑒(𝑘)/7 = (1/7)(𝐴𝑍(𝑘) − 𝑊(𝑘)).
It guarantees that the zero solution of the error equation is
asymptotically stable. From the chaos generalized synchro-
nization (GS) theorem [28], systems (8) and (13) as well as (9)
and (14) are GS with respect to the transformation𝐻 = 𝐴 for
any initial value (𝑋(0),𝑌(0)) ∈ R3 × R3 and (𝑍(0),𝑊(0)) ∈
R3 × R3. Since 𝐻 is invertible, systems (13) and (14) are also
chaotic.

4.1. Numerical Simulations. Select the following initial con-
ditions:

𝑋 (0) = 𝑍 (0) = (0.3, 0.01, 0.1)𝑇 (15)

𝑌 (0) = 𝐴𝑋 (0) + 1 (16)

𝑊 (0) = 𝐴𝑍 (0) + 1 (17)

The chaotic orbits of the state variables {𝑥1, 𝑥2, 𝑥3} for
the first 5000 iterations are shown in Figures 9(a)–9(d). The
evolutions of the state variables, 𝑘 − 𝑥1(𝑘), 𝑘 − 𝑥2(𝑘), and𝑘 − 𝑥3(𝑘), are shown in Figures 10(a)–10(c). The chaotic
orbits of the state variables {𝑦1, 𝑦2, 𝑦3} for the first 5000
iterations are shown in Figures 11(a)–11(d). The evolutions
of the state variables, 𝑘 − 𝑦1(𝑘), 𝑘 − 𝑦2(𝑘), and 𝑘 − 𝑦3(𝑘),
are shown in Figures 12(a)–12(c). The dynamic behaviors of
the chaoticmap demonstrate chaotic attractor characteristics.
Figures 13(a)–13(c) show that although the initial condition
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Figure 9: Chaotic trajectories of variables: (a) 𝑥1(𝑘) − 𝑥2(𝑘) − 𝑥3(𝑘), (b) 𝑥1(𝑘) − 𝑥2(𝑘), (c) 𝑥1(𝑘) − 𝑥3(𝑘), and (d) 𝑥2(𝑘) − 𝑥3(𝑘).
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Figure 10: The evolution of state variables: (a) 𝑘 − 𝑥1(𝑘), (b) 𝑘 − 𝑥2(𝑘), and (c) 𝑘 − 𝑥3(𝑘).
(16) has a perturbation, 𝑋(𝑘) and𝑌(𝑘) are rapidly converting
into generalized synchronization as the chaos GS theorem
predicts.

The chaotic orbits of the state variables {𝑧1, 𝑧2, 𝑧3} for
the first 5000 iterations are shown in Figures 14(a)–14(d).
The evolutions of the state variables, 𝑘 − 𝑧1(𝑘), 𝑘 − 𝑧2(𝑘),
and 𝑘 − 𝑧3(𝑘), are shown in Figures 15(a)–15(c). The chaotic
orbits of the state variables {𝑤1, 𝑤2, 𝑤3} for the first 5000
iterations are shown in Figures 16(a)–16(d). The evolutions
of the state variables, 𝑘 − 𝑤1(𝑘), 𝑘 − 𝑤2(𝑘), and 𝑘 − 𝑤3(𝑘),
are shown in Figures 17(a)–17(c). The dynamic behaviors of
the chaoticmap demonstrate chaotic attractor characteristics.
Observe that Figures 18(a)–18(c) show that although the

initial condition (17) has a perturbation, 𝑍(𝑘) and𝑊(𝑘) are
rapidly converting into generalized synchronization as the
chaos GS theorem predicts.

5. Chaotic Pseudorandom Number Generator
and Pseudorandomness Tests

5.1. Chaotic Pseudorandom Number Generator. Denote

𝑋𝑖 = {𝑥𝑖 (𝑘) | 𝑘 = 1, 2, . . . , 𝑁} (18)

𝑌𝑖 = {𝑦𝑖 (𝑘) | 𝑘 = 1, 2, . . . , 𝑁} (19)
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Figure 12: The evolution of state variables: (a) 𝑘 − 𝑦1(𝑘), (b) 𝑘 − 𝑦2(𝑘), and (c) 𝑘 − 𝑦3(𝑘).
𝑍𝑖 = {𝑧𝑖 (𝑘) | 𝑘 = 1, 2, . . . , 𝑁} (20)

𝑊𝑖 = {𝑤𝑖 (𝑘) | 𝑘 = 1, 2, . . . , 𝑁} (21)

where 𝑖 = 1, 2, 3, 𝑥󸀠𝑖 𝑠 and 𝑦󸀠𝑖 𝑠 are defined by (8) and (13), and𝑧󸀠𝑖 𝑠 and 𝑤󸀠𝑖 𝑠 are defined by (9) and (14).
First, introduce transformations 𝑇11, 𝑇12, 𝑇13, and 𝑇14:

R 󳨀→ {0, 1, . . . , 28 − 1} which transform the chaotic streams
of GS systems (18) and (19) as well as (20) and (21) into key
streams.𝑇11 (𝑋1)

= mod(𝑟𝑜𝑢𝑛𝑑(𝐿 𝑋1 −min (𝑋1)
max (𝑋1) −min (𝑋1) , 28)) (22)

𝑇12 (𝑌1)
= mod(𝑟𝑜𝑢𝑛𝑑(𝐿 𝑌1 −min (𝑌1)

max (𝑌1) −min (𝑌1) , 28))
(23)

𝑇13 (𝑆) = mod(𝑟𝑜𝑢𝑛𝑑(𝐿 𝑆 −min (𝑆)
max (𝑆) −min (𝑆) , 28)) (24)

𝑇14 (𝑆)
= mod(𝑟𝑜𝑢𝑛𝑑(𝐿 𝑆 −min (𝑆)

max (𝑆) −min (𝑆) , 28))
(25)
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Figure 13: The state vectors 𝑋 and 𝑌 are in generalized synchronization with respect to the transformation 𝐻: (a) ℎ1(𝑋(𝑘))-𝑦1(𝑘), (b)ℎ2(𝑋(𝑘))-𝑦2(𝑘), and (c) ℎ3(𝑋(𝑘))-𝑦3(𝑘).
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Figure 14: Chaotic trajectories of variables: (a) 𝑧1(𝑘) − 𝑧2(𝑘) − 𝑧3(𝑘), (b) 𝑧1(𝑘) − 𝑧2(𝑘), (c) 𝑧1(𝑘) − 𝑧3(𝑘), and (d) 𝑧2(𝑘) − 𝑧3(𝑘).
Here

𝑆 = 󵄨󵄨󵄨󵄨𝑋1 ∗𝑋2 +𝑋3 ∗ 𝑌1 − 𝑌2󵄨󵄨󵄨󵄨 (26)

𝑆 = 󵄨󵄨󵄨󵄨𝑍1 ∗ 𝑍2 + 𝑍3 ∗𝑊1 −𝑊2󵄨󵄨󵄨󵄨 (27)

where 𝐿 = 1015, 𝑋 ∗ 𝑌 represents the dot product of vectors
𝑋 𝑎𝑛𝑑 𝑌, and 𝑍 ∗𝑊 represents the dot product of vectors
𝑍 𝑎𝑛𝑑 𝑊.

Second, construct a transform 𝑇2: {0, 1, . . . , 28 − 1} 󳨀→{0, 1} which is defined by𝑇2 = 𝑇22 ∘ 𝑇21 (28)

s.t. ∀𝑦 ∈ {0, 1, . . . , 28 − 1}𝑁
𝑇21 (𝑦) = 𝑑𝑒𝑐2𝑏𝑖𝑛 (𝑦) (29)

Letting 𝑧 = 𝑑𝑒𝑐2𝑏𝑖𝑛(𝑌), then
𝑇22 (𝑧) = 𝑧 (:) (30)

where dec2bin and 𝑧(:) are both Matlab commands.
Finally, transformations 𝑇1,𝑇2,𝑇3, and𝑇4 : R3 󳨀→ {0, 1}

are defined via



Mathematical Problems in Engineering 9

0 1000 2000 3000 4000 5000
 k

−0.5
0

0.5
1

1.5
 z 1

(k
)

(a)

0 1000 2000 3000 4000 5000
 k

−2
0
2
4

 z 2
(k

)

(b)

0 1000 2000 3000 4000 5000
 k

−2
0
2
4

 z 3
(k

)

(c)

Figure 15: The evolution of state variables: (a) 𝑘 − 𝑧1(𝑘), (b) 𝑘 − 𝑧2(𝑘), and (c) 𝑘 − 𝑧3(𝑘).
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Figure 16: Chaotic trajectories of variables: (a) 𝑤1(𝑘) − 𝑤2(𝑘) − 𝑤3(𝑘), (b) 𝑤1(𝑘) − 𝑤2(𝑘), (c) 𝑤1(𝑘) − 𝑤3(𝑘), and (d) 𝑤2(𝑘) − 𝑤3(𝑘).
𝑇1 = 𝑇2 ∘ 𝑇11 (31)

𝑇2 = 𝑇2 ∘ 𝑇12 (32)

𝑇3 = 𝑇2 ∘ 𝑇13 (33)

𝑇4 = 𝑇2 ∘ 𝑇14 (34)

Now, based on the cubic polynomial chaotic map (5) and
Logisticmap (6), we designCPRNGI, CPRNGII, CPRNGIIII,
and CPRNGIV.

𝑆1 = 𝑇1 (𝑋1) (35)

𝑆2 = 𝑇2 (𝑌1) (36)

𝑆3 = 𝑇3 (𝑆) (37)

𝑆4 = 𝑇4 (𝑆) (38)

are the key streams, respectively, generated via CPRNGI,
CPRNGII, CPRNGIIII, and CPRNGIV.

5.2. Pseudorandomness Tests. The FIPS 140-2 test consists of
four subtests: Monobit Test, Poker Test, Run Test, and Long
Run Test. Each test needs a single stream of 20,000 one and
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Figure 17: The evolution of state variables: (a) 𝑘 − 𝑤1(𝑘), (b) 𝑘 − 𝑤2(𝑘), and (c) 𝑘 − 𝑤3(𝑘).
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Figure 18:The state vectors𝑍 and𝑊 are in generalized synchronization with respect to the transformation: (a) ℎ1(𝑍(𝑘))-𝑤1(𝑘), (b) ℎ2(𝑍(𝑘))-𝑤2(𝑘), and (c) ℎ3(𝑍(𝑘))-𝑤3(𝑘).
zero bits from the keystream generator. Any failure in the
first three tests means that the corresponding quantity of the
sequences falls out the required intervals listed in the second
column in Table 2.The Long Run test is passed if there are no
runs of length 26 or more.

It has been pointed out that the required intervals of the
Monotone test and the Pork test correspond significantly to𝛼 = 10−4 for the normal cumulative distribution and the𝜒2 distribution, respectively, and the required intervals of the
Run tests correspond approximately the significant 𝛼 = 1.6 ×10−7 for the normal cumulative distribution [29, 30]. If we
select the significant 𝛼 = 10−4 of all tests, the corresponding
accepted intervals are listed in the third column in Table 2.
According to Golomb’s three postulates on the randomness
that ideal pseudorandom sequences should satisfy [31], and
the ideal values of the first three tests should be those listed
in the 4th column in Table 2.

The FIPS 140-2 test is used to check 1, 000 keystreams
randomly generated, respectively, by CPRNGI, CPRNGII,
CPRNGIIII, and CPRNGIV, with perturbed randomly the
parameters, the initial conditions 𝑋(0), 𝑌(0), 𝑍(0), and
𝑊(0), and the parameters of matrix 𝐴 = (𝛼𝑖,𝑗) in the
range |𝜖| ∈ [10−16, 10−1]. The test results are listed in the
2/3/4/5th column in Table 3.The statistic test results are listed

in the 3/4/5/6th column in Table 4, in which the statistic
results are described by mean values and standard deviation
(Mean±SD).

The RC4 was designed by Rivest of the RSA Security in
1987, which has been widely used in popular protocols such
as Secure Sockets.TheRC4AlgorithmPRNGcanbe designed
via Matlab commands:𝑁 = 20000;

𝐾 = 𝑟𝑎𝑛𝑑𝑖 ([0 254] , 1, 255) ;𝑆 = [0 : 255 − 1] ; 𝑗 = 0;𝑓𝑜𝑟 𝑖 = 1 : 255
𝑗 = mod (𝑗 + 𝑆 (𝑖) + 𝐾 (𝑖) , 255) ;
𝑆𝑘 = 𝑆 (𝑗 + 1) ;
𝑆 (𝑗 + 1) = 𝑆 (𝑖) ;𝑆 (𝑖) = 𝑆𝑘;𝑒𝑛𝑑𝐶 = 𝑧𝑒𝑟𝑜𝑠 (1,𝑁) ; 𝑗 = 0; 𝑖 = 0; 𝑘 = 1;
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Table 2: The required intervals of the FIPS 140-2 Monobit Test, Pork Tests, and Run Test. Here, MT, PT, and LT represent the Monobit Test,
the Pork Test, and the Long Run Test, respectively. k represents the length of the run of a tested sequence. 𝜒2 DT represents 𝜒2 distribution.
Test Item FIPS 140-2 𝛼 = 10−4 Golomb’s

Required Intervals Accepted Intervals Postulates
MT 9,725∼10,275 9,725∼10,275 10000
PT 2.16∼46.17 2.16∼46.17 𝜒2 DT
LT < 26 < 26 —
k Run Test Run Test
1 2,315∼2,685 2,362∼2,638 2,500
2 1,114∼1,386 1,153∼1,347 1,250
3 527∼723 556∼694 625
4 240∼384 264∼361 313
5 103∼209 122∼191 156
6+ 103∼209 122∼191 156

Table 3: The pass rate of CPRNGI/CPRNGII/CPRNGIII/CPRNGIV.

Pass rate CPRNGI CPRNGII CPRNGIII CPRNGIV RC4
FIPS 140-2 100% 99.7% 100% 100% 99.9%
G FIPS 140-2 test 97.9% 98.0% 98.8% 98.4% 98.2%

𝑓𝑜𝑟 𝑙 = 1 : 𝑁8𝑖 = mod (𝑖 + 1, 255) ;
𝑗 = mod (𝑗 + 𝑆 (𝑖 + 1) , 255) ;
𝑆𝑘 = 𝑆 (𝑗 + 1) ;
𝑆 (𝑗 + 1) = 𝑆 (𝑖 + 1) ;𝑆 (𝑖 + 1) = 𝑆𝑘;
𝐶 (𝑙) = 𝑆 (mod (𝑆 (𝑗 + 1) + 𝑆 (𝑖 + 1) , 255) + 1) ;𝑒𝑛𝑑
𝐶 = (𝑑𝑒𝑐2𝑏𝑖𝑛 (𝐶))󸀠 ;𝐶 = 𝐶 (:) ;𝐶 = 𝑏𝑖𝑛2𝑑𝑒𝑐 (𝐶) ;

(39)

where randi([0 2𝐿 − 1],1,2𝐿) generates a vector of uniformly
distributed random integers {0, 1, . . . , 2𝐿−1} of dimension 2𝐿;
mod means modulus after division; zeros(1,𝑁) is a zero raw
vector of dimension N.

Consequently, the RC4 Algorithm based PRNG is
designed. The FIPS 140-2 test is used to test the 1, 000
keystreams randomly generated by RC4. The test result
is listed in the 6th column in Table 3. The statistic test
results are listed in the 7th column in Table 4. Observe
that the statistical properties of the pseudorandomness of
the sequences generated via the four CPRNGs and RC4
do not have significant differences. And compared with
the other three CPRNSs, CPRNGIII based on the cubic

polynomial chaotic generalized synchronic system has better
performance.

5.3. Key Space. The key set parameters of CPRNGs includes
the parameters {V, 𝑝2, 𝑝3, 𝑎}, the initial conditions𝑋(0),𝑌(0),
𝑍(0), and𝑊(0), and the matrix 𝐴 = (𝛼𝑖,𝑗). It can be proved
that if the perturbation matrix △ = (𝛿𝑖,𝑗) satisfies󵄨󵄨󵄨󵄨󵄨𝛿𝑖,𝑗󵄨󵄨󵄨󵄨󵄨 < 0.86 (40)

the matrix 𝐴 + △ is still invertible. Therefore CPRNGI,
CPRNGII, CPRNGIIII, and CPRNGIV, respectively, have 1+1, 1 + 1, 3 + 3 + 3 + 9, 1 + 3 + 3 + 9 key parameters denoted
by

K𝑠1 = {𝑘1, 𝑘2} (41)

K𝑠2 = {𝑘1, 𝑘2} (42)

K𝑠3 = {𝑘1, 𝑘2, . . . , 𝑘18} (43)

K𝑠4 = {𝑘1, 𝑘2, . . . , 𝑘16} (44)

Let the key set be perturbed by

K𝑠1 (Δ) = K𝑠1 + [𝛿1, 𝛿2] (45)

K𝑠2 (Δ) = K𝑠2 + [𝛿1, 𝛿2] (46)

K𝑠3 (Δ) = K𝑠3 + [𝛿1, 𝛿2, . . . , 𝛿18] (47)

K𝑠4 (Δ) = K𝑠4 + [𝛿1, 𝛿2, . . . , 𝛿16] (48)

where

10−16 ≤ 󵄨󵄨󵄨󵄨𝛿𝑖󵄨󵄨󵄨󵄨 ≤ 10−1, 𝑖 = 1, . . . , 16. (49)
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Table 4:The confident intervals of the FIPS 140-2 tested values of 1,000 key streams generated byCPRNGI/CPRNGII/CPRNGIII/CPRNGIV.
Here, SD represents the standard deviation.

Test item bits CPRNGI CPRNGII CPRNGIII CPRNGIV RC4
Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

MT 0 10007±69.605 10007± 71.590 10006±73.058 10007±71.965 9993.2±65.772
1 9992.7 ± 69.605 9992.9±71.590 9993.1 ± 73.058 9992.4±71.965 10007±65.677

PT – 15.098± 5.6493 15.144 ± 5.6130 15.188± 5.5703 15.197 ± 5.6712 14.874± 5.8308

LT 0 17.994 ±1.8567 18.142 ± 2.0430 13.908 ± 1.9165 13.864 ± 1.9388 13.900 ± 1.9201
1 13.611 ± 1.8447 13.665 ± 1.9116 13.732 ± 2.0194 13.669 ± 1.9367 13.510±1.7085

k bits Run Test Run Test Run Test Run Test Run Test

1 0 2497.6±47.004 2497.4± 44.510 2495.3±46.303 2499.3± 48.263 2502.1±45.931
1 2497.9± 47.282 2499.1± 46.161 2500.4± 47.228 2501.3± 4533.9 2499.3±46.735

2 0 1247.6±32.124 1248.4± 31.254 1251.0±31.376 1249.8± 31.976 1249.1±33.562
1 1248.6±32.918 1248.2± 31.182 1246.7±32.313 1248.7± 32.022 1246.5 ±31.876

3 0 625.46±23.377 624.51± 22.498 624.52±23.838 623.57± 22.549 623.59±22.079
1 624.95±23.373 623.06± 23.493 623.92±22.571 624.13± 22.838 625.66±25.016

4 0 312.53±16.690 312.44±15.625 312.20±16.847 312.21±16.735 312.23±15.121
1 312.04± 16.512 311.96± 16.467 312.99± 16.423 311.91± 170.34 314.11±16.823

5 0 155.77±12.108 155.69±12.158 155.72±12.042 155.86±12.212 156.61±10.409
1 156.02±12.011 156.64± 11.485 155.64±11.737 156.53± 12.220 156.96±12.530

6+ 0 156.69±12.031 157.01±12.004 157.47±11.758 157.67±11.880 156.32±13.331
1 156.14±11.644 156.45±11.971 156.59±11.684 155.69±12.010 156.39±11.715

Therefore the key spaces of the four CPRNGs are, respec-
tively, 1015×2, 1015×2, 1015×18, and 1015×16. The key space of
CPRNGIII is larger than 2896.
6. Conclusions

First, based on the robust chaos theoremof S-unimodalmaps,
this paper sets up a robust chaos theorem on a kind of cubic
polynomial discrete maps. This theorem provides parameter
inequalities to determine the robust chaos regions.

Second, using the Theorem 2 constructs a cubic polyno-
mial map. The analysis results of the cycle lengths of 1000
cubic polynomial chaotic sequences show that when the
resolutions reach 10−7 ∼ 10−13, themaximum of cycle lengths
of the cubic polynomial chaotic sequences is significantly
greater than these of Logistic map. When the resolution
reaches 10−14, there is the situation without cycle for 1000
cubic polynomial chaotic sequences with length 3 × 107. The
maximum of cycle lengths of Logistic sequences is less than3 × 107.

Third, combining the robust chaos Theorems 2 and 3
and GS theorem proposes two 6DCGSS. The numerical
simulations of two 6DCGSS have verified the effectiveness of
theoretical results.

Finally, design four chaos-based pseudorandom number
generators CPRNGI, CPRNGII, CPRNGIII, and CPRN-
GIV. Comparing the results of the FIPS 140-2 test for the
keystreams generated via the four CPRNGs with the RC4
PRNG shows that the randomness of the sequences generated
via the CPRNGIII has better performance. The simulations
also suggest that the key space of the CPRNGIII is larger than2896, which is large enough to against brute-force attacks.

Appendix

Proof of Theorem 2. Case(1). First, we show that 𝑓(𝑥) : 𝐽 =[0, 𝑏] 󳨀→ 𝐽 has three order derivative function and 𝑐 ∈ (0, 𝑏)
is the unique maximum point.

We now judge the symbol of 𝑝1 = −27(1 − √1 − 4/V)/{V ⋅[4 − 18/V − 4(1 − 3/V)3/2]}.
(1) If 25/6 ≤ V ≤ 18/4 implies

0 < 1 − 4
V
< 1,

− 825 ≤ 4 − 18V ≤ 0,
4 (1 − 3

V
)3/2 > 0

(A.1)

then 4 − 18/V − 4(1 − 3/V)3/2 < 0, 𝑝1 > 0.
(2) If V > 18/4 implies

1 − 4
V
> 0,

4 − 18
V
> 0,

4 (1 − 3
V
)3/2 > 0

(A.2)

then the judgement of 4 − 18/V − 4(1 − 3/V)3/2 is
equivalent to the judgement of (4 − 18/V)2 − [4(1 −3/V)3/2]2.
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Letting

(4 − 18
V
)2 − 16 (1 − 3

V
)3

= 16 − 8 ⋅ 18
V
+ 182

V2
− 16 (1 − 9

V
+ 27
V2
− 27
V3
)

= −18 ⋅ 6
V2
+ 16 ⋅ 27

V3
< 0

(A.3)

then 4 − 18/V − 4(1 − 3/V)3/2 < 0, 𝑝1 > 0.
From 𝑏 = (−𝑝2 − √𝑝22 − 4𝑝3𝑝1)/(2𝑝3), 𝑐 = (−𝑝2 −√𝑝22 − 3𝑝3𝑝1)/(3𝑝3), 𝑝3 > 0, 𝑝2 < 0, 𝑝1 > 0, and 𝑝22 −3𝑝3𝑝1 > 𝑝22 − 4𝑝3𝑝1 > 0, then
𝑏 − 𝑐 = −𝑝2 − √𝑝22 − 4𝑝3𝑝12𝑝3 − −𝑝2 − √𝑝22 − 3𝑝3𝑝13𝑝3
= −3𝑝2 − 3√𝑝22 − 4𝑝3𝑝1 + 2𝑝2 + 2√𝑝22 − 3𝑝3𝑝16𝑝3
= −𝑝2 − 3√𝑝22 − 4𝑝3𝑝1 + 2√𝑝22 − 3𝑝3𝑝16𝑝3
> −𝑝2 − 3√𝑝22 − 4𝑝3𝑝1 + 2√𝑝22 − 4𝑝3𝑝16𝑝3
= −𝑝2 − √𝑝22 − 4𝑝3𝑝16𝑝3 > −𝑝2 − 󵄨󵄨󵄨󵄨𝑝2󵄨󵄨󵄨󵄨6𝑝3 = 0

(A.4)

Thence 0 < 𝑐 < 𝑏.
Clearly, 𝑓(𝑥) : 𝐽 = [0, 𝑏] 󳨀→ 𝐽 has three-order derivative

function:

𝑓󸀠 (𝑥) = 3𝑝3𝑥2 + 2𝑝2𝑥 + 𝑝1 (A.5)

𝑓󸀠󸀠 (𝑥) = 6𝑝3𝑥 + 2𝑝2 (A.6)

𝑓󸀠󸀠󸀠 (𝑥) = 6𝑝3 (A.7)

and 𝑐 is the solution of 𝑓󸀠(𝑥) = 0.
Since

𝑓󸀠󸀠 (𝑐) = 6𝑝3 ⋅ −𝑝2 − √𝑝22 − 3𝑝3𝑝13𝑝3 + 2𝑝2
= −2𝑝2 − 2√𝑝22 − 3𝑝3𝑝1 + 2𝑝2
= −2√𝑝22 − 3𝑝3𝑝1 < 0

(A.8)

then 𝑐 is the maximum point.
Second, we proof 𝑓(0) = 𝑓(𝑏) = 0, and 𝑓(𝑥) is strictly

increasing on 𝑥 ∈ (0, 𝑐) and strictly decreasing on 𝑥 ∈ (𝑐, 𝑏).

Letting

𝑓 (𝑥) = 𝑝3𝑥3 + 𝑝2𝑥2 + 𝑝1𝑥
= 𝑝3𝑥(𝑥2 + 𝑝2𝑝3 ⋅ 𝑥 + 𝑝1𝑝3) = 0

(A.9)

it has three solutions:

0,
𝑏 = (−𝑝2 − √𝑝22 − 4𝑝3𝑝1)(2𝑝3) ,
𝑥1 = (−𝑝2 + √𝑝22 − 4𝑝3𝑝1)(2𝑝3)

(A.10)

and 𝑏 < 𝑥1, then 𝑓(0) = 𝑓(𝑏) = 0.
Solving 𝑓󸀠(𝑥) = 0 has the other solution:

𝑐1 = (−𝑝2 + √𝑝22 − 3𝑝3𝑝1)(3𝑝3) (A.11)

Since 𝑝22 = V𝑝3𝑝1, V > 25/6, 𝑝2 < 0, 𝑝22 − 3𝑝3𝑝1 >𝑝22 − 4𝑝3𝑝1, then
𝑏 − 𝑐1
= −𝑝2 − √𝑝22 − 4𝑝3𝑝12𝑝3 − −𝑝2 + √𝑝22 − 3𝑝3𝑝13𝑝3
= −3𝑝2 − 3√𝑝22 − 4𝑝3𝑝1 + 2𝑝2 − 2√𝑝22 − 3𝑝3𝑝16𝑝3
= −𝑝2 − 3√𝑝22 − 4𝑝3𝑝1 + 2√𝑝22 − 3𝑝3𝑝16𝑝3
< −𝑝2 − 5√𝑝22 − 4𝑝3𝑝16𝑝3
= −𝑝2 − 5 󵄨󵄨󵄨󵄨𝑝2󵄨󵄨󵄨󵄨 √1 − 4/V6𝑝3 = −𝑝2 + 5𝑝2√1 − 4/V6𝑝3
= 𝑝2 (5√1 − 4/V − 1)6𝑝3 < 0

(A.12)

thence 𝑏 < 𝑐1. Since 𝑐 is the uniquemaximumat 𝐽 = [0, 𝑏] and𝑓(0) = 𝑓(𝑏) = 0, then 𝑓(𝑥) is strictly increasing on 𝑥 ∈ (0, 𝑐)
and strictly decreasing on 𝑥 ∈ (𝑐, 𝑏).
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Third, we proof 𝑓(𝑥) has negative Schwarzian derivative
on 𝐽. For every 𝑥 ∈ 𝐽
𝑆𝑓 = 𝑓󸀠󸀠󸀠𝑓󸀠 − 32 (𝑓󸀠󸀠𝑓󸀠 )

2

= 6𝑝33𝑝3𝑥2 + 2𝑝2𝑥 + 𝑝1 − 32 ( 6𝑝3𝑥 + 2𝑝23𝑝3𝑥2 + 2𝑝2𝑥 + 𝑝1)
2

= 12 ⋅ 𝑝3 (3𝑝3𝑥2 + 2𝑝2𝑥 + 𝑝1) − 3 (6𝑝3𝑥 + 2𝑝2)22 (3𝑝3𝑥2 + 2𝑝2𝑥 + 𝑝1)2
= 6 (3𝑝33𝑥2 + 2𝑝3𝑝2𝑥 + 𝑝3𝑝1) − 6 (9𝑝23𝑥2 + 6𝑝3𝑝2𝑥 + 𝑝22)(3𝑝3𝑥2 + 2𝑝2𝑥 + 𝑝1)2

= −6 ⋅ 6𝑝23𝑥2 + 4𝑝3𝑝2𝑥 − 𝑝3𝑝1 + 𝑝22(3𝑝3𝑥2 + 2𝑝2𝑥 + 𝑝1)2
= −6 ⋅ 6 (𝑝3𝑥 + 𝑝2/3)2 − 2/3 ⋅ 𝑝22 − 𝑝3𝑝1 + 𝑝22(3𝑝3𝑥2 + 2𝑝2𝑥 + 𝑝1)2
= −6 ⋅ 6 (𝑝3𝑥 + 𝑝2/3)2 + (𝑝22 − 3𝑝3𝑝1) /3(3𝑝3𝑥2 + 2𝑝2𝑥 + 𝑝1)2

(A.13)

and 𝑝22 − 3𝑝3𝑝1 > 0; thence 𝑓(𝑥) has negative Schwarzian
derivative on 𝐽.

Finally, we proof the maximum value 𝑓(𝑐) = 𝑏 on 𝐽.
Substituting 𝑐 into 𝑓(𝑥),

𝑓 (𝑐) = 𝑝3𝑐 (𝑐2 + 𝑝2𝑝3 ⋅ 𝑐 + 𝑝1𝑝3)
= 𝑝3 ⋅ −𝑝2 − √𝑝22 − 3𝑝3𝑝13𝑝3 ⋅ {{{{{

𝑝22 + 𝑝22 − 3𝑝3𝑝1 + 2𝑝2√𝑝22 − 3𝑝3𝑝19𝑝23 + −𝑝22 − 𝑝2√𝑝22 − 3𝑝3𝑝13𝑝23 + 𝑝1𝑝3
}}}}}

= 𝑝3 ⋅ −𝑝2 − √𝑝22 − 3𝑝3𝑝13𝑝3 ⋅ 2𝑝22 − 3𝑝3𝑝1 + 2𝑝2√𝑝22 − 3𝑝3𝑝1 − 3𝑝22 − 3𝑝2√𝑝22 − 3𝑝3𝑝1 + 9𝑝3𝑝19𝑝23
= −𝑝2 − √𝑝22 − 3𝑝3𝑝13 ⋅ −𝑝22 + 6𝑝3𝑝1 − 𝑝2√𝑝22 − 3𝑝3𝑝19𝑝23
= 𝑝32 − 6𝑝3𝑝2𝑝1 + 𝑝22√𝑝22 − 3𝑝3𝑝1 + 𝑝22√𝑝22 − 3𝑝3𝑝1 − 6𝑝3𝑝1√𝑝22 − 3𝑝3𝑝127𝑝23 + 𝑝2 (𝑝22 − 3𝑝3𝑝1)27𝑝23
= 2𝑝32 − 9𝑝3𝑝2𝑝1 + 2𝑝22√𝑝22 − 3𝑝3𝑝1 − 6𝑝3𝑝1√𝑝22 − 3𝑝3𝑝127𝑝23 = 2𝑝32 − 9𝑝3𝑝2𝑝1 + (2𝑝22 − 6𝑝3𝑝1)√𝑝22 − 3𝑝3𝑝127𝑝23

(A.14)

Since 𝑝2 < 0, 𝑝22 = V𝑝3𝑝1, 𝑝1 = −{27(1 − √1 − 4/V)}/{V ⋅ [4 −18/V − 4(1 − 3/V)3/2]}, then

𝑓 (𝑐) − 𝑏 = 2𝑝32 − 9𝑝3𝑝2𝑝1 + (2𝑝22 − 6𝑝3𝑝1)√𝑝22 − 3𝑝3𝑝127𝑝23 − −𝑝2 − √𝑝22 − 4𝑝3𝑝12𝑝3
= 4𝑝32 − 18𝑝3𝑝2𝑝1 + 4 (𝑝22 − 3𝑝3𝑝1)√𝑝22 − 3𝑝3𝑝1 + 27𝑝3𝑝254𝑝23 + 27𝑝3√𝑝22 − 4𝑝3𝑝154𝑝23
= 4𝑝32 − 18𝑝2 ⋅ 𝑝22/V + 4 (1 − 3/V) 𝑝22 ⋅ √1 − 3/V ⋅ 󵄨󵄨󵄨󵄨𝑝2󵄨󵄨󵄨󵄨 + 27𝑝3𝑝2 + 27𝑝3 ⋅ √1 − 4/V ⋅ 󵄨󵄨󵄨󵄨𝑝2󵄨󵄨󵄨󵄨54𝑝23
= 4𝑝32 − 18/V ⋅ 𝑝32 − 4 (1 − 3/V)3/2 𝑝32 + 27𝑝3𝑝2 − 27𝑝3𝑝2√1 − 4/V54𝑝23
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= [4 − 18/V − 4 (1 − 3/V)3/2] 𝑝32 + 27𝑝3𝑝2 (1 − √1 − 4/V)54𝑝23
= 𝑝2 ⋅ [4 − 18/V − 4 (1 − 3/V)3/2] 𝑝22 + 27𝑝3 (1 − √1 − 4/V)54𝑝23 = 0

(A.15)

Therefore 𝑓(𝑥) : 𝐽 󳨀→ 𝐽 is the S-unimodal map and satisfies
Theorem 1.
Case(2). First, we show that 𝑓(𝑥) : 𝐽 = [0, 𝑏] 󳨀→ 𝐽 has
three order derivative function and 𝑐 ∈ (0, 𝑏) is the unique
maximum point.

Since V < 0, obviously 𝑝1 = −{27(1 + √1 − 4/V)}/{V ⋅ [4 −18/V + 4(1 − 3/V)3/2]} > 0, 𝑝22 = V𝑝3𝑝1 > 0.
From 𝑝3<0, 𝑝2>0, 𝑝1 > 0, 𝑝22 −4𝑝3𝑝1 > 𝑝22 −3𝑝3𝑝1, then
𝑏 − 𝑐 = −𝑝2 − 3√𝑝22 − 4𝑝3𝑝1 + 2√𝑝22 − 3𝑝3𝑝16𝑝3

> −𝑝2 − 3√𝑝22 − 3𝑝3𝑝1 + 2√𝑝22 − 3𝑝3𝑝16𝑝3
= −𝑝2 − √𝑝22 − 3𝑝3𝑝16𝑝3 > 0

(A.16)

thence 0 < 𝑐 < 𝑏.

Similar to the proof given in case (1), 𝑓(𝑥) has first-
order derivative function (A.5), second-order derivative
function (A.6), and third-order derivative function (A.7).
Solving 𝑓󸀠(𝑥) = 0 has one solution 𝑐. From (A.8), 𝑓󸀠󸀠(𝑐) < 0
and thus 𝑐 is the maximum point.

Second proof that 𝑓(0) = 𝑓(𝑏) = 0 and 𝑓(𝑥) is strictly
increasing on 𝑥 ∈ (0, 𝑐) and strictly decreasing on 𝑥 ∈ (𝑐, 𝑏).
From (A.10),𝑓(𝑥) has three solutions: {0, 𝑏, 𝑥1}, and 𝑥1 < 0 <𝑏, and then 𝑓(0) = 𝑓(𝑏) = 0. Letting 𝑓󸀠(𝑥) = 0, we get the
other solution 𝑐1 (A.11) and 𝑐1 < 0 < 𝑐 < 𝑏. Thence 𝑓(𝑥)
is strictly increasing on 𝑥 ∈ (0, 𝑐) and strictly decreasing on𝑥 ∈ (𝑐, 𝑏).

Third, form (A.13) and 𝑝22 − 3𝑝3𝑝1 > 0, we
proof that 𝑓(𝑥) has negative Schwarzian derivative on𝐽.

Finally, from (A.14), and 𝑝2 > 0, 𝑝22 = V𝑝3𝑝1, 𝑝1 =−{27(1 + √1 − 4/V)}/{V ⋅ [4 − 18/V + 4(1 − 3/V)3/2]}, then

𝑓 (𝑐) − 𝑏 = 2𝑝32 − 9𝑝3𝑝2𝑝1 + (2𝑝22 − 6𝑝3𝑝1)√𝑝22 − 3𝑝3𝑝127𝑝23 − −𝑝2 − √𝑝22 − 4𝑝3𝑝12𝑝3
= 4𝑝32 − 18𝑝3𝑝2𝑝1 + 4 (𝑝22 − 3𝑝3𝑝1)√𝑝22 − 3𝑝3𝑝1 + 27𝑝3𝑝254𝑝23 + 27𝑝3√𝑝22 − 4𝑝3𝑝154𝑝23
= 4𝑝32 − 18𝑝2 ⋅ 𝑝22/V + 4 (1 − 3/V) 𝑝22 ⋅ √1 − 3/V ⋅ 󵄨󵄨󵄨󵄨𝑝2󵄨󵄨󵄨󵄨 + 27𝑝3𝑝2 + 27𝑝3 ⋅ √1 − 4/V ⋅ 󵄨󵄨󵄨󵄨𝑝2󵄨󵄨󵄨󵄨54𝑝23
= 4𝑝32 − 18/V ⋅ 𝑝32 + 4 (1 − 3/V)3/2 𝑝32 + 27𝑝3𝑝2 + 27𝑝3𝑝2√1 − 4/V54𝑝23
= [4 − 18/V + 4 (1 − 3/V)3/2] 𝑝32 + 27𝑝3𝑝2 (1 + √1 − 4/V)54𝑝23
= 𝑝2 ⋅ [4 − 18/V + 4 (1 − 3/V)3/2] 𝑝22 + 27𝑝3 (1 + √1 − 4/V)54𝑝23 = 0

(A.17)

Therefore 𝑓(𝑥) : 𝐽 󳨀→ 𝐽 is the S-unimodal map and
satisfies Theorem 1.

Case(3). First, we show that 𝑓(𝑥) : 𝐽 = [0, 𝑏] 󳨀→ 𝐽 has
three-order derivative function, and 𝑐 ∈ (0, 𝑏) is the unique
maximum point.

We now judge the symbol of 𝑝1 = −{27(1−√1 − 4/V)}/{V ⋅[4 − 18/V − 4(1 − 3/V)3/2]}.
By V < 0, then

1 − 4
V
> 1,
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4 − 18
V
> 0,

4 (1 − 3
V
)3/2 > 0

(A.18)

and thence the judgement of 4 − 18/V − 4(1 − 3/V)3/2 is
equivalent to the judgement of (4 − 18/V)2 − [4(1 − 3/V)3/2]2.
From (A.3), clearly 4 − 18/V − 4(1 − 3/V)3/2 < 0, and then𝑝1 > 0.

From 𝑝3<0, 𝑝2< 0, 𝑝1 > 0, 𝑝22 −4𝑝3𝑝1 > 𝑝22 −3𝑝3𝑝1, then
𝑏 − 𝑐 = −𝑝2 − 3√𝑝22 − 4𝑝3𝑝1 + 2√𝑝22 − 3𝑝3𝑝16𝑝3

> −𝑝2 − 3√𝑝22 − 4𝑝3𝑝1 + 2√𝑝22 − 4𝑝3𝑝16𝑝3
= −𝑝2 − √𝑝22 − 4𝑝3𝑝16𝑝3 > −𝑝2 − 󵄨󵄨󵄨󵄨𝑝2󵄨󵄨󵄨󵄨6𝑝3 = 0

(A.19)

and thus 0 < 𝑐 < 𝑏.

Similar to the proof given in case (1), 𝑓(𝑥) has first-
order derivative function (A.5), second-order deriv-
ative function (A.6), and third-order derivative func-
tion (A.7). Solving 𝑓󸀠(𝑥) = 0 has one solution 𝑐.
From (A.8), 𝑓󸀠󸀠(𝑐) < 0 and thus 𝑐 is the maximum
point.

Second,we proof that𝑓(0) = 𝑓(𝑏) = 0, and𝑓(𝑥) is strictly
increasing on 𝑥 ∈ (0, 𝑐) and strictly decreasing on 𝑥 ∈ (𝑐, 𝑏).
From (A.10),𝑓(𝑥) has three solutions: {0, 𝑏, 𝑥1}, and 𝑥1 < 0 <𝑏, and then 𝑓(0) = 𝑓(𝑏) = 0. Letting 𝑓󸀠(𝑥) = 0, we get the
other solution 𝑐1 (A.11), and 𝑐1 < 0 < 𝑐 < 𝑏. Thence 𝑓(𝑥)
is strictly increasing on 𝑥 ∈ (0, 𝑐) and strictly decreasing on𝑥 ∈ (𝑐, 𝑏).

Third, form (A.13) and 𝑝22 − 3𝑝3𝑝1 > 0, we
proof that 𝑓(𝑥) has negative Schwarzian derivative on𝐽.

Finally, from (A.14) and 𝑝2 < 0, 𝑝22 = V𝑝3𝑝1, 𝑝1 =−{27(1 − √1 − 4/V)}/{V ⋅ [4 − 18/V − 4(1 − 3/V)3/2]},
then

𝑓 (𝑐) − 𝑏 = 2𝑝32 − 9𝑝3𝑝2𝑝1 + (2𝑝22 − 6𝑝3𝑝1)√𝑝22 − 3𝑝3𝑝127𝑝23 − −𝑝2 − √𝑝22 − 4𝑝3𝑝12𝑝3
= 4𝑝32 − 18𝑝3𝑝2𝑝1 + 4 (𝑝22 − 3𝑝3𝑝1)√𝑝22 − 3𝑝3𝑝1 + 27𝑝3𝑝254𝑝23 + 27𝑝3√𝑝22 − 4𝑝3𝑝154𝑝23
= 4𝑝32 − 18𝑝2 ⋅ 𝑝22/V + 4 (1 − 3/V) 𝑝22 ⋅ √1 − 3/V ⋅ 󵄨󵄨󵄨󵄨𝑝2󵄨󵄨󵄨󵄨 + 27𝑝3𝑝2 + 27𝑝3 ⋅ √1 − 4/V ⋅ 󵄨󵄨󵄨󵄨𝑝2󵄨󵄨󵄨󵄨54𝑝23
= 4𝑝32 − 18/V ⋅ 𝑝32 − 4 (1 − 3/V)3/2 𝑝32 + 27𝑝3𝑝2 − 27𝑝3𝑝2√1 − 4/V54𝑝23
= [4 − 18/V − 4 (1 − 3/V)3/2] 𝑝32 + 27𝑝3𝑝2 (1 − √1 − 4/V)54𝑝23
= 𝑝2 ⋅ [4 − 18/V − 4 (1 − 3/V)3/2] 𝑝22 + 27𝑝3 (1 − √1 − 4/V)54𝑝23 = 0

(A.20)

Therefore 𝑓(𝑥) : 𝐽 󳨀→ 𝐽 is the S-unimodal map, and satisfies
Theorem 1. This completes the proof.
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