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Artificial upwelling, artificially pumping up nutrient-rich ocean waters from deep to surface, is increasingly applied to stimulating
phytoplankton activity. As a proxy for the amount of phytoplankton present in the ocean, the concentration of chlorophyll a (chl-a)
may be influenced by water physical factors altered in artificial upwelling processes. However, the accuracy and convenience of
measuring chl-a are limited by present technologies and equipment. Our research intends to study the correlations between chl-a
concentration and five water physical factors, i.e., salinity, temperature, depth, dissolved oxygen (DO), and pH, possibly affected by
artificial upwelling. In this paper, seven models are presented to predict chl-a concentration, respectively. Two of them are based
on traditional regression algorithms, i.e., multiple linear regression (MLR) and multivariate quadratic regression (MQR), while
five are based on intelligent algorithms, i.e., backpropagation-neural network (BP-NN), extreme learning machine (ELM), genetic
algorithm-ELM (GA-ELM), particle swarmoptimization-ELM (PSO-ELM), and ant colony optimization-ELM (ACO-ELM).These
models provide a quick prediction to study the concentration of chl-a. With the experimental data collected from Xinanjiang
Experiment Station in China, the results show that chl-a concentration has a strong correlation with salinity, temperature, DO,
and pH in the process of artificial upwelling and PSO-ELM has the best overall prediction ability.

1. Introduction

In recent years, the ecological environment of the ocean
has been deteriorated due to the excessive development and
utilization of human beings [1, 2]. To ensure the sustainable
development of the ocean and improve the marine envi-
ronment, an artificial welling approach has been paid more
attention worldwide [3–6]. It promotes the oceanic primary
productivity and thus enriches phytoplankton in the euphotic
layer by artificially bringing to surface the deep ocean water
rich in nutrient salts such as Nitrogen and Phosphorus [7].
This process could affect the nutrient cycle, alter physical
water characteristics, such as temperature, pH, and salinity,
and indirectly influence sea creatures.

Chl-a concentration is a well-known indicator of eco-
logical health of aquatic environment, and its distribution
reflects richness and diversities of phytoplankton stocks [8].
It is significant to study the distributionmechanism chl-a and

its relationship with other water physical factors. Establishing
mathematical models is an effective way to predict chl-a con-
centration with a purpose of improving marine productivity
and preventing seawater eutrophication [9].

Extensive studies have been conducted in the current
literature on predicting the effects of nutrients and the
variations of other ecological parameters on chl-a concen-
tration. They could be categorized into two mainstreams.
One is measured spectrophotometrically over a long period
of several years for preventing water eutrophication. In this
time, the data are collected, preserved, and transferred to the
laboratory regularly. The other is based on remote sensing
of optical inversion and prediction. It allows researchers to
map contemporaneous chl-a concentration on a large spatial
scale. Malve developed Bayesian stratified linear model. It
combined the advantages of both nonhierarchical lake-type-
specific linear model and lake-type-specific linear models to
predict the relation between chl-a concentration and total
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nitrogen content and total phosphorus in Finnish Lake [10].
With the data of a tropical lake inMalaysia from 2001 to 2004,
Malek established chl-a concentration prediction models
with four computation methods, i.e., fuzzy logic, artificial
neural networks, hybrid evolutionary algorithms, and multi-
ple linear regression. The paper quantitatively evaluated and
compared the performance of different models with an indi-
cator of root mean square error (RMSE) [11]. Wang proposed
amethod for chl-a simulation in Baiyangdian Lake. It coupled
the wavelet analysis and the artificial networks and took into
account 14 variables in the developed and validated models,
including hydrological, meteorological, and physicochemical
data [12]. Based on the long-term monitoring of Yao Lake,
Chen’s research discovered that four environmental factors
had the closest correlationwith chl-a, i.e., transparency, nitro-
gen/phosphorus ratio, permanganate index, and total phos-
phorus. In this work, stepwise regression analysismethodwas
adopted [13]. Mishra proposed a normalized difference chl
index to estimate chl-a concentration from remote sensing
data in estuarine and coastal turbid productive waters [14].
Wang suggested neural network technology to simulate the
mathematical relationship between chl-a concentration and
remote sensing reflectance in the Yellow Sea and East China
Sea [15]. Hashimused satellite remote sensing images to study
the chl-a distribution at Northern Region Coast of Peninsular
Malaysia [16].

The chl-a concentration prediction in artificial upwelling
processes has seldom been tackled. We have carried out the
preliminary research to model the correlations between chl-
a concentration and the associated water physical factors
possibly affected by artificial upwelling with two novel neu-
ral network methods, i.e., genetic-algorithm-based neural
network (GA-NN) and particle-swarm-optimization-based
neural network (PSO-NN) [17]. Although the results show
that these two methods can predict the correlations, they
share a common disadvantage of requiring a relatively long
training time. Particularly, with the increase of training data,
the training time of neural network would rise accordingly.
In addition, their reliability and accuracy need to be further
studied. On the other hand, a novel learning algorithm for
single-hidden-layer feedforward neural networks (SLFNs)
named ELM was proposed in 2004 [18]. ELM has extremely
faster learning speed, better generalization performance, and
the least human intervention [19]. However, ELM needs a
high number of hidden neurons and may lead to the ill-
condition problem due to the random determination of the
input weights and hidden biases. A hybrid learning algorithm
later was proposed to overcome the drawbacks of ELM. It
used an improved PSO algorithm to select the input weights
and hidden biases and Moore-Penrose (MP) generalized
inverse to analytically determine the output weights [20]. To
clarify magnetic resonance image as healthy or pathological,
a method combining modified particle swarm optimization
and extreme learning machine (MPSO-ELM) was proposed.
MPSO is applied to optimizing the hidden node parameters
of SLFN, and the output weights are determined analytically.
It shows the MPSO-ELM algorithm could achieve higher
accuracy than BP-NN, SVMs, and conventional ELM [21].
With the development of ELM, ELM models have been

used in different fields. For example, in pathological brain
detection, researchers discover that the modified differential
evolution- (MDE-) ELM is able to optimize the input weights
and hidden biases of ELM [22–24].The improved ELMmeth-
ods exhibit potential improvements in terms of classification
accuracy and number of features. Therefore they are applied
in our research.

The demand for frequent monitoring of artificial
upwelling environmental primary productivity calls for an
urgent need to find an efficient and accurate solution of
predicting chl-a concentration.Meanwhile, the improvement
of machine learning, in particular, ELM, inspired us to
apply the machine learning to establish chl-a concentration
prediction model. Here we try to predict the complex
correlations between chl-a concentration and the water
physical factors that are possibly affected in artificial
upwelling processes, including salinity, temperature, depth,
DO, and pH. Both traditional regression algorithm-
based and intelligent algorithm-based prediction models
were established. These models could reveal the complex
relationship between water physical factors and assist
researchers in analyzing the artificial upwelling’s primary
productivity based on chl-a concentration. With the
experimental data collected in the Xinanjiang Experiment
Station, the results of different models were analyzed and
compared. The rest of the paper is organized as follows.
Section 2 describes the artificial upwelling process. Section 3
explains each algorithm in detail. The experimental results
and discussions for regression models and intelligent models
are given to demonstrate the effectiveness of ELM-based
methods in Section 4. The concluding remarks are drawn
and future works are presented in Section 5.

2. Artificial Upwelling Process Description

The air-lift artificial upwelling device developed by Zhe-
jiang University, China, utilizes an air-lift pump powered
by compressed air for upwelling deep ocean water. The
experiment was carried out in the Xinanjiang Experiment
Station in China. Figure 1 is the schematic diagram of the
experimental set-up. The main machine configuration and
tools used for the experiment include research ship, monitor,
air compressor, flow control valve, pressure control valve, air
supply line, crane, air injection port, and upwelling pipe.

Theupwelling pipe is 28.3m in length and 0.4m in internal
diameter. It is composed of a suction pipe (from point B
to point C, 20.8m) and a gas injection section pipe (from
point A to point B, 7.5m) and is vertically deployed and
completely submerged at the water depth of 2.1m. After the
air is generated from the air compressor and passes through
the air supply line, the pressure could be reduced by the
pressure control valve to the working pressure with the range
of 1.2-3.2 bar.Therefore, the pressure differences would cause
the deep water first to be sucked in and then to climb up
through the suction pipe. Owing to the air injection at point
B, the gas injection section pipe is occupied by two-phase
water-air flow. A more detailed description of this field test
can be found in the report by Fan [25].
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Figure 1: Schematic diagram of the air-lift artificial upwelling experiment set-up.

In this experiment, the deep, nutrient-rich water was
sucked at point C, and the water physical factors could be
regarded as inputs; the output is chl-a concentration at the
surface water. It is predicted that while the artificial upwelling
approach alters the inputs, the output varies accordingly. Five
physical factors were chosen as the system input, i.e., depth,
water temperature, salinity, pH, and DO. The data collection
process was presented in detail by Zhou as well [17] [26].

3. Model Methods

In this section, two kinds of modeling are elaborated, i.e.,
linear regression model and machine learning model. The
former is a traditional modeling method, simple to use
and comparatively easy to analyze the relation between the
model data types. Occasionally, it might ignore the nonlinear
relation between the selected data types leading to inaccurate
prediction result. The latter is frequently applied in big data
modeling. BP-NN is one of machine learning modeling
methods and is capable of self-correction. Given enough
training data, it could yield accurate prediction result. ELM
is a relatively new machine learning theory and exhibits
fast modeling speed and is regarded applicable in quick
prediction.

3.1. Linear Regression. The multiple linear regression (MLR)
is a classical approach for modeling the relationship between
a dependent variable and one or more independent variables
[27, 28]. Every value of the independent variable is associated
with the value of the dependent variable. Equation (1) is MLR
function.

𝑦 = 𝑏0 + �푛∑
�푖=1

𝑏�푖𝑥�푖 (1)

where 𝑦 is the dependent variable, 𝑥�푖 is the independent
variable, 𝑏�푖 is the regression coefficient of the explanatory
variable 𝑖, and 𝑏0 is the value of the intercept in the linear
fitting.

In the artificial upwelling process, MLR scheme models
the relationship between every single input and output.
Equation (1) can be expanded as Equation (2).

𝐶ℎ𝑙 𝑎 = 𝑏0 + 𝑏1𝑆𝑎𝑙 + 𝑏2𝑇 + 𝑏3𝐷𝑒𝑝 + 𝑏4𝐷𝑂 + 𝑏5𝑝𝐻 (2)

The training data estimate the unknown model parameters
in Equation (2). Like all forms of regression analysis, MLR
focuses on the conditional probability distribution of 𝑦 for a
given 𝑥�푘 value, rather than the union of 𝑥�푘 and 𝑦 probability
distribution. It depends on the model of its unknown param-
eters that is easier to fit than nonlinear analysis models.

Different from MLR, MQR takes into account the inter-
action feature between input variables.With quadratic terms,
it depicts more precisely the correlation between output and
input and thus is a better fit for nonlinear systems. Generated
from Equation (1) by adding more terms, Equation (3) is the
MQR function.

𝑦 = 𝑏0 + �푘∑
�푖=1

𝑏�푖𝑥�푖 + �푘∑
�푖=1

𝑐�푖𝑥2�푖 + �푛∑
�푖 ̸=�푗,�푖=1,�푗=2

𝑑�푖�푗𝑥�푖𝑥�푗 (3)

𝑥�푖 represents Sal, T, Dep, DO, and pH here.

3.2. Backpropagation-Neural Network (BP-NN). To capture
nonlinear relationships among water quality variables in a
specific water system remains a technical challenge due to
the complex physical, chemical, and biological processes
involved [29]. Moreover, to accurately simulate the upwelling
process requires a significant amount of field data to support
the analysis. Superior to linear regression methods, BP-NN
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Figure 2: Topology of ELM.

is capable of simulating complex nonlinear systems because
of its strong learning ability and self-adaption. Therefore,
BP-NN is proposed to model the correlation between chl-a
concentration and the five physical factors. BP-NN architec-
ture consists of two or more layers of neurons connected by
weights. The information is captured by the network when
input data pass through the hidden layer of neurons to the
output layer. In our research, we set the number of hidden
layers and hidden nodes of every layer by the repeated tests.
In order to ensure that the prediction results are stable and
reliable, overmuch hidden nodes were avoided. This setting
principle also helps to generate quick prediction results.

3.3. Extreme Learning Machine (ELM). ELM, a novel learn-
ing algorithm for SLFNs, was recently proposed as a unifying
framework for different families of learning algorithms [30].
The optimization problem arising in learning the parameters
of an ELM model can be solved analytically, resulting in
a closed form involving only matrix multiplication and
inversion. Hence, the learning process can be carried out
efficiently without requiring an iterative algorithm, such as
BP, or the solution to a quadratic programming problem as in
the standard formulation of SVM. In ELM, the input weights
(linking the input layer to the hidden layer) and hidden biases
are randomly chosen, and the output weights (linking the
hidden layer to the output layer) are analytically determined
by using MP generalized inverse [31]. ELM not only has a
simple structure but learns faster with better generalization
performance. Therefore, it is regarded as suitable to apply
ELM to modeling chl-a concentration as well.

For training SLFNs with 𝐿 hidden neurons and activation
function 𝑔(𝑥) shown in Figure 2, suppose there are 𝑁
(𝐿 ≤ 𝑁) arbitrary distinct samples (𝑥�푖, 𝑡�푖), where 𝑥�푖 =[𝑥�푖1, 𝑥�푖2, . . . , 𝑥�푖�푛]�푇 ∈ 𝑅�푛 and 𝑡�푖 = [𝑡�푖1, 𝑡�푖2, . . . , 𝑡�푖�푛]�푇 ∈ 𝑅�푚.
In ELM, the input weights and hidden biases are randomly
generated instead of being tuned. Thus the nonlinear system
has been converted to a linear system.The output is expressed
in Equation (4):

�퐿∑
�푖=1

𝛽�푖𝑔 (𝑤�푖 ⋅ 𝑥�푗 + 𝑏�푖) = 𝑜�푗, 𝑗 = 1, . . . , 𝑁 (4)

where 𝑤�푖 = [𝑤�푖1, 𝑤�푖2, . . . , 𝑤�푖�푛]�푇 is the weight vector con-
necting the 𝑖th hidden neuron and the input neurons, 𝛽�푖 =

[𝛽�푖1, 𝛽�푖2, . . . , 𝛽�푖�푚]�푇 is the weight vector connecting the 𝑖th
hidden neuron and the output neurons, 𝑤�푖 ⋅ 𝑥�푗 is the inner
product of𝑤�푖 and 𝑥�푗, 𝑏�푖 denotes the bias of 𝑖th hidden neuron,
and 𝑜�푗 = [𝑜�푗1, 𝑜�푗2, . . . , 𝑜�푗�푁]�푇 is the matrix of the desired
output.

The training goal of the neural network is that when the
number of hidden neurons is equal to the number of distinct
training samples, i.e., 𝐿 = 𝑄, standard SLFNs with 𝐿 hidden
neurons and activation function 𝑔(𝑥) can approximate 𝑁
samples with zero error means:

�푁∑
�푗=1

󵄩󵄩󵄩󵄩󵄩𝑜�푗 − 𝑡�푗󵄩󵄩󵄩󵄩󵄩 = 0 (5)

Then there should exist 𝛽�푖,𝑤�푖, and 𝑏�푖 that satisfy this function:
�퐿∑
�푖=1

𝛽�푖𝑔 (𝑤�푖 ⋅ 𝑥�푗 + 𝑏�푖) = 𝑡�푗, 𝑗 = 1, . . . , 𝑁 (6)

Equation (6) can be rewritten in the matrix form:

𝐻𝛽 = 𝑇 (7)

𝐻 is the hidden-layer output matrix, i.e.,

𝐻(𝑤1, 𝑤2, . . . , 𝑤�푖, 𝑏1, 𝑏2, . . . , 𝑏�푖, 𝑥1, 𝑥2, . . . , 𝑥�푁)

=
[[[[[[
[

𝑔 (𝑤1𝑥1 + 𝑏1) 𝑔 (𝑤2𝑥1 + 𝑏2) 𝑔 (𝑤�푙𝑥1 + 𝑏�푙)𝑔 (𝑤1𝑥2 + 𝑏1) 𝑔 (𝑤2𝑥2 + 𝑏2) 𝑔 (𝑤�푙𝑥2 + 𝑏�푙)...
𝑔 (𝑤1𝑥�푁 + 𝑏1) 𝑔 (𝑤2𝑥�푁 + 𝑏2) 𝑔 (𝑤�푙𝑥�푁 + 𝑏�푙)

]]]]]]
]�푁×�퐿

(8)

When, in most cases, the number of hidden neurons is much
less than the number of distinct training samples, i.e., 𝐿 ≪ 𝑄,
the training error of SLFNs could approach an arbitrary value𝜀 > 0, i.e.,

�푁∑
�푗=1

󵄩󵄩󵄩󵄩󵄩𝑜�푗 − 𝑡�푗󵄩󵄩󵄩󵄩󵄩 < 𝜀 (9)

Therefore, when activation function 𝑔(𝑥) is infinitely differ-
entiable, there is no need for all the parameters of SLFNs to be



Mathematical Problems in Engineering 5

adjusted.The input𝑤�푖 and the hidden layer biases 𝑏�푖 could be
arbitrarily given and remain unchanged during the training
process. To train an SLFN is simply equivalent to finding a
least-squares solution 󵱰𝛽 ofmin�훽‖𝐻𝛽−𝑇�耠‖.The smallest norm
least-squares solution is

󵱰𝛽 = 𝐻†𝑇�耠 (10)

where 𝐻† is the MP generalized inverse of the matrix 𝐻; 𝑇�耠
is the transposed matrix of 𝑇.

Based on the arithmetic formula discussed before, the
main steps of the ELM learning algorithm are elaborated as
follows:

Step 1. Determine the number of neurons in the hidden layer,
and randomly set the weight vector𝑤 connecting the hidden
neuron and the input neurons and the bias of the hidden
layer neurons 𝑏. (The time of training model and prediction
accuracy are two main factors in determining the hidden
nodes.)

Step 2. Select an infinitely differentiable function as the
activation function of the neurons of the hidden layer, and
then calculate the hidden-layer output matrix𝐻.

Step 3. Calculate the weight vector 𝛽 connecting the hidden
neuron and the output neurons.

3.4. GA-ELM & PSO-ELM & ACO-ELM. Although ELM is
fast and presents good generalization performance, since the
output weights 𝛽 are computed based on randomly assigned
input weights 𝑤 and hidden biases 𝑏 using MP generalized
inverse, there may exist a set of nonoptimal input weights
and hidden biases, and it might suffer from the overfitting
as the learning model approximates all training samples well
[32].Themodel is capable of training samples but there is still
space to improve in predicting samples.

Most work using an optimization algorithm to train the
neural network is to fix the topology of the network in
advance and then to use different algorithms to optimize
the weighting matrix of the previous neural network. To
overcome the disadvantages of ELM and to optimize the
initial weight of the network, we propose three optimization
algorithms to optimize ELM. The first is GA, a well-known
random search and global optimizationmethod based on the
idea of natural selection and evolution [33]. The second is
PSO technique, a population-based stochastic algorithm for
optimization based on social-psychological principles [34].
The third is ACO, ametaheuristic inspired by the pheromone
trail laying and following the behavior of some ant species,
for solving hard combinatorial optimization problems [35].
Although the underlying theories of the three algorithms
are different, the detailed running procedures of PSO and
ACO algorithms are similar to GA, specifically in terms of
initialization, fitness evaluation, the update of particle state,
and goal test.

GA-ELM was taken as an example to explain the opti-
mization procedure. Optimization of ELM network training
methods can be divided into two main parts. The first is to

determine the coding scheme of network connectionweights;
the second is to apply the genetic algorithm to completing
the evolution. To a fixed network structure, the process of
evolving network connection weights typically follows the
below steps:

Step 1. Initialize the original population. Randomly generate
a population of coded individuals. The coding pattern is
predesigned.

Step 2. Decode the population and calculate the fitness of
each. For every individual, its fitness could be obtained from
the designed fitness function:

𝐹 = �푀∑
�푚=1

�푞∑
�푘=1

(𝑑�푚�푘 − 𝑦�푚�푘 )2 (11)

where 𝑑�푚�푘 is the desired output of the node 𝑘in the set 𝑚; 𝑦�푚�푘
is the predicted output of the node 𝑘 in the set 𝑚; 𝐹 is the
fitness.

Step 3. Select the individual. The survival-of-the-fittest
mechanism is imposed on the candidate individuals. The
individuals with higher fitness values have a greater proba-
bility of giving offspring, while the low-fitness ones have the
potential to be eliminated and their chance of survival is low.
Many selection schemes have been proposed to accomplish
this idea, including roulette-wheel selection, stochastic uni-
versal selection, ranking selection, and tournament selection.
We choose the roulette-wheel selection here. It is based on
proportionate fitness selection. The selection probability of
each can be computed by

𝑓�푖 = 𝑘𝐹�푖 ,
𝑝�푖 = 𝑓�푖∑�푁�푖=1 𝑓�푖

(12)

where 𝐹�푖 is the fitness for individual 𝑖. 𝑘 is the coefficient;𝑝�푖 is the probability of being selected of individual 𝑖; 𝑁 is
the population size. The smaller fitness indicates the better
individual.

Step 4. Get the offspring. After selection, the individuals from
the mating pool are combined to generate hopefully better
offspring. The crossover and mutation are involved in this
stage. For specific problems, many crossover methods have
been designed. Here, the real-parameter crossover operator
was applied because the individual adopts real number
coding. Let the individual 𝑘and individual 𝑖do a crossover at
the position 𝑗.

𝑎�푘�푗 = 𝑎�푘�푗 (1 − 𝑏) + 𝑎�푖�푗𝑏
𝑎�푖�푗 = 𝑎�푖�푗 (1 − 𝑏) + 𝑎�푘�푗𝑏 (13)

where 𝑎 refers to the individual; 𝑏 is a random number
between 0 and 1.
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Table 1: Error comparison between different models.

R-square RMSE ME
MLR 0.4528 0.2116 -0.0676
MLR-updated 0.4494 0.2101 -0.0619
MQR 0.6966 0.1951 0.1275
MQR-updated 0.7084 0.1892 0.1226
BP-NN 0.7060 0.1270 0.0186
ELM 0.5212 0.1251 0.0193
GA-ELM 0.5437 0.1241 0.0262
PSO-ELM 0.6557 0.1156 0.0357
ACO-ELM 0.6913 0.1195 0.0119

As for a mutation operator, select the gene 𝑗 of individual𝑖, namely, 𝑎�푖�푗 to mutate.

𝑎�푖�푗 = {{{
𝑎�푖�푗 + (𝑎�푖�푗 − 𝑎�푚�푎�푥) ∗ 𝑓 (𝑔) 𝑟1 ≥ 0.5
𝑎�푖�푗 + (𝑎�푚�푖�푛 − 𝑎�푖�푗) ∗ 𝑓 (𝑔) 𝑟1 < 0.5

𝑓 (𝑔) = 𝑟2 (1 − 𝑔𝐺�푚�푎�푥)
(14)

where 𝑎�푚�푎�푥 and 𝑎�푚�푖�푛 represent the upper and lower bounds
of 𝑎�푖�푗, respectively; 𝑔 is the current iteration number; 𝐺�푚�푎�푥
is the maximum generation; 𝑟1 and 𝑟2 are random numbers
between 0 and 1. Then the new generation of the population
could be derived.

Step 5. Go back to Step 2 until the performance requirements
are met.

After GA, assign the parameters of the best offspring to
the inputweights of ELM.Thus,GA-ELMhas been optimized
with GA and is ready for traditional training.

4. Experimental Results

4.1. Comparison of Analysis between Different Models. The
data used in building the chl-a concentration prediction
model were collected from the Xinanjiang Experiment Sta-
tion, China. Five sets of input (depth, water temperature,
salinity, pH, andDO) have been selected from the experiment
data. According to our primary research [17], these five water
parameters have a strong correlation with the chl-a concen-
tration in the process of artificial upwelling. Based on the
analysis of existing chl-a concentration prediction model, the
five chosen water parameters could give effective prediction
result.Meanwhile, these five data sets are comparatively easier
to obtain than some other water parameters, like dissolved
inorganic nitrogen concentration.

For the uniform measurement of model accuracy, 2100
sets of data were collected, and the first 2000 groups were
taken for training and the remaining 100 groups were used
for correlation prediction. For each model, 100 correlation-
predicting output values were estimated and further com-
pared with the corresponding real measurements. To facil-
itate the comparison between different models, three indi-
cators were chosen and calculated to evaluate the models’

prediction effectiveness, i.e., the regression coefficient (R), the
root mean square error (RMSE), and the mean error (ME).
MLR-updated and MQR-updated are two improved models.
They are the results of the reregression after shaking off the
input variables insignificant to the output correlation. RMSE
and ME are calculated by

𝑅𝑀𝑆𝐸 = √∑𝑑2�푖𝑛 , 𝑖 = 1, 2, 3, . . . , 𝑛 (15)

𝑀𝐸 = ∑𝑑�푖𝑛 , 𝑖 = 1, 2, 3, . . . , 𝑛 (16)

where 𝑑�푖is the prediction error.
Table 1 shows that PSO-ELM and ACO-ELM have lower

RMSE indicating that their prediction results are more
reliable with the lowest prediction bias.With higher R-square
value, MQR-updated and BP-NN result in a relatively high
overestimation. Here, ME is the mean value of 100 errors,
and the error values could be minus as well. Although
the ME of PSO-ELM is not the lowest, largely it does not
necessarily influence the overall prediction accuracy of PSO-
ELM. In conclusion, PSO-ELM and ACO-ELM have the best
prediction results.

4.2. MLR and MLR-Updated Results. Table 2 shows the
results estimated by MLR model and their t-test (Student’s
t-test). With the estimated parameters obtained, the fitted
equation is

𝑌 = 6.0976 + 10.6243𝑋1 − 0.1026𝑋2 − 0.0023𝑋3
− 0.1433𝑋4 − 0.1564𝑋5 (17)

Here Y is the chl-a concentration, X1 is Salinity, X2 is
Temperature, X3 is Depth, X4 is Dissolved oxygen, and X5
is pH.

In Table 2, the P value for X3 in the t-test is 0.0116.
Therefore, X3 is removed from the independent variable, and
the linear regression was performed again [17].The following
equation is the MLR-updated result:

𝑌 = 6.1819 + 10.7405𝑋1 − 0.1046𝑋2 − 0.1721𝑋4
− 0.1451𝑋5 (18)
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Table 2: Correlation test for MLR.

Variable Parameters Estimate Standard Error t Value p-Value
intercept 6.0976 0.1104 55.2072 <0.0001
X1 10.6243 0.2743 38.7352 <0.0001
X2 -0.1026 0.0041 -25.0641 <0.0001
X3 -0.0023 0.0009 -2.5262 0.0116
X4 -0.1433 0.0203 -7.0658 <0.0001
X5 -0.1564 0.0065 -24.1301 <0.0001

4.3. MQR and MQR-Updated Results. As described in
Section 3.1, MQR adds the quadratic term and the cross-
term to MLR. The parameter estimates after first regression
analysis are listed in Table 3. The coefficients of some cross
items are larger than the first term, and the correlation
between depth X3 and chl-a concentration is not strong.
However, the coefficient of the cross term with depth X3
is larger. This demonstrates that the low linear correlation
does not necessarily indicate low influences. Similar to the
optimization in Section 4.2, although the p-value of the
whole function is 0.0000, it is still found that the p values of
X1, X3, X1 ∗X3, and X3 ∗X5 are relatively large. This means
that these four correlations with chl-a concentration are not
obvious enough. After removing the four items, the results of
the MQR-updated model are shown in Table 4.

4.4. BP-NN and ELM Results. For BP-NN and ELM, the
important parameters are the number of layers and hidden
nodes. After repeating model testing, the suitable parameters
of BP-NN and ELM are obtained. For BP-NN, it needs
more than one layer to ensure its stability and accuracy. For
ELM, one layer-structuredmodel could yield ideal prediction
results. The number of hidden nodes should be set at a
reasonable range so the ELM prediction model could choose
the number of most suitable hidden nodes. The detailed
parameter setting is shown in Table 5.

The advantage of BP-NN is its small ME, indicating that
BP-NN model has better prediction performance. Once the
prediction error is higher or the deviation is larger caused by
abnormal input values, BP-NN model has a feedback system
and is able to correct itself.

The advantage of ELM model lies in two aspects. First
is its lower RMSE value, demonstrating its better prediction
accuracy for smaller points.Therefore, if the input error of the
system is small, ELMmodels would yield better optimization
results. The second is the shorter training time of ELM
compared with BP-NN and its data prediction consumes
less time as well. This is crucial especially when the total
amount of data collected in the experiment becomes large.
The long training time would weaken the timeliness of the
data prediction. Therefore, it is considered that ELM model
ismore suitable for predicting chl-a concentration in artificial
upwelling processes.

4.5. GA-ELM Results. Table 1 shows that the RMSE of GA-
ELM model is reduced compared with that of ELM, but its
ME is increased. To understand the reason, we compared

the GA-ELM prediction results based on 100 sets of test data
with the corresponding measurement data, as displayed in
Figure 3.

In general, the GA-ELM model can predict the dynamic
change of chl-a. It performswell in some data segments, espe-
cially in the general trend at the turning point. Therefore, the
RMSE is reduced compared with the ELM model. However,
the GA-ELM model has a large error in the prediction of
individual points.There aremultiple points of which the error
is more significant in Figure 3, resulting in an increase in
the mean error. These large-error points appear in the area
where the correspondingmeasurement results are stable.The
errors could be incurred by a certain input value with sudden
change. This may prove that the GA-ELM model is rather
sensitive to the change of input values.

4.6. PSO-ELM Results. In Table 1, the RMSE of the PSO-
ELM is the smallest, indicating that the overall fitting effect of
PSO-ELM is the best among the seven models. Its prediction
results were compared with the measurement data shown in
Figure 4.

As the same with GA-ELM, PSO-ELM can also have a
dynamic predictive ability of chl-a, especially in the partial
data segment. This greatly reduces the RMSE of the model.
However, similar to GA-ELM, the ME of PSO-ELM is also
large and is mainly caused by the poor performance at the
turning points of data in Figure 4. This shows that even
thoughPSO-ELMhas overall good forecast ability of the chl-a
concentration, it may be not good at predicting the data with
frequent fluctuation.

4.7. ACO-ELM Results. Table 1 presents that ACO-ELM has
better performance with smaller RMSE and ME, which
indicates that ACO-ELM is able to predict the dynamics
of chl-a concentration. In the smooth data section and
the transition data section, the ASO-ELM yields relatively
accurate prediction result, and the numbers of extreme error
points are less compared with that of GA-ELM or PSO-ELM,
as is shown Figure 5.

Figure 5 illustrates that, for ACO-ELM model, large
deviation only occurs at 2 points. It proves ACO-ELM
significantly superior to the first two optimization algorithms.
However, an obvious drawback of ACO-ELM is that a large
number of evolutionary algebras and a huge number of
groups are required in order to achieve Figure 5 prediction
results. It indicates that a longer processing time is needed
for model training.
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Table 3: Correlation test for MQR.

Variable ParametersEstimate Standard Error t Value p-Value
Intercept 10.5306 1.4556 7.2346 <0.0001
X1 6.6003 5.3318 1.2379 0.2159
X2 0.6132 0.1217 5.0393 <0.0001
X3 0.0156 0.0261 0.5968 0.5507
X4 -4.0743 0.2622 -15.5412 <0.0001
X5 0.5394 0.1157 4.6605 <0.0001
X1∗X2 0.7263 0.2010 3.6127 0.0003
X1∗X3 0.1273 0.0834 1.5258 0.1272
X1∗X4 -6.9839 0.7005 -9.9700 <0.0001
X1∗X5 5.0367 0.2791 18.0447 <0.0001
X2∗X3 -0.0086 0.0010 -8.6792 <0.0001
X2∗X4 0.1025 0.0131 7.8027 <0.0001
X2∗X5 -0.0506 0.0054 -9.3766 <0.0001
X3∗X4 0.0207 0.0042 4.8882 <0.0001
X3∗X5 0.0038 0.0013 2.9932 0.0028
X4∗X5 -0.1162 0.0176 -6.6092 <0.0001
X1∗X1 -57.7413 4.8081 -12.0091 <0.0001
X2∗X2 -0.0357 0.0024 -14.7037 <0.0001
X3∗X3 -0.0007 0.0002 -4.7051 <0.0001
X4∗X4 0.3293 0.0209 15.7644 <0.0001
X5∗X5 0.0251 0.0047 5.2821 <0.0001

Table 4: Correlation test for MQR-updated.

Variable Parameters Estimate Standard Error TValue p-Value
Intercept 10.8428 1.3143 8.2501 <0.0001
X2 0.6451 0.1085 5.9462 <0.0001
X4 -4.2175 0.2558 -16.4867 <0.0001
X5 0.5760 0.0896 6.4292 <0.0001
X1∗X2 0.8776 0.1483 5.9170 <0.0001
X1∗X4 -5.7966 0.4445 -13.0407 <0.0001
X1∗X5 4.7375 0.2526 18.7538 <0.0001
X2∗X3 -0.0073 0.0008 -9.6089 <0.0001
X2∗X4 0.0983 0.0118 8.3297 <0.0001
X2∗X5 -0.0494 0.0047 -10.3963 <0.0001
X3∗X4 0.0265 0.0025 10.6561 <0.0001
X4∗X5 -0.0869 0.0145 -6.0100 <0.0001
X1∗X1 -56.3251 4.5516 -12.3748 <0.0001
X2∗X2 -0.0369 0.0021 -17.3334 <0.0001
X3∗X3 -0.0008 0.0001 -6.8581 <0.0001
X4∗X4 0.3209 0.0205 15.6840 <0.0001
X5∗X5 0.0113 0.0022 5.1592 <0.0001

Table 5: Parameters for BP-NN and ELM.

Model Layer 1 hidden node Layer 2 hidden node
BP-NN 10 1
ELM [10, 15] 0
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Figure 3: Prediction result of GA-ELM.
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Figure 4: Prediction result of PSO-ELM.
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5. Conclusions and Future Work

In this paper, the prediction models were established for pre-
dicting the correlation between thewater physical parameters
(salinity, temperature, depth, dissolved oxygen, and pH) and
chl-a concentration in the artificial upwelling environment.
Respectively, seven models, MLR, MQR, BP-NN, ELM, GA-
ELM, PSO-ELM, and ACO-ELM, were presented. Further-
more, three indicators, i.e., R-square, RMSE, and ME, were
applied as the evaluation standard for quantitative analysis
of model prediction ability. The prediction results show that
the first two traditional regression algorithms reveal not only
the relationship between input and output parameters but
also the effects of combined variables. The latter five models
are collectively referred to as intelligent algorithms. Owing to
the complex nonlinear relationship between the inputs and
the output, the intelligent algorithm has higher prediction
accuracy than the traditional regression algorithms.

Among these five intelligent algorithms, PSO-ELM has
the best overall prediction ability after a comprehensive
evaluation. However, each model has exhibited its own char-
acteristics. Although the training speed of BP-NN is slower
than ELM due to its feedback mechanism, its prediction
accuracy is more acceptable, apart from a certain amount
of input mutation. The apparent advantage of ELM is that
its training speed is fast and the data could be forecasted
efficiently. However, because of its hidden layer structure and
the preset neuron node, it is indispensable to increase the
nodes according to the increase of the training sample. The
outstanding advantage of the GA-ELM model is that it has
better prediction results at turning points, and conversely,
PSO-ELM could predict the smooth segment data better.
Their combination could be more preferable in practical
application. For ACO-ELM, although no large deviation hap-
pens, the algorithm requires a large number of populations
and more iterations to achieve better prediction results and
would be slow in training. In practical applications, to obtain
accurate prediction results, it is suggested to select more
suitable models based on the available measurement data.

For the further work, three parts are considered to be
incorporated to improve the prediction ability of proposed
models. The first is that more data to be collected from
different experiment stations would be used to further train
and test themodels. Furthermore, it is expected that turbidity
will be added as the sixth input. In addition, since ELM with
modified sine cosine algorithm has shown great ability in
pattern classification, it might be that the application of this
algorithm to PSO-ELMwould help to increase the prediction
accuracy of chl-a.
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