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In the past few years, deep learning has become a research hotspot and has had a profound impact on computer vision. Deep CNN
has been proven to be the most important and effective model for image processing, but due to the lack of training samples and
huge number of learning parameters, it is easy to tend to overfit. In this work, we propose a new two-stage CNN image
classification network, named “Improved Convolutional Neural Networks with Image Enhancement for Image Classification” and
PLANET in abbreviation, which uses a new image data enhancement method called InnerMove to enhance images and augment
the number of training samples. InnerMove is inspired by the “object movement” scene in computer vision and can improve the
generalization ability of deep CNNmodels for image classification tasks. Sufficient experiment results show that PLANETutilizing
InnerMove for image enhancement outperforms the comparative algorithms, and InnerMove has a more significant effect than
the comparative data enhancement methods for image classification tasks.

1. Introduction

Deep learning [1] maps data of different classes into separate
high dimension space by constructing a complex function
with a great number of parameters, which are different from
those that obtain instance relationship based on set theory
[2, 3]. Deep learning accelerates the rapid development of
artificial intelligence in all fields of our daily lives and has
imposed far-reaching impacts on scientific fields such as
computer vision [4, 5] and natural language processing [6], as
well as medical image processing [7]. In the whole picture of
deep learning, deep convolutional neural networks have been
proved to be the most important and effective models for
image processing. However, CNNs learn features of images
with so many parameters that they could easily tend to be
overfitting and so have poor ability of generalization. In such a
case, CNNs could learn features of all the training data well
but have poor performance on unseen data, i.e., test data.

To improve the generalization performance of deep
models is now a hot research topic for deep convolutional
neural networks. +e first choice is to reduce the complexity
of the deep CNN models. +ere have been a few approaches
proposed such as Dropout [8] and batch normalization [9].

Another choice to improve generalization performance of
deep models turns out to be providing sufficient training
samples, which are usually hard to satisfy. In most cases, data
enhancement skills are adopted to generate more training
samples than existing data by adopting various simple op-
erations, such as translation, rotation, flipping, and cropping.
Random flipping and cropping are widely used for their good
performance in training of deep CNNs, and there have also
been some new works for data enhancement, such as mixup
[10], RICAP [11], RandomErasing [12], and cutMix [13].

In this work, we propose a novel two-stage CNN image
classification network, PLANET, which uses a novel image
data enhancement method called InnerMove to enhance

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 1245924, 10 pages
https://doi.org/10.1155/2020/1245924

mailto:cqhong@xmut.edu.cn
https://orcid.org/0000-0002-2773-9142
https://orcid.org/0000-0002-2175-5002
https://orcid.org/0000-0003-4472-7298
https://orcid.org/0000-0003-3455-2084
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1245924


training samples to obtain more effective discriminating
features for image classification.

All in all, the main contributions of PLANET are as
follows:

(i) Due to hardware barriers, it builds an improved two-
stage CNN network for high-resolution image classi-
fication. For deep neural networks, a larger input image
means a larger model, many more parameters, and
more training samples required.+e first stage extracts
semantic features for a single patch of the image; the
second-stage network fuses the semantic features of all
patches of the image to classify the image.

(ii) It proposes a novel image enhancement method
named InnerMove. InnerMove enhances an image
for classification by randomly exchanging the po-
sitions of two patches in an image. Position and size
of the image patch are randomly generated under
certain constraints. It is worth noting that Inner-
Move can also be used to augment a dataset by
applying InnerMove to it multiple times. Aug-
mentation of training samples can inevitably im-
prove the generalization of CNN networks.
However, due to hardware barriers, InnerMove is
used only once on any input image for data en-
hancement and augmentation.

2. Related Works

InnerMove is proposed mainly for image data enhancement
which can be easily adopted in deep CNNs for image clas-
sification tasks, which also acts as a regularization approach to
improve generalization performance of deep CNNs. In this
section, we demonstrate a few recent works related to deep
network regularization and image enhancement.

2.1. Deep Neural Network Regularization. Regularization
plays a fundamental role in preventing deep neural networks
from overfitting, which makes neural networks perform well
on training data but poor on test data. +ere have been
various deep neural network regularization approaches in
the last few years [8, 14–17].

Dropout [8] adopts strategy of randomly dropping
neurons and corresponding connections during the training
process, and experiment results demonstrate that Dropout
can significantly improve the performance of deep CNNs on
supervised learning tasks in computer vision, speech recog-
nition, document classification, and so on.+en, a generalized
version of Dropout named DropConnect [14] was proposed
for regularizing large fully connected layers within deep
neural networks by randomly setting a subset of activations to
zeros. Adaptive Dropout [16] chooses target activations with a
probability from a binary belief network, while Stochastic
Pooling [17] from a multinomial distribution.

2.2. Image Data Enhancement. Data enhancement can be
used to enhance existing data to obtain more discriminating
features, and in most cases for deep neural network training,

data enhancement is often adopted to generate much larger
number of data than the existing data for training param-
eters in deep neural networks. +erefore, data enhancement
can also be considered as a form of regularization which
achieves regularization target not by adjusting the archi-
tecture of the deep neural network but by generating more
effective input data [5, 10–13, 18].

+ere are many basic operations for data enhancement
such as rotation, flipping, translation, and random cropping
[19]. Mixup [10] blends two randomly chosen images and
their labels to regularize deep convolutional neural net-
works. RandomErasing [12] randomly chooses a rectangle
region of an image and replaces the corresponding pixels
with random values or mean value of images from
ImageNet, while Cutout [18] masks out square regions of
input images during training.

Both Cutmix [13] and RICAP [11] reconstruct new
images by cropping and pasting patches within mini-batches
with label smoothing; however, there is difference between
them. Cutmix crops and switches patches between two
images and adjusts their labels with regard to the area of the
patches, while RICAP crops four patches from four different
images to reconstruct a new image.

3. Improved Convolutional Neural
Networks with Image Enhancement

In this section, we present the details of the proposed CNN
network PLANET and image enhancement approach
InnerMove.

3.1. Details of PLANET. Due to the hardware barriers, we
propose an improved two-stage convolutional neural net-
work for high-resolution image classification with a newly
proposed image enhancement approach named PLANET. It
follows [20] to create many more training samples, and the
flowchart of PLANET is illustrated in Figure 1.

PLANET first extracts fixed-size patches from an input
image by sliding a window of size K × K on the image and
taking S as the stride. +is gives us a total of
[1 + (W − K)/S] × [1 + (H − K)/S] patches, where W and
H are the width and height of the image, respectively. In
order to illustrate the details of PLANET, without loss of
generality, we assume that the resolution (W, H) of training
images is (2048, 1536). In patch-wise experiment, we
choose patches with K � 512 and S � 256, so 7 × 5 � 35
overlapping image patches are produced, and then each
patch will be further enhanced by InnerMove which is
detailed in Section 3.2.

PLANET adopts GoogLeNet-based patch-wise CNN for
semantic feature extraction from patches. Note that the
labels for individual patches are unknown, so we use cross-
entropy loss based on the corresponding image label to train
the patch-wise CNN. Precondition for doing so is that the
distribution of effective classification features of the image is
relatively uniform, andmost patches contain features related
to the image label. Experiment results confirm that our
strategy is effective and feasible.
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PLANET designs an image-wise CNN for image clas-
sification by fusing all patch semantic features, and it follows
the architecture of [20] demonstrated in Figure 2 and makes
detailed adjustments. It uses a series of 3× 3 convolutional
layers followed by a 2× 2 convolutional layer. +e pooling
layer uses the stride of 2. Each layer has a batch normali-
zation and ReLu activation function. +e last convolutional
layer is followed by 3 fully connected layers and finally a
softmax classifier. To improve the generalization ability of
this network, we use Dropout to regularize the network at a
rate of 0.5, and use early stopping to limit overfitting when
verification accuracy does not improve.

In order to train the image-wise network, we no longer
extract overlapping patches from images by setting S � 512, so
the total number of patches extracted from an image is P � 12.
We use GoogLeNet [21] as our backbone of the patch-wise
network, and for each patch, the layer we extract feature maps
from for the image-wise classification network has 16 channels
of 15 × 15 feature maps. +ese 16 channels of 15 × 15 feature
maps extracted from the very end level of GoogLeNet are
reconstructed into one channel of 60 × 60 feature maps. +e
feature maps extracted from the patch-wise CNN for all 12
patches are then stacked together as a smaller 3D output with
the channel size of 12.+e image-wise network also uses cross-
entropy loss to train its parameters and learns to classify images
based on local features generated from the image patch and
global information shared among patches.

3.2. InnerMove. InnerMove is motivated by the scene of
object relative moving in many computer vision tasks such

as object tracing, detecting, and recognition. By randomly
switching positions of two patches within an input image,
InnerMove enhances images for the object moving scene
and forces deep neural networks to take the whole scene
context into consideration rather than certain local vision
features. Image samples enhanced by InnerMove are
demonstrated in Figure 3.

In our strategy for data enhancement, InnerMove first
randomly crops two patches from an input image and then
switches their positions. +e enhanced image has the same
size and label with the original image.

In this work, when we extract a patch, it may not contain
a whole object because the position and size of patches are
chosen randomly. But, it can still force networks to learn
more context information of input images and improve the
generalization of deep CNNs.

3.2.1. Details of InnerMove. In machine learning, a test set is
used to validate the performance of a proposed model by
measuring some metrics (M), but we cannot optimize
learning models on the test set. +erefore, learning models
are usually indirectly optimized on the training set by re-
ducing a certain cost function, noted by J(θ) which is de-
fined as (1), during the training process.

J(θ) � E(x,y)∼􏽢ptrain
L(f(x; θ), y), (1)

where L is the lost function for training samples, f(x; θ) is
the model whichmaps x to the prediction y, 􏽢ptrain is one kind
of empirical distribution of training data, and θ is the pa-
rameter of the learning model f. Ideally, we should get the

InnerMove GoogLeNet

Image-wise CNN

12 feature maps
(1 × 60 × 60)

(3 × 512 × 512)

35 overlapping
image patches

High-resolution image

Invasive
InSitu
Benign
Normal

... ...

... ...

Figure 1: Flowchart of the proposed improved convolutional neural networks with image enhancement for high-resolution image
classification (PLANET). Without loss of generality, we assume that the resolution of training images is 2048∗ 1536. For any resolution, the
value of stride for patch extraction is 256 and 512 for the patch-wise and image-wise network, respectively.
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actual distribution of the data 􏽢pdata and then calculate the
cost function which is defined as (2) for all the data under
that distribution.

J
∗
(θ) � E(x,y)∼􏽢pdata

L(f(x; θ), y), (2)

where 􏽢pdata is the actual distribution of the data.
+e target of machine learning approach is to reduce the

value of (2), which is widely known as risk. If 􏽢pdata is given,
f(x; θ) will be well trained by optimizing (2). However, in
most cases, 􏽢pdata is unknown.

+erefore, sometimes, the optimization of (2) could be
simplified into (3) by replacing 􏽢pdata with 􏽢ptrain:

E(x,y)∼􏽢ptrain
L(f(x; θ), y) �

1
n

􏽘

n

i�1
L f x(i)

; θ􏼐 􏼑, y(i)
􏼐 􏼑, (3)

where 􏽢ptrain gives every single training sample with the same
probability and n is the number of training samples.

+e inability to know the true distribution of the data
makes our training data limited in number and content, and
data enhancement approaches can be adopted to augment
training samples for unknown data distribution to some
extent.

+e partial contribution of this paper is to propose a
method (4) to improve the distribution of training data by
enhancing training data based on existing data.
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Figure 3: Samples of InnerMove. Four input images of four classes chosen from ICIAR (BACH) 2018 [22] are listed on the left; images on
the right side are enhanced samples by InnerMove. +e patches chosen to move are noted with small boxes.
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Figure 2: Architecture of image-wise CNN. It follows the image-wise CNN in [20] and makes detailed adjustments.
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􏽢ptrain � μ 􏽥x, 􏽥y | xi, yi( 􏼁, (4)

where (􏽥x, 􏽥y) � InnerMove(xi, yi), and InnerMove will be
detailed soon.

So, (1) can be optimized as

E
(􏽥x,􏽥y)∼􏽢ptrain

L(f(􏽥x; θ), 􏽥y) �
1
n

􏽘

n

i�1
L f 􏽥x

(i)
; θ􏼐 􏼑, 􏽥y

(i)
􏼐 􏼑. (5)

In order to optimize (5), gradients of (5) to θ should be
calculated as (6) form training samples in a mini-batch, with
which SGD is utilized to update θ.

􏽢g �
1
m
∇θ 􏽘

m

i�1
L f 􏽥x

(i)
; θ􏼐 􏼑, 􏽥y

(i)
􏼐 􏼑. (6)

InnerMove randomly chooses two patches without
overlapping areas and switches their positions as illustrated
in Figure 4. Box � (p, w, h) represents a box which is used to
crop a patch within an image. When any input image Io with
resolution (wo, ho) comes, two boxes, b1 � (p1, w, h) and
b2 � (p2, w, h), with two random position points p1, p2,
width w, and height h of the patches are generated within the
image. In detail, w and h are generated by w⟵ int(r∗wo)

and height h⟵ int(r∗ ho), while r ∈ (0, 1) is obtained
from beta distribution as (7).We choose beta distribution for
the reason that it can generate r ∈ (0, 1), while restrict r to a
narrow scope we desire with a high probability.

beta(α, b) �
θa−1(1 − θ)b−1

B(α, b)
∝ θa−1

(1 − θ)
b−1

, (7)

where B(α, b) is used to ensure that the integral of beta(α, b)

is equal to 1.
We need to guarantee that the generated boxes, b1 �

(p1, w, h) and b2 � (p2, w, h), are totally contained within
the image, or we will try this process again. It is worth noting
that, in this work, b1 ∩ b2 is ϕ􏼈 􏼉. +en, two patches, P1, P2,
are cropped from the image Io by performing operations:
P1⟵ patchExtra(b1, Io); P2⟵ patchExtra(b2, Io). +e
last step we need to do is pasting these two patches to the
chosen positions as paste(P1, p2, Io), paste(P2, p1, Io).

3.2.2. Comparison with Cutout. Cutout [18] is motivated by
the scene of object occlusion in image processing, and it
adopts the strategy of randomly masking out the square
region of the input image to simulate the object occlusion
scene. However, InnerMove tries to take the scene of “object
moving” into consideration. Both Cutout and InnerMove
manage to force deep CNN to take a wider range of features
into consideration by cropping chosen patches away from
their original positions as shown in Figure 5, and the dif-
ference is that Cutout drops chosen patches while Inner-
Move moves them to other positions within images so that
no extra information is lost.

4. Experiment Results

4.1. Experiment Setting. In this section, we evaluate the
proposed PLANETmainly on image classification tasks and

three popular data sets: CIFAR-10 [23], CIFAR-100 [23],
and ICIAR (BACH) 2018 [22]. We conduct our experiments
on a single NVIDIA Titan XP GPU.

+ere are 4 classes in ICIAR (BACH) 2018 as illustrated
in Figure 6: normal, benign, inSitu and invasive, and each
class has 100 training samples. We adopt 3-fold cross-val-
idation and choose 80 images of each class for training and
20 for validation.

Due to the serious shortage of training data, this article
utilizes the methods adopted by [20] to simply transform
each image patch to generate more training samples.
Transformation methods include rotations, mirroring, and
random color perturbations. By default, the experiments
carried out in this article all use patches augmented by the
above transformation methods as training samples, which
have the same labels as the corresponding images.

4.2.Results for InnerMove. It is worth noting that InnerMove
can be easily extended by changing the number of patches to
switch positions. In this work, InnerMove-2 indicates that
the number of patches is 2. Images in CIFAR-10 and CIFAR-
100 are small, and the image resolution is 32 × 32, much
smaller than 2048 × 1536 of ICIAR (BACH) 2018. We
conduct TSCNN [20] and Resnet18 [24] experiments using
InnerMove-2 and InnerMove-4, respectively, for different
databases to demonstrate the generalization of InnerMove.

4.2.1. Parameter Selection for InnerMove. For both Inner-
Move-2 and InnerMove-4, we conduct experiments to
evaluate the impact of side length ratio of patches to the
original image. As illustrated in Figure 7(a), TSCNN with
InnerMove-2 performs better on ICIAR (BACH) 2018 with
the patch side length ratio ranging from 0.28 to 0.35; results
of Resnet18 with InnerMove-4 on CIFAR-10 are demon-
strated in Figure 7(b). We can see that the best side length
ratio differs with regard to different data sets; therefore, we
assign different side length ratio ranges to (r min, r max).
For CIFAR-10 and CIFAR-100, we adopt (0.35, 0.45). It is
worth noting that results of InnerMove depend not only on
the side length ratio but also the positions of chosen patches,
so the results might slightly vary for different trials.

When side length ratio range is given, we verify the
effectiveness of InnerMove using TSCNN as the baseline
algorithm. Average experiment accuracies of TSCNN with
about half pretrained parameters reused on all classes of
images in ICIAR (BACH) 2018 within 30 training epochs are
illustrated in Figure 8. Without loss of generality, we use
InnerMove-2 for image enhancement. As demonstrated in
Figure 8, in all epochs, accuracies of TSCNN with Inner-
Move are higher than those without InnerMove when pa-
rameters have been well trained.

4.2.2. Comparison with Cutout and RandomErasing. We
verify the effectiveness of InnerMove-4 by conducting ex-
periments onCIFAR-10 andCIFAR-100, using Resnet18 as the
baseline deep CNNmodel, and configure the learningmodel as
suggested in [18]. It is worth noting that InnerMove-4 is
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different from InnerMove-2 in choosing patches from each
image: (1) the original image is divided into four blocks of the
same size without intersection; (2) InnerMove-4 chooses 4
patches randomly from four blocks with side length ratio from
0.35 to 0.45 which is generated from (7).

+e experiment comparison between InnerMove, Cut-
out, and RandomErasing is illustrated in Table 1. As
shown in Table 1, Resnet18 with InnerMove, Cutout, and
RandomErasing performs better than Resnet18 itself, but
InnerMove works better than Cutout and RandomErasing

Cutout InnerMove Cutout InnerMove

Figure 5: Difference between InnerMove and Cutout. Two images are placed above the line, and the corresponding enhanced images from
InnerMove and Cutout are listed under the line.+ey bothmanage to force deep CNN to take a wider range of features into consideration by
cropping chosen patches away from their original positions.
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Figure 4: Illustration of InnerMove. It randomly chooses two patches without overlapping areas and switches their positions.
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Figure 7: Average accuracy of 2 approaches with InnerMove for the same training and validation data with regard to different side length
ratios of the chosen patch to the original image.
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Figure 6: Samples of ICIAR (BACH) 2018. +ere are 4 classes in ICIAR (BACH) 2018: normal, benign, inSitu, and invasive, and each class
has 100 training samples. We use 80 of each class for training and 20 for validation.
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Figure 8: Average accuracy of TSCNN (baseline in the figure) and TSCNN with InnerMove-2 (InnerMove in the figure) on all classes of
images in ICIAR (BACH) 2018 in 30 epochs for 3-fold cross-validation.
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when Resnet18 trains on CIFAR-10 and CIFAR-100 with or
without other data enhancement methods such as color jitter
and brightness adjustment. In detail, InnerMove has sig-
nificantly improved the accuracy of Resnet18 on C10, C10+,
C100, and C100+ by 1.44%, 1.07%, 3.42%, and 0.96%,
respectively.

4.3. Results for PLANET. We conduct comparative experi-
ments on ICIAR (BACH) 2018 [22] between PLANET and
the following approaches. To simplify the setup of compar-
ative experiments, PLANETand the compared algorithms use
InnerMove-2 to enhance images by default.

(i) TSCNN [20]: TSCNN’s network framework is
similar to PLANET, and it also builds a two-stage
CNN network. +e first-stage network is used to
learn the semantic features of image patches, and
the second-stage network is used to fuse spatial
information of the patches to classify images;

(ii) Resnet [24]: Resnet cleverly uses shortcut connec-
tions to solve the problem of model degradation in
deep networks so that it can be designed deeper and
get higher-level semantic information.

(iii) GoogLeNet [21]: GoogLeNet uses multiple in-
ception modules to build the deep network. In the
single inception module, multiple small convolu-
tion kernels are utilized to replace convolution
operations of a large convolution kernel, which
greatly reduce the number of parameters. At the
same time, inception can make the network extract
more kinds of local semantic features.

+e best experiment results of PLANETwithin 30 epochs
are demonstrated in Table 2. As shown in Table 2, in total of
13 comparative indicator values of PLANET with Inner-
Move, 7 of them are better than those of PLANET without

InnerMove, and accuracy has been improved by 3%, es-
pecially for inSitu and invasive classes which are of much
more importance for clinical diagnosis. For InSitu and In-
vasive classes, the results of PLANET with InnerMove are
much better than those of PLANET without InnerMove in
Precision, Recall, and F1 indicators.

+e best experiment results of TSCNN within 30 epochs
are demonstrated in Table 3. As shown in Table 3, (1) the
overall performance of the classification algorithm is im-
proved after using InnerMove as image enhancement ap-
proach, and accuracy has been improved by 4%; (2) in total
of 26 comparative indicator values of TSCNN, only 4 of
them are better than those of PLANET with InnerMove,
especially for InSitu and Invasive classes which are of much
more importance for clinical diagnosis. For InSitu and In-
vasive classes, the results of PLANET with InnerMove are
much better than those of TSCNN with or without Inner-
Move in Precision, Recall, and F1 indicators. +erefore,
PLANET with InnerMove outperforms TSCNN even when
TSCNN also utilizes InnerMove for image enhancement.

+e best experiment results of Resnet18 within 30 epochs
are demonstrated in Table 4. As shown in Table 4, (1) the
overall performance of the classification algorithm is im-
proved after using InnerMove as image enhancement ap-
proach, and accuracy has been improved by 3%; (2) in total of
26 comparative indicator values of Resnet18, only 3 of them
are better than those of PLANET with InnerMove, especially
for InSitu and Invasive classes which are of much more
importance for clinical diagnosis. For InSitu and Invasive
classes, the results of PLANET with InnerMove are much
better than those of Resnet18 with or without InnerMove in
Precision, Recall, and F1 indicators. +erefore, PLANETwith
InnerMove outperforms Resnet18 even when Resnet18 also
utilizes InnerMove for image enhancement.

+e best experiment results of GoogLeNet within 30
epochs are demonstrated in Table 5. As shown in Table 5, (1)

Table 2: Experiment results, mean ± std (%), for 3-fold cross-validation of PLANETwith and without InnerMove on ICIAR (BACH) 2018
[22] are illustrated in this table. Precision, Recall, and Accuracy are abbreviated as P, R, and Acc, respectively. It is worth noting that the
better results of all the 13 comparative values are marked in bold.

PLANET without InnerMove PLANET with InnerMove
Class P R F1 Acc P R F1 Acc
Normal 95 ± 3.51 95 ± 3.66 95 ± 3

92

92 ± 2.89 93 ± 2.89 93 ± 2.52

95Benign 94 ± 3.81 97 ± 2.89 95 ± 3.46 89 ± 2.31 92 ± 2.89 90 ± 0.0
InSitu 86 ± 3.51 93 ± 2.89 90 ± 2.89 100 97 ± 2.89 98 ± 1.73
Invasive 94 ± 0.0 83 ± 2.89 88 ± 1.73 $100 ± 0.0$ 98 ± 2.89 99 ± 1.73

Table 1: Test error rates (%) of InnerMove, Cutout, and RandomErasing on CIFAR-10 and CIFAR-100 and C10 and C100 for brevity are
illustrated in this table. “+” means training data are augmented by color jitter and brightness adjustment. It is worth noting that the best
results are marked in bold.

Method C10 C10+ C100 C100+
Resnet18 [24] 10.04 6.67 35.84 26.52
Resnet18+Cutout 9.14 5.91 34.37 26.77
Resnet18+RandomErasing 9.47 5.65 35.2 27.16
Resnet18+InnerMove-4 8.6 5.6 32.42 25.56
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the overall performance of the classification algorithm is
improved after using InnerMove as image enhancement
approach, and accuracy has been improved by 2%; (2) in
total of 26 comparative indicator values of GoogLeNet, only
one of them is better than those of PLANET with Inner-
Move, especially for InSitu and Invasive classes which are of
much more importance for clinical diagnosis. For InSitu and
Invasive classes, the results of PLANETwith InnerMove are
much better than those of GoogLeNet with or without
InnerMove in Precision, Recall, and F1 indicators. +ere-
fore, PLANET with InnerMove outperforms GoogLeNet
even when GoogLeNet also utilizes InnerMove for image
enhancement.

5. Conclusion

In this work, we propose an improved two-stage image
classification CNN network called PLANET. +e first-
stage network is used to extract semantic features of
image patches, and the second-stage network is used to
fuse the semantic features of all patches to classify images.
+is paper also proposes an image enhancement method
called InnerMove, which randomly selects two or more
patches and switches their positions within an image to
simulate the “object movement” scene of computer vision

tasks. Sufficient experiments have been conducted for clas-
sification tasks onCIFAR-10, CIFAR-100, and ICIAR (BACH)
2018. Experiment results show that PLANET has better
classification performance than comparative algorithms, and
InnerMove is effective and feasible for data enhancement in
image classification tasks. We plan to further investigate the
usage of InnerMove in other computer vision tasks such as
image segmentation and object detection.
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Table 3: Experiment results, mean ± std (%), for 3-fold cross-validation of TSCNN on ICIAR (BACH) 2018 [22] are illustrated in this table.
Precision, Recall, and Accuracy are abbreviated as P, R, and Acc, respectively. Corresponding results better than PLANETwith InnerMove
are marked in bold.

TSCNN without InnerMove TSCNN with InnerMove
Class P R F1 Acc P R F1 Acc
Normal 72 ± 1.73 100 ± 0.0 84 ± 1.15

89

88 ± 1.73 97 ± 2.89 92 ± 1.73

93Benign 100 ± 0.0 65 ± 0.0 79 ± 0.0 91 ± 4.62 83 ± 5.77 87 ± 1.15
InSitu 95 ± 4.51 100 ± 0.0 98 ± 2.52 97 ± 2.89 95 ± 0.0 96 ± 1.15
Invasive 100 ± 0.0 92 ± 2.89 96 ± 1.15 98 ± 2.89 96 ± 2.31 97 ± 1.53

Table 4: Experiment results, mean ± std (%), for 3-fold cross-validation of Resnet18 on ICIAR (BACH) 2018 [22] are illustrated in this
table. Precision, Recall, and Accuracy are abbreviated as P, R, and Acc, respectively. Corresponding results better than PLANET with
InnerMove are marked in bold.

Resnet18 without InnerMove Resnet18 with InnerMove
Class P R F1 Acc P R F1 Acc
Normal 82 ± 2.31 95 ± 0.0 87 ± 1.15

87

85 ± 2.08 97 ± 2.89 91 ± 2.52

90Benign 93 ± 0.58 72 ± 2.89 81 ± 1.73 90 ± 5.51 77 ± 5.77 83 ± 3.06
InSitu 85 ± 1.73 93 ± 2.89 89 ± 1.15 88 ± 2.31 93 ± 2.89 91 ± 1.73
Invasive 93 ± 2.89 90 ± 0.0 91 ± 1.15 98 ± 2.89 95 ± 5 97 ± 1.53

Table 5: Experiment results, mean ± std (%), for 3-fold cross-validation of GoogLeNet on ICIAR (BACH) 2018 [22] are illustrated in this
table. Precision, Recall, and Accuracy are abbreviated as P, R, and Acc, respectively. Corresponding results better than PLANET with
InnerMove are marked in bold.

GoogLeNet without InnerMove GoogLeNet with InnerMove
Class P R F1 Acc P R F1 Acc
Normal 87 ± 2.31 93 ± 2.89 90 ± 0.0

90

89 ± 3.46 93 ± 2.08 91 ± 1.53

92Benign 90 ± 6.93 83 ± 5.77 86 ± 0.0 93 ± 2.65 87 ± 2.65 90 ± 0.0
InSitu 90 ± 4.51 95 ± 0.0 93 ± 2.52 92 ± 3.79 92 ± 3.79 92 ± 0.58
Invasive 97 ± 2.89 92 ± 2.89 94 ± 1.73 95 ± 2.52 96 ± 4.16 95 ± 0.58
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