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We investigate how to correct exposure of underexposed images. (e bottleneck of previous methods mainly lies in their
naturalness and robustness when dealing with images with various exposure levels. When facing well-exposed or extremely
underexposed images, they may produce over- or underenhanced outputs. In this paper, we propose a novel retinex-based
approach, namely, LiAR (short for lightness-aware restorer). (e word “lightness-aware” refers to that the estimated illumination
not only is a component to be adjusted but also serves as a measure that reflects the brightness of the scene, determining the degree
of adjustment. In this way, underexposed images can be restored adaptively according to their own brightness. Given an image,
LiAR first estimates its illumination map using a specially designed loss function which can ensure the result’s color consistency
and texture richness. (en adaptive correction is performed to get properly exposed output. LiAR is based on internal opti-
mization of the single test image and does not need any prior training, implying that it can adapt itself to different settings per
image. Additionally, LiAR can be easily extended to the video case due to its simplicity and stability. Experiments demonstrate that
facing images/videos with various exposure levels, LiAR can achieve robust and real-time correction with high contrast and
naturalness. (e relevant code and collected data are publicly available at https://cslinzhang.github.io/LiAR-Homepage/.

1. Introduction

Poor lighting conditions can cause serious quality degra-
dation of captured images and videos. For example, images
taken under low-light conditions look dark overall, and
back-lighting tends to cause illegible surface details in back-
lit region. Although the restoration of underexposed images
has been a long-standing problem with a great progress
made over the past decade, developing a practical effective
restorer remains a challenge.

Various research studies have been done for exposure
correction of underexposed images and one of the most
widely used paradigms is retinex theory [1], which assumes
that the sensations of color have a strong correlation with
reflectance and illumination. Each color area is composed of
red, green, and blue primary colors of a given wavelength,
and these three primary colors determine the color of each
unit area. Specifically, according to retinex theory, an image

I can be decomposed into pixelwise product of reflectance R

and illumination S as

I
c
(x) � R

c
(x) · S(x), (1)

where c ∈ R, G, B{ } and x denotes the spatial location. It
needs to be noted that for simplicity, the three color channels
are usually assumed to have the same illumination [2].
According to retinex theory, an ill-exposed image is caused
by its poor illumination map. (us, the main technical
challenge to restore an underexposed image is to estimate its
illumination map and then to adjust it properly.

Resorting tomachine learning tools to conquer the problem
of illumination map estimation is a recent trend [3–5]. How-
ever, learning-based approaches have a potential drawback in
their generalization capability. (ey rely heavily on the training
data, implying that their performance may deteriorate notice-
ably once the conditions they were trained on are not satisfied
anymore. Such a phenomenon is illustrated in Section 4.
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Unlike supervised learning-based schemes, in this paper,
we introduce a “zero-shot” scheme to fulfill the task of il-
lumination map estimation. By “zero-shot,” we mean that
our approach does not need any prior image examples or
prior training. In our scheme, the illumination map of the
given image is obtained by iteratively minimizing a specially
designed loss function. Such a loss comprises two terms and
they are devised to ensure color consistency and texture
richness of the restored result, respectively. (e illumination
maps estimated in this way can endow the restored results
with finer details and more natural appearances.

With the illumination map at hand, in some pipelines, it
is simply removed to restore the reflectance map [6, 7]; in
some other pipelines, it is adjusted further with some fixed
predefined rules [8, 9]. It is easy to see that neither of the
aforementioned two ways of processing illumination maps
takes the brightness of the input image into full consider-
ation. Consequently, when encountering well-exposed in-
puts, these methods may produce overenhanced results
while for extremely underexposed inputs, their outputs are
inclined to be underenhanced. In this paper, we explicitly
model the impact brought by the image’s brightness and
propose a simple yet effective strategy, relying on the mean
brightness of the illumination map, to modify the estimated
illumination map. (is strategy can adaptively stretch the
contrast of both bright and dark images. In this sense, we
claim that our pipeline for underexposed image restoration
is “lightness-aware.”

(e contribution of this work is summarized as follows:

(i) A lightness-aware restorer for underexposed im-
ages, namely, LiAR (short for lightness-aware re-
storer), is proposed. Its efficiency and efficacy have
been quantitatively and qualitatively validated by
experiments (refer to Section 4 for details).

(ii) LiAR does not require prior training; instead, it
depends on internal optimization of the single input
image. Hence, LiAR has a preeminent generaliza-
tion capability and can be widely applicable to
various shooting scenes and kinds of illumination
conditions.

(iii) In LiAR, to optimize the illumination map of the
input image, a novel loss is proposed. Such a loss can
guarantee that the restored result has color con-
sistency with the input and that it has rich texture
details.

(iv) To modify the estimated illumination map adap-
tively to the input image’s lightness, a strategy in-
corporating the mean of the illumination map is
proposed and used in LiAR. (is strategy allows the
restored output to have appropriate brightness re-
gardless of whether the input image is bright or
dark.

(v) LiAR can be efficiently implemented with GPU. In
addition, it has excellent scalability and adaptability.
Hence, it can be easily extended to enhance
underexposed videos. It is worth mentioning that
because of LiAR’s property of lightness awareness,

compared with the outputs of other commonly used
approaches, the videos enhanced by LiAR do not
have the shortcoming of flickering.

2. Related Work

Actually, conventional image enhancement methods such as
histogram-based methods [10–14] can be explored to en-
hance underexposed images, but in most cases, their efficacy
is quite limited. To tackle this problem more effectively,
various methods specializing on this task were proposed,
which fall roughly into two categories, heuristic ones and
data-driven learning-based ones.

2.1.HeuristicMethods. Early attempts [6, 7] based on retinex
theory remove the illumination and directly extract the
reflectance as the enhanced results. Wang et al. [2] proposed
a bright-pass filter to decompose an image into reflectance
and illumination. Guo et al. [8] estimated the illumination
map by imposing a structure prior on it to generate outputs
with rich details. However, it neglects the color consistency,
resulting in local lightness order error. In [9], Zhang et al.
derived an ADMM-based procedure [15] for solving the
optimization problem of illumination estimation. Despite its
effectiveness in contrast enhancement, it may produce
overenhancement artifacts when inputs are properly ex-
posed images because of the fixed transformation rule used
to adjust the illumination map. In addition to retinex theory,
other commonly used technologies are fusion and S-curve
adjustment model. Liu and Zhang [16] proposed a detail-
preserving underexposed image enhancement method based
on multiexposure fusion mechanism. Fusion mechanism
can also be used in video enhancement, such as [17, 18].
Yuan and Sun [19] proposed an automatic exposure cor-
rection method using S-curve tone mapping. Later, the
authors extended their work to correct ill-exposed videos
[20]. However, the parameterized S-curve adopted in these
methods may compress the midtones, and thus the output
images look too flat and unnatural. Zhang et al. [21] designed
a CNN (convolutional neural network) [22] to estimate the
best-fitting S-curve of the input test image. To avoid loss of
details in midtones, they resorted to guided filtering but this
might lead to edge distortion in the output.

2.2. Data-Driven Methods. Recent studies on exposure
correction are mostly based on machine learning. Dale et al.
[23] first established a database comprising 1 million images
and executed a visual search in the database. In [24],
Bychkovsky et al. made a collection of 5,000 example input-
output pairs that enables supervised learning. Yan et al. [25]
trained deep neural networks to capture sophisticated
photographic styles and modeled local adjustments that
depend on image semantics. Shen et al. [26] proposed MSR-
net based on multiscale retinex theory and trained it on
synthesized pairwise images. In [27], Li and Wu proposed a
learning-based technique of back-lit image restoration, in-
cluding segmentation of back-lit and front regions and
spatially adaptive tone mapping. Different from above
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“black-box” models, Hu et al. [28] employed a deep rein-
forcement learning-based approach to provide users with an
understandable solution. Based on retinex theory, Wang
et al. [3] trained an illumination mapping estimation net-
work on the new dataset they built, including underexposed
images and expert-retouched references.(e performance of
these learning-based methods highly depends on the
training dataset despite the fact that building such a dataset
including various types of illumination and contents is a
challenging task itself.

In this work, we take the brightness level of the input image
into consideration when correcting its illumination map. Such
a lightness-aware strategy can avoid overenhancement effec-
tively. Unlike data-driven schemes, we introduce a “zero-shot”
scheme to fulfill the task of illuminationmap estimation so that
we can ensure that LiAR will perform consistently well for
images spreading over a wide range of exposure levels.

3. Method

3.1. General Pipeline of LiAR. Our underexposed image
restorer LiAR is established based on retinex theory
(equation (1)and accordingly, its pipeline comprises two
stages, illumination estimation and exposure correction, as
illustrated in Figure 1. Given an input image I, we first
separate the illumination map S from I (details for illumi-
nation estimation are presented in Section 3.2) and then
modify S according to its own average brightness. Finally,
the restored result 􏽢I is obtained by applying the corrected
illumination 􏽢S to the scene reflectance as

􏽢I(x) �
I(x)

S(x)
· 􏽢S(x), (2)

where 􏽢S and 􏽢I are the corrected illumination map and the
resorted result, respectively.

In existing retinex-based methods [8, 9], S is usually
adjusted using a fixed predefined rule. However, it should be
noted that real inputs may have various lightness levels, such
as extremely dark ones or normally exposed ones, and they
actually require different levels of illumination adjustment.
To this end, S has two roles in our approach, an illumination
component that needs to be adjusted and also a measure that
reflects the brightness of the scene, determining the degree of
adjustment. Its latter role accounts for the “lightness
awareness” of LiAR. Inspired by gamma transformation in
image-tone mapping, our lightness-aware illumination ad-
justment scheme is designed as

􏽢S(x) � [S(x)]
S
, (3)

where S is the mean brightness of the illumination map S,
serving as a measure that reflects the brightness of the scene.
Using this transformation, the degree of adjustment can be
determined by the illumination brightness. For example,
originally darker images with S close to 0 will be greatly
enhanced, while well-exposed images with higher S will
remain as they are.

Several examples are shown in Figure 2 to demonstrate
the capability of LiAR. In the first row of Figure 2, I1 ∼ I3 are

three input images and S1 ∼ S3 are their estimated illumi-
nation maps. Using LiAR, the corresponding restoration
results 􏽢I1 ∼ 􏽢I3 along with their corrected illumination maps
􏽢S1 ∼ 􏽢S3 are obtained and shown in the second row of Fig-
ure 2. It can be observed that with our lightness-aware
strategy, the illumination maps can be adaptively adjusted.

Next, we will discuss how to estimate the illumination
map from a given input image.

3.2. Illumination Estimation. Given an image I, its illumi-
nation map is expected to be estimated in such a way that the
final restored output should have the color consistency with
the input and have rich textures. In LiAR, these two goals are
achieved by imposing two constraints on illumination map
optimization, one for color consistency and one for texture
richness.

3.2.1. Color Consistency Loss. When an image is processed,
its intensities of pixels are normalized to [0, 1]. For each
color channel, according to equations (2) and (3), the re-
stored intensity at position x can be written as

􏽢I
c
(x) �

Ic(x)

S(x)
· [S(x)]

S
, c ∈ R, G, B{ }. (4)

When the restored intensity in one channel 􏽢I
c
(x)

overflows, which means 􏽢I
c
(x)> 1, to ensure that the restored

intensities fall in [0, 1], 􏽢I
c
(x) will be cut off to 􏽢I

c
(x) � 1. In

this situation, the color consistency between the input image
and the output will be broken since

􏽢I
R
(x), 􏽢I

G
(x), 􏽢I

B
(x)􏼒 􏼓∦ I

R
(x), I

G
(x), I

B
(x)􏼐 􏼑, (5)

where a∦bmeans that the vectors a and b are not parallel to
each other. To avoid this, S(x) should be

S(x)≥ max
c∈ R,G,B{ }

I
c
(x). (6)

In order to consider the color constraint and other
constraints together in optimization, equation (6) is
expressed as a loss term Lc (short for Lcolor):

Lc � 􏽘
x∈Ω

relu max
c∈ R,G,B{ }

I
c
(x) − S(x)􏼠 􏼡, (7)

relu(x) �
0, x < 0,

x, x ≥ 0.
􏼨 (8)

From the definition of Lc in equation (7), it is easy to
know that only when S(x) is smaller than maxc∈ R,G,B{ }I

c(x),
Lc will contribute to the loss. In our implementation,
maxc∈ R,G,B{ }I

c(x) is chosen as the initial estimation of the
illumination map S0(x).

3.2.2. Texture Richness Loss. In an image, usually the illu-
mination intensity of a surface is relatively flat, and the
contrast of the surface should be enhanced to ensure texture
richness. If the estimated illumination of a surface spatially
fluctuates as texture changes, the calculated reflectance of the
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scene will be flatter than the ground truth, resulting in
smoothed texture in the output. (erefore, in order to
ensure that the texture is enhanced, it is necessary to make
the illumination intensity as smooth as possible, which can
be expressed as a loss term Lt (short for Ltexture) of illumi-
nation estimation:

Lt � 􏽘
x∈Ω

wx(x) zxS(x)( 􏼁
2

+ wy(x) zyS(x)􏼐 􏼑
2

+ λt S(x) − S0(x)( 􏼁
2
,

(9)

where w(x) is the weight at each pixel and x and y represent
the horizontal and vertical directions, respectively. λt is a
predefined parameter. (e term λt(S(x) − S0(x))2 is used to
control the estimation result not to deviate too much from
the initial estimation. (e remaining key issue is how to

design the weight wx(x) and wy(x). Note that a region with
small gradients usually corresponds to a flat surface in the
scene and needs to be smoothed. Inspired by RTV loss [29], a
simplified weight, inversely proportional to the gradient, is
designed as

wx(x) �
1

G ° zxIg(x)􏼐 􏼑
2, (10)

where G is a Gaussian filter and Ig is the greyscale map of the
input image. wy can be computed in a similar way. (e
weight terms only need to be computed once at the be-
ginning of processing.

Combining the two loss terms Lc and Lt via a pa-
rameter λ, we get the loss function of the illumination
estimation:

I1 S1(mean(S1) = 0.68)

Î 1 Ŝ1(mean(Ŝ1) = 0.76)

S2(mean(S2) = 0.38)

Ŝ2(mean(Ŝ2) = 0.67)

I2

Î 2

I3

Î 3

S3(mean(S3) = 0.18)

Ŝ3(mean(Ŝ3) = 0.72)

Figure 2: I1 ∼ I3 are three input images with different exposure levels. S1 ∼ S3 are the estimated illumination maps of I1 ∼ I3, respectively,
and 􏽢S1 ∼ 􏽢S3 are the corresponding corrected illumination maps. 􏽢I1 ∼ 􏽢I3 are the outputs of LiAR by taking I1 ∼ I3 as inputs.

I S0

Î Ŝ S

Illumination estimation for color and texture preservation

Lightness-aware exposure correction

Internal
optimization

I c (X)max
c∈{R,G,B}

Lcolor

Ltexture

. . .

I(X)
S(X)Î (X) · Ŝ(X) Ŝ(X)  =  [S(X)]S–

Figure 1: Pipeline of our lightness-aware underexposed image restorer, LiAR. For the input image I, the initial estimation of its illumination map
S0 is taken as the maximum of {R, G, B} channels’ intensities. (en, the illumination map S of the scene is estimated from S0 by internal
optimization under color and texture constraints Lcolor and Ltexture. After that, lightness-aware illumination adjustment is applied to S to get the
corrected illumination map 􏽢S. (e final restoration result 􏽢I is obtained as the production of the reflectance and the corrected illumination 􏽢S.
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L � Lt + λLc. (11)

At this point, given an image, its illuminationmap can be
estimated by iteratively minimizing L.

3.3. Implementation Details. LiAR is implemented with
PyTorch [30]. Images are converted into tensors for parallel
computing. All the operations involved in computing L are
differentiable. With respect to the optimization algorithm
for updating the illumination map, the SGD (stochastic
gradient descent) algorithm [31] is used.

(ere are two hyperparameters in LiAR, λt and λ. In order
to keep the values of the three terms of equation (9) in the same
order ofmagnitude, we set λt � 0.1. λ is designed to control the
weight of two losses, especially the color consistency loss Lc.
(e value of Lc can reflect the color distortion of the corrected
image.(us, we need to set the value of λ high enough to make
sure that there is no noticeable color distortion. In all exper-
iments, we set λ � 100, which is high enough tomake the color
consistency term as a strong constraint.

4. Experiments

We conducted experiments on real-world images to compare
the performance of LiAR with the state-of-the-art or repre-
sentative approaches for underexposed image restoration.
Furthermore, the ablation study is performed to evaluate the
impact of each component of LiAR. Additionally, we applied
LiAR to enhance underexposed videos and then compared its
results with other competitors in this field.

All the experiments were carried out on a workstation
with a 3.0GHz Intel Core i7-5960X CPU and an Nvidia
GeForce GTX 980Ti GPU.

4.1. Evaluation on Underexposed Images

4.1.1. Datasets. Since our goal is to evaluate the capability of
restoration on different exposure levels, the dataset is desired
to contain images with various exposure levels. To this end,
the experiments were performed on 1,500 real-world images
taken from IEpsD [32], which was established for studying
the problem of exposure level assessment. We partitioned
these images into three groups, 500 images for each group,
according to their exposure settings. (ree groups are “well
exposed” (Group A), “slightly underexposed” (Group B),
and “severely underexposed” (Group C).

4.1.2. Compared Methods. LiAR was compared with eight
underexposed image restorers, including (1) HE [12], (2)
CLAHE [14], (3) Retinex [6], (4) Yuan and Sun’s method
[19], (5) LIME [8], (6) Exposure [28], (7) DeepUPE [3], and
(8) ExCNet [21].

4.1.3. Objective Evaluation. (e performance of under-
exposed image restoration methods was evaluated with two
objective metrics, CDIQA (contrast-distorted image quality
assessment) [33] and LOE (lightness order error) [2].

CDIQA is a no-reference quality assessment of contrast-
distorted images, which can be considered as a metric for
richness of image details. A higher CDIQA value roughly
corresponds to higher contrast. LOE is a measure to ob-
jectively assess the naturalness preservation between the
input and enhanced output. Ideally, if the enhancement
approach does not violate the relative lightness order of pixel
values in the input image, the associated LOE measure
would be zero.(us, a lower LOE value roughly corresponds
to less artifacts caused by restoration.

(e results over 1,500 test images are reported in Table 1.
It can be seen that for every case, LiAR can obtain a high
CDIQA value and a low LOE value, demonstrating its su-
periority in restoring the input image’s details while keeping
its naturalness. It also corroborates that LiAR has a strong
generalization capability and can be employed to cope with
images spreading over a wide range of exposure levels. By
contrast, the performance and robustness of the competitors
are apparently inferior to LiAR. For example, though Ex-
posure [28] and DeepUPE [3] perform quite well when
dealing with well-exposed images (Group A), their perfor-
mance deteriorates significantly on obviously underexposed
ones (Groups B and C). As for LIME [8] and ExCNet [21],
for all cases, they can achieve high CDIQA values, indicating
that their outputs are of high contrast. However, their LOE
values are also quite large, implying that they suffer from the
problem of overenhancement.

4.1.4. Visual Quality. Figure 3 compares the restoration
results of the competing methods on a severely under-
exposed input. It can be seen that facing such an extremely
dark image, the results of the learning-based methods Ex-
posure [28] and DeepUPE [3] look quite dim and the details
are invisible. Figure 4 shows the restoration results on a
slightly ill-exposed image. For this case, S-curve-based ap-
proaches [19, 21] tend to get flat results, meaning that
midtone textures are significantly compressed. In both
Figures 3 and 4, the results of LIME [8] obviously suffer from
the unwanted artifacts. By contrast, the outputs of LiAR are
natural and of high contrast. (ese observations are con-
sistent with the quantitative evaluations reported in Table 1.

4.1.5. Results on Different Exposure Levels. In order to
demonstrate the generalization capability of LiAR and the
drawback of learning-based approaches, we conducted ex-
periments on images with different exposure levels. We
compare LiAR with a state-of-the-art learning-based
method DeepUPE [3]. As shown in Figure 5, DeepUPE [3]
fails to enhance severely underexposed images. (e un-
derlying reason is that its training dataset does not cover the
extremely underexposed cases like Figures 5(b) and 5(c),
which shows that learning-based approaches rely heavily on
the training data, implying that their performance may
deteriorate noticeably once the conditions they were trained
on are not satisfied anymore. By contrast, our proposed
approach LiAR, as an image-specific method, performs
consistently well for images spreading over a wide range of
exposure levels.
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4.1.6. Ablation Study. We performed an ablation study to
analyze the importance of each component of LiAR, and the
results are summarized in Table 2.

(e first three settings in the table correspond to re-
moving two loss terms and the lightness-aware design on the
basis of LiAR. It can be seen that removing Lc can achieve

high contrast while causing serious artifacts. On the con-
trary, removing Lt and only using Lc lead to low contrast
while keeping the lightness order consistency. (erefore, it
can be confirmed that combining Lc and Lt can help to
balance contrast and fidelity of the restored results. If the
lightness-aware illumination correction strategy is replaced

Table 1: Objective evaluation results of the competing methods.

Methods Pretrained
Group A Group B Group C All Groups

CDIQA LOE CDIQA LOE CDIQA LOE CDIQA LOE
HE [12] NO 2.7240 0.0540 2.9697 0.0478 3.0058 0.0537 2.8998 0.0518
CLAHE [14] NO 3.2602 0.1352 2.8724 0.0988 2.1903 0.0632 2.7743 0.0991
Retinex [6] NO 3.1847 0.1566 3.1693 0.1625 3.0282 0.1943 3.1274 0.1711
Yuan and Sun [19] NO 2.8227 0.3041 3.1804 0.1105 2.3889 0.0354 2.7973 0.1500
LIME [8] NO 3.2417 0.1955 3.3036 0.1490 2.9276 0.1352 3.1576 0.1599
Exposure [28] YES 3.2930 0.0295 2.7563 0.0298 2.3231 0.0606 2.7908 0.0400
DeepUPE [3] YES 3.3312 0.0680 2.7525 0.0294 2.1580 0.0254 2.7472 0.0409
ExCNet [21] NO 3.0677 0.2893 3.2757 0.1239 2.6697 0.0566 3.0044 0.1566
LiAR NO 3.2798 0.0324 3.2750 0.0576 2.7801 0.0569 3.1116 0.0490

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 3: Comparison on a severely underexposed image. (a) Input. (b) CLAHE [6]. (c) Yuan and Sun [19]. (d) LIME [8]. (e) Exposure [28].
(f ) DeepUPE [3]. (g) ExCNet [21]. (h) LiAR.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 4: Comparison on a slightly underexposed image. (a) Input. (b) CLAHE [6]. (c) Yuan and Sun [19]. (d) LIME [8]. (e) Exposure [28].
(f ) DeepUPE [3]. (g) ExCNet [21]. (h) LiAR.
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with a fixed gamma transformation like [8, 9] where c � 0.4,
the performance on Group A is satisfied while the perfor-
mance on Groups B and C is much inferior to LiAR. (e
underlying reason is that the fixed rule cannot adaptively
adjust the illumination maps.

4.2. Evaluation on Underexposed Videos. (ough LiAR is
initially designed for coping with a single image, it can be
easily adapted to the video case. In this experiment, its
performance for underexposed video restoration was
evaluated.

4.2.1. Dataset and Compared Methods. Since there is no
publicly available dataset for the study of underexposed
video restoration, we collected such a dataset by ourselves
which includes 112 video clips with back-lighting or low-
light illumination conditions. (ey were also classified into
three groups, “well exposed” (Group A, 32 clips), “slightly
underexposed” (Group B, 42 clips), and “severely under-
exposed” (Group C, 38 clips). We compared LiAR with four
representative approaches in this field, including (1) virtual
exposure [34], (2) Dong et al.’s method [35], (3) the tra-
ditional image enhancement method HE [12], and (4)
ExCNet [21].

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 5: (a–c)(ree underexposed photos shot in the same scene with different exposure levels. (a) Slightly underexposed. (b, c) Relatively
severely underexposed. (d–f) Restoration results of a state-of-the-art method DeepUPE [3], which is a learning-based approach. (g–i)
Results of LiAR, the approach proposed in this paper. It is not difficult to find that DeepUPE [3] can restore slightly underexposed images
very well while performing quite poor for the severely underexposed ones. By contrast, LiAR, as an image-specific approach, can deal with
images with a wide range of exposure levels quite well.

Table 2: Ablation study.

Settings Metrics Group A Group B Group C All

No Lc
CDIQA 3.3075 3.2836 3.0467 3.2126
LOE 0.2475 0.2955 0.2407 0.2613

No Lt
CDIQA 3.1739 3.1447 2.6133 2.9773
LOE 0.0196 0.0214 0.0264 0.0225

No lightness-aware c � 0.4 CDIQA 3.2868 2.8166 2.3288 2.8107
LOE 0.0269 0.0360 0.0435 0.0355

LiAR (c � S) CDIQA 3.2798 3.2750 2.7801 3.1116
LOE 0.0324 0.0576 0.0569 0.0490

Mathematical Problems in Engineering 7



4.2.2. Pairwise Comparison User Study. We conducted a
user study with ten volunteers (5 males and 5 females) to
make pairwise comparison between the corrected results of
our method and those of the compared methods. (is
comparison was made from three aspects, including “details
visibility,” “visual naturalness,” and “overall preference.” For
each pairwise comparison, the group of videos and the order
of method pairs were randomized to avoid subjective bias.
(ere were three options for the user to choose: “left is
better,” “right is better,” or “no preference.”

(e results of the user study are summarized in
Figure 6. (ere are three bars in each pairwise com-
parison corresponding to the subject’s preference, which
are the number of the votes for “our method,” “com-
petitor,” and “no preference” from left to right. (e
number of videos from different groups is represented
with different colors. (e results in Figure 6 clearly
demonstrate that no matter which criterion is used, the
participants showed a strong bias in preference towards
the correction results of LiAR.

4.2.3. Visual Quality. Figure 7(a) is the input frame while
Figures 7(b) ∼ 7(f) are the restoration results of the com-
peting methods. It can be observed that the result of LiAR
has better color consistency, finer details, and less over-
enhancement artifacts.

Unlike the case of processing a single image, when re-
storing an underexposed video, in addition to ensuring the
restoration quality of each frame, we must ensure the
smoothness of the video content, that is, we cannot introduce
flickering artifacts during the restoration process. (erefore,
the restoration algorithm is expected to have the ability to
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Figure 6: Results of pairwise comparison user study. (e pairwise comparison was conducted between the result of LiAR and the result of
one of the four competing methods. (ere are three bars in each pairwise comparison, which are the number of the votes for “our method,”
“competitor,” and “no preference” from left to right. (a) Details visibility. (b) Visual naturalness. (c) Overall preference.

(a) (b) (c)

(d) (e) (f )

Figure 7: (a) A frame taken from a video clip. Restoration results of (a) by using (b) virtual exposure [34], (c) Dong et al.’s method [35],
(d) HE [12], (e) ExCNet [21], and (f) LiAR, respectively.

Table 3: (e ave_SRCC values of the evaluated approaches.

Methods ave_SRCC
Virtual exposure [34] 0.7157
Dong et al. [35] 0.7308
HE [12] 0.0757
ExCNet [21] 0.3699
LiAR 0.7198
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maintain the brightness order of video frames. In this paper, to
quantify the algorithm’s ability to keep the brightness order of
video frames, a metric “ave_SRCC” is designed as follows.

Suppose that vi is a video clip having n frames and the set
of its average frame brightness is denoted by b

j
i􏽮 􏽯

n

j�1. Denote
by 􏽢vi the restoration result of vi and the its set of average

frame brightness is denoted by 􏽢b
j

i􏼚 􏼛
n

j�1
. (en, the ave_SRCC

is defined as

ave SRCC �
1
m

􏽘

m

i�1
SRCC b

j
i􏽮 􏽯

n

j�1,
􏽢b

j

i􏼚 􏼛
n

j�1
􏼠 􏼡, (12)

where m is the number of video clips and SRCC computes
the Spearman rank-order correlation coefficient of two
vectors [36].

ave_SRCC values of the competing methods are listed in
Table 3. It can be seen that ave_SRCC values of virtual
exposure [34], Dong et al.’s method [35], and LiAR are much
higher than those of HE and ExCNet [21]. It indicates that
the restored videos of the former three approaches have
much less flickering artifacts than those of the latter two
approaches. (is conclusion is consistent with the intuitive
observation when comparing results subjectively.

4.2.4. Time Cost. In this experiment, the running speeds of
evaluated approaches are analyzed. In Table 4, the time cost
of each competing method for processing one frame is
presented for reference. We tested three commonly

encountered video resolutions, 1080P, 720P, and 480P.
Whether the implementation was based on CPU or GPU is
also reported in Table 4. It needs to be noted that for
competing methods by other authors, we used their own or
official implementations, and thus for virtual exposure [34]
and Dong et al.’s method [35], we did not have their GPU-
based implementations. LiAR’s implementation is based on
GPU and it consumes about 30ms to process one 640 × 480
video frame.

Figure 8 presents three examples where LiAR fails to
produce visually compelling results. For the extremely dark
input images with noise, we amplified the noise in the dark
regions when we greatly brightened images. (is is because
the images collected in a dim environment usually contain
noise in dark regions, and the noise will be regarded as
texture information and then amplified when illumination is
brightened.

5. Conclusions

(is paper proposes LiAR, a two-phase approach for
underexposed image restoration. Given an input image,
LiAR first estimates its illumination map by minimizing a
loss which comprises two terms used to ensure color con-
sistency and texture richness of the output, respectively.
(en, it adjusts the illumination map in a lightness-aware
way. Experimental results demonstrate that images en-
hanced by LiAR own high contrast while keeping natural-
ness. In addition, LiAR can be easily extended to the video

Table 4: (e average time cost (ms) for processing one frame.

Methods Device 1080P 720P 480P
Virtual exposure [34] CPU 4175 1877 702
Dong et al. [35] CPU 2008 675 228
HE [12] CPU 53 28 15
ExCNet [21] GPU 4185 3897 3823
LiAR GPU 64 37 31

(a)

(b)

Figure 8: Failure cases. Extremely dark input images with noise (a) and their correction results (b).

Mathematical Problems in Engineering 9



case. Compared with other competitors for underexposed
video restoration, LiAR can output frames with pleasing
quality. More importantly, it can keep the brightness order
among video frames quite well, which makes it avoid the
flickering artifacts usually existing in outputs of other
evaluated approaches.

Our future work is to design a denoising module to
suppress noise in extremely dark regions. A direction is to
perform denoising on the reflectance component obtained
by retinex decomposition.

Data Availability
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available at https://cslinzhang.github.io/LiAR-Homepage/.
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