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With the development of cloud computing, more and more resources are provided in the form of cloud services. -en how to
select suitable cloud service for users without professional knowledge has become an important issue. Existing cloud service
selection models are usually considered as QoS-aware evaluation focused models. In practice, the QoS attributes have problems
like subjectivity, vagueness, and uncertainty, and a range of formats are involved to describe QoS attributes. -erefore, it is
necessary to consider the heterogeneous formats of QoS attributes in cloud service selection process. -e aim of this paper is to
develop a novel cloud service selection approach using entropy weight and GRA-ELECTRE III that can handle heterogeneous QoS
attributes simultaneously. In the proposed approach, heterogeneous QoS attributes are handled simultaneously by being
transformed into intuitionistic fuzzy numbers; the relative weights of QoS attributes are calculated objectively by the extended
entropy measure method under intuitionistic fuzzy environment; and cloud services are evaluated by GRA-ELECTRE III in-
tegrated method under intuitionistic fuzzy environment. Experimental results show that the proposed approach has good stability
and discrimination in dealing with heterogeneous data and can effectively avoid compensation between attributes.

1. Introduction

Cloud computing is a model for realizing ubiquitous, on-
demand network access to shared pools of configurable
computing resources such as networks, servers, storage,
applications, and services [1]. -e rise and development of
cloud computing has led to the emergence of a large number
of cloud services [2]. When decision makers select cloud
service from a set of available services with equivalent
functions, the nonfunctional performance of cloud service
described by quality of service (QoS) attributes determine
final choice. In the market, multiple functionally equivalent
cloud services with different QoS attributes are often
available for specific domains [3]. However, users lack
sufficient information and appropriate benchmarks to
evaluate cloud services according to individual preferences.
-erefore, cloud service selection problem becomes a big
challenge and attracts a huge amount of attention from both
academia and industry.

A range of advanced techniques have been developed to
assist users to choose suitable services [4–6]. Most of the
existing cloud service selection models are considered as
QoS-aware evaluation focused models. In practice, the QoS
attributes have problems like subjectivity, vagueness, and
uncertainty [7]. For instance, the access reliability of cloud
service is strongly affected by decision maker’s subjective
perception, and corresponding rating on this attribute is
vague. Subsequently, a range of formats are involved to
describe the QoS attributes, such as crisp data, interval data,
triangular fuzzy number (TFN), and intuitionistic fuzzy
number (IFN), etc. Although researchers have tried to solve
these problems [7–9], existing models cannot handle these
heterogeneous QoS attributes simultaneously. In this re-
search, the heterogeneous QoS data are transformed into
IFNs; then the heterogeneous QoS attributes can be handled
simultaneously.

Sometimes the values of different QoS attributes cannot
compensate for each other completely. For instance, the low
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cost of cloud service should compensate for its low reli-
ability; otherwise, the huge cost superiority masks the defect
of low reliability. -erefore, noncompensatory methods are
more suitable to evaluate cloud service. -e Elimination and
Choice Translating Reality (ELECTRE) originally proposed
by Roy [10] is a typical representative of noncompensatory
multicriteria decision-making (MCDM) methods; alterna-
tives are compared on each criterion and scores on criteria
cannot completely compensate for each other. -e ELEC-
TRE III is an improvement of ELECTRE I, which can deal
with inaccurate, loose, vague, or ill-determined data [11].
-erefore, ELECTRE III is adopted to evaluate alternative
cloud services in this research. Grey relation analysis (GRA)
proposed by Deng [12] is an impact evaluation method that
can measure the relation between the reference series and
comparison series. In this research, GRA is used to modify
the ELECTRE III method under intuitionistic fuzzy envi-
ronment to better reflect the relationship between QoS
attributes.

-e aim of this paper is to develop a novel cloud service
selection approach using entropy weight and GRA-ELEC-
TRE III under intuitionistic fuzzy environment. -e con-
tributions of this research are illustrated as follows.

Firstly, a novel cloud service selection method is pro-
posed to handle heterogeneous QoS attributes simulta-
neously. In this research, heterogeneous QoS data are
transformed into IFNs; then the vagueness and uncertainty
are better preserved.

Secondly, the entropy measure method is extended
under intuitionistic fuzzy environment to determine the
weights of QoS attributes. -is weight determination
method can avoid decision maker’s subjective judgments.

Finally, the GRA-ELECTRE III-integrated method is
proposed to evaluate cloud services under intuitionistic
fuzzy environment. -is method can effectively avoid mu-
tual compensation between QoS attributes and reflect the
weak preferences and indifference among alternatives.

-e rest of the paper is organized as follows. Section 2
reviews related literature. Section 3 proposes preliminaries
of triangular fuzzy set (TFS), Intuitionistic fuzzy set (IFS),
interval number, entropy measure, and ELECTRE III.
Section 4 proposes the cloud service selection approach
considering the heterogeneity of QoS attributes. Experi-
ments are conducted in Section 5 to demonstrate the ap-
plication and efficiency of the proposed cloud service
selection approach. Finally, conclusions and future work
follow in Section 6.

2. Literature Review

-e QoS-aware cloud service selection problem can be
considered as a MCDM problem [13]. Multiple methods has
been proposed by researchers to evaluate cloud services
[4, 6, 14]. Existing MCDM methods can be divided into two
parts: weight determination and alternative evaluation.
Researchers proposed different methods for weight deter-
mination, such as Delphi, Analytic Hierarchy Process
(AHP), Analytic Network Process (ANP), entropy measure,
etc. [15–17]. -e entropy concept first introduced by

Shannon and Weaver [18] is a measure that uses probability
theory to measure the uncertainty of information. Since the
entropy measure method is objective and can make full use
of the original data, the entropy measure method is adopted
to calculate the weights of QoS attributes.

-e evaluation methods can be classified into com-
pensatory decision rules and noncompensatory decision
rules [19]. Compensatory decision rules assume that a bad
performance of an alternative on a particular criterion can be
compensated by high scores on other criteria, such as AHP,
ANP, Technique for Order Preference by Similarity to an
Ideal Solution (TOPSIS), Multicriteria Optimization and
Compromise Solution (VIKOR), etc. Conversely, non-
compensatory decision rules assume that a bad performance
of an alternate on a particular criterion cannot be com-
pensated by high scores on other criteria, such as ELECTRE
and Preference Ranking Organization Method for Enrich-
ment Evaluation (PROMETHEE) [20]. Since the values of
QoS attributes cannot compensate for each other com-
pletely, noncompensatory algorithms are more suitable to
evaluate cloud service.

ELECTRE first proposed by Roy [10] is a popular out-
ranking method. Its principle is to deal with a pair of de-
cisions in order to obtain a binary relation about the decision
set and it is a typical representative of noncompensatory
algorithm. -e advantage of ELECTRE is to process in-
complete information by considering the indifference
threshold and preference threshold [21]. Several other
ELECTRE methods were developed during the following
two decades: ELECTRE II [22], ELECTRE III [23], ELEC-
TRE IV [24], ELECTRE, and TRI [25]. Obviously, each of
the ELECTRE versions differs operationally. -e ELECTRE
II, ELECTRE III, and ELECTRE IV were designed to rank
alternatives while the ELECTRE TRI was proposed to solve
assignment problems. Regarding the ranking methods, the
ELECTRE II establishes the concordance, discordance, and
indifference sets to capture the outranking relations between
alternatives; the ELECTRE III method takes into account the
ambiguous and uncertain information [26]. ELECTRE II
uses real standards, while III and IV use pseudo standards.
ELECTRE III uses weights to make decisions, while
ELECTRE IV does not. ELECTRE TRI is suitable for
assigning alternatives to a predefined set of categories [27].
-erefore, due to the noncompensatory nature of ELECTRE
III, the characteristics that apply to the sorting problem and
can take weights into account, ELECTRE III is adopted for
cloud service selection. GRA proposed by Deng [12] is a
popular MCDM method that can measure the similarity or
difference between two series according to the relationship
between them. When the relationship between complex
factors in the system can be tested by distance measurement,
both qualitative and quantitative relationships can be
identified by GRA [28]. -erefore, GRA is used to modify
the ELECTRE III method.

In order to deal with fuzzy and uncertain information,
many extended methods have been proposed to solve
MCDM problems under uncertain environment. For ex-
ample, fuzzy DEMATEL, fuzzy TOPSIS, fuzzy VIKOR, fuzzy
ELECTRE, fuzzy PROMETHEE, or fuzzy hybrid methods
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[29–32]. Meanwhile, Joshi and Kumar [33] proposed a new
fuzzy divergence measure and its application in TOPSIS.
Joshi [34] introduced a new biparametric exponential in-
formation measure based on IFSs. Joshi and Kumar [35]
extended a two-parametric intuitionistic fuzzy information
measure to VIKOR. Joshi and Kumar [36] proposed a new
multiple attribute decision-making method based on
weighted correlation coefficients under intuitionistic fuzzy
environment. -ese methods provide a lot of references for
the extension of the MCDMmethod, but they are based on a
single fuzzy environment without taking the heterogeneous
environment into account.

Some models took incomplete preference information
and incomplete weight information into account in het-
erogeneous environment, and extended hesitation degrees
[37–39], Atanassov’s intuitionistic fuzzy truth degrees [40],
and interval-valued intuitionistic fuzzy truth degrees [41] to
linear programming technique for multidimensional anal-
ysis of preference method to deal with heterogeneous
MCDM problem. To transform heterogeneous data into a
unified format, Xu et al. [39] put forward a method of
transforming heterogeneous data into IFNs. Wan et al. [42]
transformed heterogeneous data into interval IFNs. Xu et al.
[43] transformed heterogeneous data into intuitionistic
TFNs. Due to the wide application of IFNs, this paper
transforms heterogeneous data into IFNs. In this research,
the entropy measure method and ELECTRE III will be
extended to intuitionistic fuzzy environment.

3. Preliminaries

-is section briefly describes the TFS, IFS, entropy measure
method, and ELECTRE III method.

3.1. Triangular Fuzzy Set (TFS)

Definition 1 (see [44]). A TFN A is defined as (a1, a2, a3),
where a1 is the minimum possible value, a2 is the most
possible value, and a3 is the maximum possible value. When
a1 � a2 � a3, A is the crisp value. -e membership function
μA

(x) is defined as

μA
(x) �

x − a1

a2 − a1
, a1 ≤ x≤ a2,

a3 − x

a3 − a2
, a2 ≤ x≤ a3,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Definition 2 (see [44]). Let A�(a1,a2,a3) and A′�(a1′,a2′,a3′)
be two TFNs, the distance between them is calculated by

d A, A′  �

�������������������������������
1
3

a1 − a1′( 
2

+ a2 − a2′( 
2

+ a3 − a3′( 
2

 



.

(2)

3.2. Intuitionistic Fuzzy Set (IFS)

Definition 3 (see [45]). Let X be a finite nonempty set. A IFS
A can be described as

A � <x, μA(x), ]A(x)> | x ∈ X , (3)

where μA(x) and ]A(x) denote the membership degree and
nonmembership degree of element x to the IFS A,
μA(x), ]A(x) ∈ [0, 1], and 0≤ μA(x) + ]A(x)≤ 1.

Degree of hesitation πA(x) of the element x to A is
defined as πA(x) � 1 − (μA(x) + ]A(x)). πA(x) ∈ [0, 1], if
πA(x) � 0, the IFS A is similar to a fuzzy set.

Definition 4 (see [46]). Let A�(μA,]A,πA) and B�(μB,]B,πB)

be two IFNs, the distance between them is

d(A, B) �

���������������������������������
1
2

μA − μB( 
2

+ ]A − ]B( 
2

+ πA − πB( 
2

 



.

(4)

Definition 5 (see [47]). LetA1 � (μA1
,]A1

) andA2 � (μA2
,]A2

)

be two IFNs, then the follow rules are obtained.

A1 ⊕ A2 � μA1
+ μA2

− μA1
μA2

, ]A1
]A2

 ,

λA1 � 1 − 1 − μA1
 

λ
, ]λA1

 .
(5)

Definition 6 (see[47]). Let Aj � (μAj
,]Aj

)(j � 1,2, . . . . . . ,n)

be a collection of IFNs, ωj (
n
j�1ωj � 1) is the weight vector.

-e generalized intuitionistic fuzzy weighted averaging
(GIFWA) operator is as follows:

GIFWA �
⎧⎨

⎩ 1 − 
n

j�1
1 − μAj

 
ωj

⎞⎠, 
n

j�1
]ωj

Aj

⎫⎬

⎭.⎛⎝ (6)

3.3. Interval Number

Definition 7 (see [45]). Let A � [a1, a2] and B � [b1, b2] be
two interval numbers, and the distance between them is

d(A, B) �
1
2

a1−
 b1

 + a2−
 b2

 . (7)

3.4. Entropy Measure. -e entropy concept first introduced
by Shannon andWeaver [18] shows that the more dispersive
the data, the bigger the uncertainty, and the more important
the criterion. -e decision information of each criterion can
be expressed by entropy value, and then the relative im-
portance of the criterion can be determined objectively.
Suppose that a MCDM problem has m alternatives
A� A1,A2,...,Am , and n decision criteria C� C1,C2,...,Cn .
Each alternative evaluated with respect to the n criteria form
a decision matrix denoted by G�(gij)m×n. -en the entropy
weight can be summarized as following steps:
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Step 1: calculate the entropy measure of each criterion
ej by the following equation:

ej � −
1

lnm


m

i�1
pij · lnpij, pij �

gij


m
i�1 gij

, 0 ln 0 ≡ 0, i � 1, 2, . . . , m, j � 1, 2, . . . , n. (8)

Step 2: define the divergence dj through the following
equation, the more the divergence is, the more im-
portant the criterion is

dj � 1 − ej, j � 1, 2, . . . , n. (9)

Step 3: calculate the normalized criteria weights wj by
the following equation:

wj �
dj


n
j�1 dj

, j � 1, 2, . . . , n. (10)

3.5.ELECTREIII. ELECTRE III well reflects the indifference
and weak preference of evaluation. ELECTRE III performs
well in dealing with inaccurate, uncertain data by defining

three thresholds: indifference (q), preference (p), and veto
(v). qj(j � 1, 2, . . . , n) is the indifference threshold between
Ai(i � 1, 2, . . . , m) and Ak(k � 1, 2, . . . , m) on
Cj(j � 1, 2, . . . , n), when the difference between Ai and Ak

on Cj is less than qj, there is no difference between Ai and Ak

on Cj. pj(j � 1, 2, . . . , n) is the preference threshold be-
tween Ai and Ak on Cj, when the difference between Ai and
Ak on Cj is larger than pj, it is considered that Ai is strictly
superior to Ak. vj(j � 1, 2, . . . , n) is the veto threshold be-
tween Ai and Ak on Cj, when the evaluation value of Ai is
lower than Ak on Cj and the difference is equal or greater
than vj, it is no longer recognized that Ai is superior to Ak in
general. Suppose a and b are two alternatives, ELECTRE III
has following definition [48]:

g(a)>g(b) + p(g(b))⟺ aPb (a is strictly preferred to b),

g(b) + q(g(b)) <g(a)<g(b) + p(g(b))⟺ aQb (a is weekly preferred to b),

g(b) <g(a)<g(b) + q(g(b))⟺ aIb (a is indifferent to b).

⎧⎪⎪⎨

⎪⎪⎩
(11)

-e traditional ELECTRE III method is illustrated as
follows [49].

Step 1: Determine the value of qj, pj, and vj.

qj � α maxgj − mingj (j � 1, 2, . . . , n), (12)

where α is the certain multiple and 0.05≤ α≤ 0.1,
maxgj is the largest evaluation value of Cj and mingj

is the smallest evaluation value of Cj.

pj � βqj(j � 1, 2, . . . , n). (13)

where β is the certain multiple and 3≤ β≤ 10.

vj � c maxgj − mingj (j � 1, 2, . . . , n). (14)

where c is the certain multiple and 0.5≤ c≤ 1.
Step 2: Calculate concordance index C(a, b). Concor-
dance index C(a, b) measures the support strength that
a is at least as good as b.

cj(a, b) �

0, if gj(b)≥gj(a) + pj gj(a) 

1, if gj(b)≤gj(a) + qj gj(a) 

gj(a) + pj gj(a)  − gj(b)

pj gj(a)  − qj gj(a) 
, otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j � 1, 2, . . . , n),

C(a, b) �


n
j�1 wj · cj(a, b)


n
j�1 wj

(j � 1, 2, . . . , n).

(15)
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Step 3: Calculate the credibility score S(a, b). Credi-
bility score S(a, b) measures the credibility degree that
a at least as good as b.

S(a, b) �

C(a, b), if Dj(a, b)≤C(a, b)

C(a, b) · 
Dj(a,b)>C(a,b)

1 − Dj(a, b)

1 − C(a, b)
, otherwise (j � 1, 2, . . . , n).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

where the Dj(a, b) is the discordance index, it mea-
sures the strength of the evidence against that a at least
as good as b.

Dj(a, b) �

0, if gj(b)≤gj(a) + pj gj(a) 

1, if gj(b)≥gj(a) + vj gj(a) 

gj(b) − pj gj(a)  − gj(a)

vj gj(a)  − pj gj(a) 
, otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(j � 1, 2, . . . , n). (17)

Step 4: Distillation procedure:

Step 4.1: Determine the cut off level of outranking.

λ1 � max
S(a,b)<λ0− s λ0( ){ }

S(a, b). (18)

where λ0 � max S(a, b) and s(λ0) is the discrimination
threshold at the maximum level of outranking λ0.

s(λ) � 0.3 − 0.15λ. (19)

a outranks b if S(a, b)> λ1 and S(a, b) − S(b, a)> s(λ).
Step 4.2: If a outranks b, a is recorded as +1 and b is
recorded as − 1. Add the scores for every alternative to
get the final score.
Step 4.3: Descending distillation: the alternative with
the highest final score is placed in the sort and the
remaining alternatives are repeated for the above steps.
Step 4.4: Ascending distillation: the alternative with the
lowest final score is placed in the sort and the remaining
alternatives are repeated for the above steps.
Step 5: Combine the results of the two distillation
procedures to get the final sort.

4. The Proposed Cloud Service
Selection Approach

4.1. QoS Attributes. As shown in Table 1, the five most
frequently used QoS attributes cost, response time, avail-
ability, reliability, and reputation are used in this research
[50, 51]. Cost and response time are cost criteria, the smaller
the better. Availability, reliability, and reputation are benefit
criteria, the larger the better. Cost is crisp data provided by
the cloud service provider. Response time is an interval
depending on the environment such as the network;
therefore, it is represented by the interval data.Availability is
crisp data retrieved directly from the records of the cloud
service platform. Reliability varies based on a specific value
in different transmission environment, so TFNs are more
suitable to represent it. Reputation is evaluated by the user
after the service is finished, it is often difficult for users to
describe with crisp data. -erefore, QoS attributes are
represented by multiple formats, such as crisp data, interval
data, TFN and IFN. In most cases, linguistic variables are
used for evaluation, but it will relatively restrict the ex-
pression of users. -erefore, the IFNs reflect the user’s
satisfaction and dissatisfaction through membership and
nonmembership more intuitively.

Since heterogeneous data formats are involved in this
research to represent QoS attributes, all these data formats

Mathematical Problems in Engineering 5



can be converted into IFNs by the method proposed by Xu
et al. [39]. Suppose that aMCDMproblem hasm alternatives
A� A1,A2,...,Am , and n decision criteria C� C1,C2,...,Cn .
Each alternative evaluated with respect to the n criteria
forms a benefit decision matrix denoted by X′�(xij

′)m×n ·

d(a,b) is the distance between a and b. In this case, all
values are given by the cloud service platform, which can

be regarded as a single expert decision. -en conversion
process is illustrated as following.

Step 1: Suppose that Cj is benefit criteria. Calculate
Quasi-satisfactory value (ξ), Quasi-dissatisfactory
value (ζ), and Quasi-uncertain value (η) of xij

′.

ξij � xij
′ , d xij
′ , C

max
j < d xij

′ , C
min
j C

mid
j , other (i � 1, 2, . . . , m, j � 1, 2, . . . , n), (20)

ζ ij � xij
′ , d xij
′ , C

max
j > d xij

′ , C
min
j C

mid
j , other (i � 1, 2, . . . , m, j � 1, 2, . . . , n), (21)

ηij �
ξij + ζ ij

2
(i � 1, 2, . . . , m, j � 1, 2, . . . , n), (22)

where Cmid
j � (Cmax

j + Cmin
j )/2, Cmax

j , and Cmin
j are the

largest and smallest value of Cj. In order to retain more
evaluation information, Cmax

j and Cmin
j are defined as

follows:

C
max
j �

x+
j , criteria j is crisp data,

b+
1j, b+

2j , criteria j is interval data,

a+
1j, a+

2j, a+
3j , criteria j is triangular fuzzy number,

μ+
j , ]+

j , criteria j is intuitionistic fuzzy number,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(23)

C
min
j �

x−
j , criteria j is crisp data,

b−
1j, b−

2j , criteria j is interval data,

a−
1j, a−

2j, a−
3j , criteria j is triangular fuzzy number,

μ−
j , ]−

j , criteria j is intuitionistic fuzzy number,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(24)

where x+
j � max xij

′ | i � 1, . . . . . . , m , b+
1j �

max b1ij | i � 1, . . . . . . , m , b+
2j � max b2ij | i � 1,

. . . . . . , m}, a+
1j � max a1ij | i � 1, . . . . . . , m , a+

2j �

max a2ij | i � 1, . . . . . . , m , a+
3j � max b3ij | i � 1,

. . . . . . , m}, μ+
j � max μij | i � 1, . . . . . . , m , ]+

j � min
]ij | i � 1, . . . . . . , m , x−

j � min xij
′ | i � 1, . . . . . . , m ,

b−
1j � min b1ij | i � 1, . . . . . . , m , b−

2j � min b2ij | i � 1,

. . . . . . , m}, a−
1j � min a1ij | i � 1, . . . . . . , m , a−

2j �

min a2ij | i � 1, . . . . . . , m , a−
3j � min b3ij | i � 1,

. . . . . . , m}, μ−
j � min μij | i � 1, . . . . . . , m , ]−

j �

max ]ij | i � 1, . . . . . . , m  [52]. -e cardinalities of the
uncertain set are always equal to 1 in this paper.
Step 2: Calculate the Quasi-membership degree (κ),
Quasi-nonmembership degree (ς), and Quasi-hesi-
tancy degree (τ).

Table 1: QoS attributes and illustrations.

ID QoS attributes Illustrations Formats
C1 Cost -e service fee that the user needs to pay the service provider Crisp data
C2 Response time Time interval from the request is made to the response is received Interval data
C3 Availability It is the probability that a user service can be accessed Crisp data
C4 Reliability -e ability to run according to performance requirements Triangular fuzzy number
C5 Reputation It is a measure of the credibility of a service, usually from user feedback Intuitionistic fuzzy number
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κij �
d ξij, Cmid

j 

d ξij, Cmid
j  + d ξij, Cmax

j 
(i � 1, 2, . . . , m, j � 1, 2, . . . , n), (25)

ςij �
d ζ ij, Cmid

j 

d ζ ij, Cmid
j  + d ζ ij, Cmin

j 
(i � 1, 2, . . . , m, j � 1, 2, . . . , n), (26)

τij �

d ζ ij, ηij 

d ζ ij, ηij  + d ηij, Cmid
j 

, d ηij, C
max
j > d ηij, C

min
j 

d ξij, ηij 

d ξij, ηij  + d ηij, Cmid
j 

, d ηij, C
max
j < d ηij, C

min
j 

1, d ηij, Cmax
j  � d ηij, Cmin

j 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i � 1, 2, . . . , m, j � 1, 2, . . . , n), (27)

Step 3: In an IFN, the membership degree (μij),
nonmembership degree (]ij), and hesitancy degree
(πij) are defined as follows:

μij �

κij

κij + 1/2τij

, d xij, C
max
j < d xij, C

min
j 

0, other

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i � 1, 2, . . . , m, j � 1, 2, . . . , n), (28)

]ij �

ςij

ςij + 1/2τij

, d xij, C
max
j > d xij, C

min
j 

0, other

⎧⎪⎪⎨

⎪⎪⎩
(i � 1, 2, . . . , m, j � 1, 2, . . . , n), (29)

πij � 1 − μij − ]ij(i � 1, 2, . . . , m, j � 1, 2, . . . , n). (30)

-en, all forms of values are converted to IFNs.

4.2. Entropy-GRA-ELECTRE III Integrated Evaluation
Method. -e cloud service selection approach using en-
tropy weight and GRA-ELECTRE III under intuitionistic
fuzzy environment is proposed. -e entropy measure
method extended to intuitionistic fuzzy environment is
used to determine the weights of QoS attributes. In order
to better reflect the relationship between alternatives and
the positive point, GRA is used to modify the distance
measure of ELECTRE III [53]. Moreover, due to the
complexity of the distillation procedure of traditional
ELECTRE III, the concepts of consistent credibility, in-
consistent credibility, and net credibility are introduced to
simplify the sorting process of cloud services [54]. -en

the GRA-ELECTRE III integrated method under intui-
tionistic fuzzy environment is used to evaluate cloud
services.

Suppose that a MCDM problem has m alternatives
A � A1, A2, . . . , Am , and n decision criteria
C � C1, C2, . . . , Cn . Each alternative evaluated with respect
to the n criteria form a decision matrix denoted by
X � (xij)m×n. -en the main steps of the proposed cloud
service selection method can be described as follows:

Step 1: Obtain the decision matrix X � (xij)m×n of the
decision maker, where xij can be described as crisp
data, interval data, TFN, and IFN.

Step 2: Convert the value of cost criteria into benefit
criteria and get the convertedmatrix X′ � (xij

′)m×n [39].
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xij
′ �

xmax
j − xij, criteria j is crisp data

xmax
j − b2ij, xmax

j − b1ij , criteria j is interval data

xmax
j − a3ij, xmax

j − a2ij, xmax
j − a1ij , criteria j is TFN

]ij, μij , criteria j is IFN

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i � 1, 2, . . . , m, j � 1, 2, . . . , n). (31)

In order to retain more evaluation information, xmax
j is

defined as follows:

x
max
j �

x+
j , criteria j is crisp data

b+
2j, b+

2j , criteria j is interval data

a+
3j, a+

3j, a+
3j , criteria j isTFN

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(j � 1, 2, . . . , n). (32)

Step 3: Convert the value of matrix X′ into IFNs by
equations (20)–(30), and get the matrix Y � (yij)m×n,
yij � (μij, ]ij, πij).
Step 4: Calculate the weight by the entropy method
extended to intuitionistic fuzzy environment [55].

ej � −
1

m ln 2

m

i�1
μij ln μij + ]ij ln ]ij − 1 − πij ln 1 − πij  − πij ln 2 ,

(33)

where 0 ln 0 ≡ 0, i � 1, 2, . . . , m; j � 1, 2, . . . , n .
-en dj and wj are calculated by equations (9) and (10).
Step 5: Obtain α, β, c from users or experts.
Step 6: Calculate the grey relational coefficients between
alternatives and the positive point in intuitionistic
fuzzy environment by the following equation [53]:

yij �
miniminjd yij, α+

j  + ρmaximaxjd yij, α+
j 

d yij, α+
j  + ρmaximaxjd yij, α+

j 
, (i � 1, 2, . . . , m, j � 1, 2, . . . , n), (34)

where ρ is usually equal to 0.5. -e positive point
defined as α+

j � (μ+
j , ]+

j , π+
j ), where μ+

j � maxμj,
]+

j � min]j, π+
j � 1 − μ+

j − ]+
j .

Step 7: Calculate concordance index C(Ai, Ak) and the
credibility score S(Ai, Ak):

cj Ai, Ak(  � 0, if ykj ≥yij + pj1, if ykj ≤yij + qj

yij + pj − ykj

pj − qj

, otherwise(i � 1, 2, . . . , m, k � 1, 2, . . . , m, j � 1, 2, . . . , n),
⎧⎨

⎩

(35)

where the value of qj, pj, and vj are calculated by
equations (11)–(14) based on yij:

C Ai, Ak(  �


n
j�1 wj · cj yij, ykj 


n
j�1 wj

, (i � 1, 2, . . . , m, k � 1, 2, . . . , m, j � 1, 2, . . . , n). (36)

-en, calculate the credibility score S(Ai, Ak):
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S Ai, Ak(  �

C Ai, Ak( , if Dj Ai, Ak( ≤C Ai, Ak( 

C Ai, Ak(  · 
Dj Ai,Ak( )>C Ai,Ak( )

1 − Dj Ai, Ak( 

1 − C Ai, Ak( 
, otherwise ,

(i � 1, 2, . . . , m, k � 1, 2, . . . , m, j � 1, 2, . . . , n).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(37)

where the Dj(Ai, Ak) is the discordance index.

Dj Ai, Ak(  �

0, if ykj ≤yij + pj

1, if ykj ≥yij + vj

ykj − pj − yij

vj − pj

, otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i � 1, 2, . . . , m, k � 1, 2, . . . , m, j � 1, 2, . . . , n). (38)

Step 8: Calculate the consistent credibility Φ+
i , and it

describes the degree that alternative Ai(i � 1, 2, . . . , m)

is superior to other alternatives.

Φ+
i �  S Ai, Ak(  (i � 1, 2, . . . , m，k � 1, 2, . . . , m).

(39)

Calculate the consistent credibility Φ−
i , it describes the

degree that other alternatives are superior to alternative
Ai(i � 1, 2, . . . , m).

Φ−
i �  S Ak, Ai(  (i � 1, 2, . . . , m, k � 1, 2, . . . , m).

(40)

Calculate the net credibility Φi.

Φi � Φ+
i − Φ−

i (i � 1, 2, . . . , m). (41)

Step 9: Sort cloud services in descending order
according to Φi.

5. Implementation and Experimental Results

In this simulation, a laptop manufacturer ABC submits the
assembly task to the cloud manufacturing platform. Eight
alternative cloud service providers {A1, A2, A3, A4, A5, A6,
A7, A8} are interested in providing the required service. -e
proposed cloud service selection approach is used to evaluate

eight alternative cloud services according to the QoS attri-
butes shown in Table 1.

5.1. Experiment 1: Application of the Proposed Cloud Service
Approach. -e computational procedure of the proposed
approach is summarized as the following steps:

Step 1: the decision matrix of the decision maker as
shown in Table 2 is obtained.
Step 2: -e values of cost criteria are converted into
benefit criteria by equation (32) and the converted
matrix as shown in Table 3 is obtained.
Step 3: -e values of converted decision matrix are
transformed into IFNs by equations (20)–(30). -e
results are shown in Table 4. -e concrete calculation
steps are shown in Appendix A.
Step 4: -e relative weights of QoS attributes are cal-
culated by equations (33), (9), and (10), and the results
are shown in Table 5.
Step 5: In this case, α � 0.1, β � 3, c � 0.6 are obtained
from experts.
Step 6: -e grey relational coefficients between alterna-
tives and the positive point calculated by equation (34) are
shown in Table 6. Table 7 shows the positive points α+

j .
Step 7: -e concordance index and credibility score
between alternatives are calculated by equations

Table 2: Ratings of cloud service with respect to QoS attributes.

C1 C2 C3 C4 C5
A1 126 [186, 285] 0.95 (0.5, 0.6, 0.7) (0.65, 0.25)
A2 133 [180, 282] 0.88 (0.6, 0.8, 0.9) (0.35, 0.60)
A3 110 [201, 291] 0.91 (0.6, 0.7, 0.9) (0.85, 0.10)
A4 148 [197, 300] 0.87 (0.4, 0.6, 0.7) (0.80, 0.10)
A5 107 [182, 280] 0.85 (0.3, 0.5, 0.7) (0.30, 0.65)
A6 122 [195, 310] 0.96 (0.3, 0.4, 0.6) (0.55, 0.35)
A7 140 [210, 330] 0.98 (0.4, 0.6, 0.9) (0.50, 0.35)
A8 138 [197, 312] 0.93 (0.5, 0.7, 1.0) (0.45, 0.50)
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Table 4: -e IFN decision matrix.

C1 C2 C3 C4 C5
A1 (0.23, 0.00, 0.77) (0.74, 0.00, 0.26) (0.68, 0.00, 0.32) (0.00, 0.52, 0.48) (0.65, 0.25, 0.10)
A2 (0.00, 0.52, 0.48) (0.79, 0.00, 0.21) (0.00, 0.68, 0.32) (0.74, 0.00, 0.26) (0.35, 0.60, 0.05)
A3 (0.77, 0.00, 0.23) (0.61, 0.00, 0.39) (0.00, 0.24, 0.76) (0.70, 0.00, 0.30) (0.85, 0.10, 0.05)
A4 (0.00, 0.80, 0.20) (0.39, 0.00, 0.61) (0.00, 0.73, 0.27) (0.00, 0.56, 0.44) (0.80, 0.10, 0.10)
A5 (0.80, 0.00, 0.20) (0.79, 0.00, 0.21) (0.00, 0.80, 0.20) (0.00, 0.70, 0.30) (0.30, 0.65, 0.05)
A6 (0.52, 0.00, 0.48) (0.00, 0.33, 0.67) (0.73, 0.00, 0.27) (0.00, 0.80, 0.20) (0.55, 0.35, 0.10)
A7 (0.00, 0.71, 0.29) (0.00, 0.80, 0.20) (0.80, 0.00, 0.20) (0.52, 0.00, 0.48) (0.50, 0.35, 0.15)
A8 (0.00, 0.67, 0.33) (0.00, 0.47, 0.53) (0.48, 0.00, 0.52) (0.71, 0.00, 0.29) (0.45, 0.50, 0.05)

Table 5: -e relative weights of QoS attributes.

C1 C2 C3 C4 C5
ej 0.37 0.38 0.36 0.34 0.84
dj 0.63 0.62 0.64 0.66 0.16
wj 0.23 0.23 0.24 0.24 0.06

Table 6: Grey relational coefficients.

C1 C2 C3 C4 C5
A1 0.41 0.89 0.77 0.38 0.69
A2 0.36 1.00 0.35 1.00 0.44
A3 0.94 0.68 0.36 0.91 1.00
A4 0.33 0.50 0.34 0.37 0.89
A5 1.00 1.00 0.33 0.36 0.42
A6 0.59 0.37 0.86 0.34 0.59
A7 0.35 0.33 1.00 0.64 0.56
A8 0.35 0.37 0.56 0.92 0.50

Table 7: -e positive point α+
j .

C1 C2 C3 C4 C5
α+

j (0.8, 0, 0.2) (0.79, 0, 0.21) (0.8, 0, 0.2) (0.74, 0, 0.26) (0.85, 0.1, 0.05)

Table 3: -e converted decision matrix.

C1 C2 C3 C4 C5
A1 22 [45, 144] 0.95 (0.5, 0.6, 0.7) (0.65, 0.25)
A2 15 [48, 150] 0.88 (0.6, 0.8, 0.9) (0.35, 0.60)
A3 38 [39, 129] 0.91 (0.6, 0.7, 0.9) (0.85, 0.10)
A4 0 [30, 133] 0.87 (0.4, 0.6, 0.7) (0.80, 0.10)
A5 41 [50, 148] 0.85 (0.3, 0.5, 0.7) (0.30, 0.65)
A6 26 [20, 135] 0.96 (0.3, 0.4, 0.6) (0.55, 0.35)
A7 8 [0, 120] 0.98 (0.4, 0.6, 0.9) (0.50, 0.35)
A8 10 [18, 133] 0.93 (0.5, 0.7, 1.0) (0.45, 0.50)

Table 8: Concordance matrix.

A1 A2 A3 A4 A5 A6 A7 A8
A1 1.000 0.687 0.466 0.941 0.698 0.776 0.518 0.757
A2 0.703 1.000 0.709 0.941 0.768 0.486 0.732 0.762
A3 0.534 0.721 1.000 1.000 0.772 0.762 0.762 0.769
A4 0.515 0.529 0.295 1.000 0.540 0.530 0.518 0.518
A5 0.703 0.757 0.698 0.941 1.000 0.706 0.477 0.508
A6 0.751 0.529 0.238 0.831 0.540 1.000 0.625 0.757
A7 0.737 0.529 0.238 0.775 0.540 0.768 1.000 0.757
A8 0.475 0.755 0.482 0.831 0.540 0.514 0.760 1.000
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Table 10: -e consistent credibility, inconsistent credibility, and net credibility of alternatives.

A1 A2 A3 A4 A5 A6 A7 A8
Φ+

i 3.236 1.762 4.263 1.000 1.000 2.457 2.923 1.507
Φ−

i 1.000 1.721 1.000 4.171 1.772 3.051 2.144 3.288
Φi 2.236 0.040 3.263 − 3.171 − 0.772 − 0.594 0.779 − 1.781

Table 11: -e rank of alternatives.

A1 A2 A3 A4 A5 A6 A7 A8
Rank 2 4 1 8 6 5 3 7

Table 12: Certain multiple for different scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
α 0.05 0.06 0.07 0.08 0.09 0.1
β 3 4.5 6 7.5 9 10
c 0.5 0.6 0.7 0.8 0.9 1

0
1
2
3
4
5
6
7
8

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

A1
A2
A3
A4

A5
A6
A7
A8

Figure 1: Experimental results under different scenarios. As shown in Figure 1, the following findings are obtained.

Table 9: Credibility score matrix.

A1 A2 A3 A4 A5 A6 A7 A8
A1 1.000 0.000 0.000 0.941 0.000 0.776 0.518 0.000
A2 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.762
A3 0.000 0.721 1.000 1.000 0.772 0.000 0.000 0.769
A4 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
A5 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
A6 0.000 0.000 0.000 0.831 0.000 1.000 0.625 0.000
A7 0.000 0.000 0.000 0.398 0.000 0.768 1.000 0.757
A8 0.000 0.000 0.000 0.000 0.000 0.507 0.000 1.000
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(35)–(38) as shown in Tables 8 and 9. -e calculation
steps are shown in Appendix B.
Step 8: -e consistent credibility, inconsistent credi-
bility, and net credibility are calculated by equations
(39)–(41) as shown in Table 10.
Step 9: -e ranks of cloud service providers are ob-
tained according to Φ as shown in Table 11.

According to the rank of cloud services, alternative A3 is
selected as the best one. Consequently, the proposed ap-
proach can effectively select the best cloud services under the
heterogeneous environment of QoS attributes.

5.2. Experiment 2: Sensitivity Analysis. In order to verify the
stability of the proposed cloud service approach and the
effect of thresholds on the experimental results, additional
experiments are carried out by adjusting the certain multiple
α, β, c of the thresholds. Multiple scenarios shown in Ta-
ble 12 are carried out and the experimental results are shown
in Figure 1.

Firstly, by adjusting certain multiple α, β, c, the optimal
cloud service has always been A3. -is shows that the
proposed approach has strong stability in the cloud service
selection process.

Secondly, the ranking of intermediate alternatives has
changed slightly. -is shows that the proposed approach

can reflect the preference of decision makers for certain
multipliers.

In summary, the proposed cloud service selection ap-
proach has strong stability in cloud service selection process
and can reflect the preference of decision makers.

5.3. Experiment 3: Comparative Analysis. To further validate
the efficiency of the proposed cloud service selection ap-
proach, a comparative analysis experiment is executed. -e
two most popular compensatory methods, TOPSIS [56] and
VIKOR [57], are adopted. -is experiment is fed with the
same assumptions and parameters as Experiment 1; for
instance, the IFN decision matrix shown in Table 4 is used.
In VIKOR, we use the distance between two IFNs to measure
the difference. Table 13 and Figure 2 show the experimental
results of these three methods TOPSIS, VIKOR, and
ELECTRE III.

According to the experimental results shown in Figure 1,
the following findings are obtained.

Firstly, the optimal cloud services selected by the three
methods are consistent, which shows that the proposed
approach is credible.

Secondly, experimental results show that the proposed
approach has better discrimination and can better reflect the
gap between alternatives.

In summary, the proposed cloud service selection ap-
proach is credible and has better discrimination.
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4
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6

7

8

A1 A2 A3 A4 A5 A6 A7 A8

Ra
nk

Alternatives

ELECTRE III
TOPSIS
VIKOR

Figure 2: Experimental results of comparative analysis.

Table 13: Experimental results of comparative analysis.

A1 A2 A3 A4 A5 A6 A7 A8
CCi 0.640 0.557 0.754 0.296 0.495 0.514 0.481 0.515
Rank (TOPSIS) 2 3 1 8 6 5 7 4
Qi 0.846 0.599 0.944 0.161 0.337 0.218 0.456 0.618
Rank (VIKOR) 1 4 1 8 6 7 5 3
Φi 2.236 0.040 3.263 − 3.171 − 0.772 − 0.594 0.779 − 1.781
Rank (ELECTRE III) 2 4 1 8 6 5 3 7
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Table 18: Quasi-nonmembership degree (ς).

C1 C2 C3 C4
A1 0.00 0.00 0.00 0.27
A2 0.27 0.00 0.54 0.00
A3 0.00 0.00 0.08 0.00
A4 1.00 0.00 0.69 0.31
A5 0.00 0.00 1.00 0.59
A6 0.00 0.13 0.00 1.00
A7 0.61 1.00 0.00 0.00
A8 0.51 0.23 0.00 0.00

Table 19: Quasi-hesitancy degree (τ).

C1 C2 C3 C4
A1 0.50 0.50 0.50 0.50
A2 0.50 0.50 0.50 0.50
A3 0.50 0.50 0.50 0.50
A4 0.50 0.50 0.50 0.50
A5 0.50 0.50 0.50 0.50
A6 0.50 0.50 0.50 0.50
A7 0.50 0.50 0.50 0.50
A8 0.50 0.50 0.50 0.50

Table 20: -e values of qj, pj, and vj.

C1 C2 C3 C4 C5
qj 0.07 0.07 0.07 0.07 0.06
pj 0.20 0.20 0.20 0.20 0.17
vj 0.40 0.40 0.40 0.40 0.35

Table 21: -e results of c1(Ai, Ak).

A1 A2 A3 A4 A5 A6 A7 A8
A1 1.000 1.000 0.000 1.000 0.000 0.185 1.000 1.000
A2 1.000 1.000 0.000 1.000 0.000 0.000 1.000 1.000
A3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A4 0.919 1.000 0.000 1.000 0.000 0.000 1.000 1.000
A5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A6 1.000 1.000 0.000 1.000 0.000 1.000 1.000 1.000
A7 1.000 1.000 0.000 1.000 0.000 0.000 1.000 1.000
A8 1.000 1.000 0.000 1.000 0.000 0.000 1.000 1.000

Table 22: -e results of c2(Ai, Ak).

A1 A2 A3 A4 A5 A6 A7 A8
A1 1.000 0.694 1.000 1.000 0.694 1.000 1.000 1.000
A2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A3 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000
A4 0.000 0.000 0.112 1.000 0.000 1.000 1.000 1.000
A5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A6 0.000 0.000 0.000 0.517 0.000 1.000 1.000 1.000
A7 0.000 0.000 0.000 0.269 0.000 1.000 1.000 1.000
A8 0.000 0.000 0.000 0.514 0.000 1.000 1.000 1.000

Table 14: Quasi-satisfactory value (ξ).

C1 C2 C3 C4
A1 22 [45, 144] 0.95 (0.45, 0.6, 0.8)
A2 20.5 [48, 150] 0.915 (0.6, 0.8, 0.9)
A3 38 [39, 129] 0.915 (0.6, 0.7, 0.9)
A4 20.5 [30, 133] 0.915 (0.45, 0.6, 0.8)
A5 41 [50, 148] 0.915 (0.45, 0.6, 0.8)
A6 26 [25, 135] 0.96 (0.45, 0.6, 0.8)
A7 20.5 [25, 135] 0.98 (0.4, 0.6, 0.9)
A8 20.5 [25, 135] 0.93 (0.5, 0.7, 1)

Table 15: Quasi-dissatisfactory value (ζ).

C1 C2 C3 C4
A1 20.5 [25, 135] 0.915 (0.5, 0.6, 0.7)
A2 15 [25, 135] 0.88 (0.45, 0.6, 0.8)
A3 20.5 [25, 135] 0.91 (0.45, 0.6, 0.8)
A4 0 [25, 135] 0.87 (0.4, 0.6, 0.7)
A5 20.5 [25, 135] 0.85 (0.3, 0.5, 0.7)
A6 20.5 [20, 135] 0.915 (0.3, 0.4, 0.6)
A7 8 [0, 120] 0.915 (0.45, 0.6, 0.8)
A8 10 [18, 133] 0.915 (0.45, 0.6, 0.8)

Table 16: Quasi-uncertain value (η).

C1 C2 C3 C4
A1 21.25 [35, 139.5] 0.9325 (0.475, 0.6, 0.75)
A2 17.75 [36.5, 142.5] 0.8975 (0.525, 0.7, 0.85)
A3 29.25 [32, 132] 0.9125 (0.525, 0.65, 0.85)
A4 10.25 [27.5, 134] 0.8925 (0.425, 0.6, 0.75)
A5 30.75 [37.5, 141.5] 0.8825 (0.375, 0.55, 0.75)
A6 23.25 [22.5, 135] 0.9375 (0.375, 0.5, 0.7)
A7 14.25 [12.5, 127.5] 0.9475 (0.425, 0.6, 0.85)
A8 15.25 [21.5, 134] 0.9225 (0.475, 0.65, 0.9)

Table 17: Quasi-membership degree (κ).

C1 C2 C3 C4
A1 0.07 0.73 0.54 0.00
A2 0.00 0.95 0.00 0.73
A3 0.85 0.38 0.00 0.59
A4 0.00 0.16 0.00 0.00
A5 1.00 0.95 0.00 0.00
A6 0.27 0.00 0.69 0.00
A7 0.00 0.00 1.00 0.27
A8 0.00 0.00 0.23 0.62
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6. Conclusions

In this paper, a new hybrid MCDM approach is proposed
to deal with cloud service selection problem. Firstly, the
heterogeneous data of QoS attributes involving in cloud
service selection process are handled, by converting crisp
data, interval data, TFN and IFN into IFNs. Secondly, the
weights of QoS attributes are calculated objectively by

the extended entropy measure method in intuitionistic
fuzzy environment. Finally, a more concise GRA-
ELECTRE III integrated method in intuitionistic fuzzy
environment is proposed to evaluate cloud services. -e
proposed cloud service selection approach performs well
in dealing with the subjectivity, vagueness, and uncer-
tainty of QoS attributes. Moreover, the proposed ap-
proach can effectively avoid mutual compensation
between QoS attributes and reflect the weak preferences

Table 27: -e results of D2(Ai, Ak).

A1 A2 A3 A4 A5 A6 A7 A8
A1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A3 0.050 0.587 0.000 0.000 0.587 0.000 0.000 0.000
A4 0.976 1.000 0.000 0.000 1.000 0.000 0.000 0.000
A5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A6 1.000 1.000 0.581 0.000 1.000 0.000 0.000 0.000
A7 1.000 1.000 0.746 0.000 1.000 0.000 0.000 0.000
A8 1.000 1.000 0.583 0.000 1.000 0.000 0.000 0.000

Table 28: -e results of D3(Ai, Ak).

A1 A2 A3 A4 A5 A6 A7 A8
A1 0.000 0.000 0.000 0.000 0.000 0.000 0.132 0.000
A2 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.036
A3 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000
A4 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.068
A5 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.111
A6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A8 0.090 0.000 0.000 0.000 0.000 0.520 1.000 0.000

Table 29: -e results of D4(Ai, Ak).

A1 A2 A3 A4 A5 A6 A7 A8
A1 0.000 1.000 1.000 0.000 0.000 0.000 0.336 1.000
A2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A4 0.000 1.000 1.000 0.000 0.000 0.000 0.352 1.000
A5 0.000 1.000 1.000 0.000 0.000 0.000 0.443 1.000
A6 0.000 1.000 1.000 0.000 0.000 0.000 0.518 1.000
A7 0.000 0.815 0.343 0.000 0.000 0.000 0.000 0.435
A8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 30: -e results of D5(Ai, Ak).

A1 A2 A3 A4 A5 A6 A7 A8
A1 0.000 0.000 0.789 0.149 0.000 0.000 0.000 0.000
A2 0.410 0.000 1.000 1.000 0.000 0.000 0.000 0.000
A3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A5 0.545 0.000 1.000 1.000 0.000 0.000 0.000 0.000
A6 0.000 0.000 1.000 0.723 0.000 0.000 0.000 0.000
A7 0.000 0.000 1.000 0.884 0.000 0.000 0.000 0.000
A8 0.090 0.000 1.000 1.000 0.000 0.000 0.000 0.000

Table 23: -e results of c3(Ai, Ak).

A1 A2 A3 A4 A5 A6 A7 A8
A1 1.000 1.000 1.000 1.000 1.000 0.855 0.000 1.000
A2 0.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000
A3 0.000 1.000 1.000 1.000 1.000 0.000 0.000 0.031
A4 0.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000
A5 0.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000
A6 1.000 1.000 1.000 1.000 1.000 1.000 0.447 1.000
A7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A8 0.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000

Table 24: -e results of c4(Ai, Ak).

A1 A2 A3 A4 A5 A6 A7 A8
A1 1.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000
A2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A3 1.000 0.792 1.000 1.000 1.000 1.000 1.000 1.000
A4 1.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000
A5 1.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000
A6 1.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000
A7 1.000 0.000 0.000 1.000 1.000 1.000 1.000 0.000
A8 1.000 0.929 1.000 1.000 1.000 1.000 1.000 1.000

Table 25: -e results of c5(Ai, Ak).

A1 A2 A3 A4 A5 A6 A7 A8
A1 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000
A2 0.000 1.000 0.000 0.000 1.000 0.246 0.488 1.000
A3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A4 1.000 1.000 0.540 1.000 1.000 1.000 1.000 1.000
A5 0.000 1.000 0.000 0.000 1.000 0.044 0.286 0.818
A6 0.639 1.000 0.000 0.000 1.000 1.000 1.000 1.000
A7 0.397 1.000 0.000 0.000 1.000 1.000 1.000 1.000
A8 0.000 1.000 0.000 0.000 1.000 0.726 0.968 1.000

Table 26: -e results of D1(Ai, Ak).

A1 A2 A3 A4 A5 A6 A7 A8
A1 0.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000
A2 0.000 0.000 1.000 0.000 1.000 0.117 0.000 0.000
A3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A4 0.000 0.000 1.000 0.000 1.000 0.264 0.000 0.000
A5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A6 0.000 0.000 0.758 0.000 1.000 0.000 0.000 0.000
A7 0.000 0.000 1.000 0.000 1.000 0.205 0.000 0.000
A8 0.000 0.000 1.000 0.000 1.000 0.183 0.000 0.000
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and indifference among alternatives. In future, more
effectors will be carried out to explore interrelationships
between QoS attributes. Moreover, the proposed cloud
service selection approach will be utilized in other in-
dustrial cases, such as manufacturing industry, tourist
industry, e-business, and so on to further improve its
practicability.

Appendix

A. Intuitionistic Fuzzy Number Conversion

-is appendix shows the calculation steps of convert the
benefit decision matrix into IFN decision matrix under
C1–C4.

Step 1: -e Quasi-satisfactory value (ξ), Quasi-dis-
satisfactory value (ζ), and Quasi-uncertain value (η)

are calculated as shown in Tables 14–16.

Step 2: -e Quasi-membership degree (κ), Quasi-
nonmembership degree (ς), and Quasi-hesitancy de-
gree (τ) are calculated as shown in Tables 17–19.

Step 3: -en all forms of data are converted to IFNs as
shown in Section 5.1.

B. Concordance Index and Credibility
Score Calculation

-is appendix shows the calculation steps of the concor-
dance index and credibility score between alternatives.

Step 1: -e value of qj, pj, and vj are calculated are
shown in Table 20.
Step 2: cj(Ai, Ak) under each criteria are calculated as
shown in Tables 21–25.
Step 3: cj(Ai, Ak) are weighted and concordance index
C(Ai, Ak) are obtained as shown in Table 8.
Step 4: -e discordance index Dj(Ai, Ak) under each
criteria are calculated as shown in Tables 26–30.
Step 5: -e credibility score S(Ai, Ak) are obtained as
shown in Table 9.
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