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Particle swarm optimization (PSO) has been proven to show good performance for solving various optimization problems.
However, it tends to suffer from premature stagnation and loses exploration ability in the later evolution period when solving
complex problems. +is paper presents a sequential hybrid particle swarm optimization and gravitational search algorithm with
dependent random coefficients called HPSO-GSA, which first incorporates the gravitational search algorithm (GSA) with the PSO
by means of a sequential operating mode and then adopts three learning strategies in the hybridization process to overcome the
aforementioned problem. Specifically, the particles in the HPSO-GSA enter into the PSO stage and update their velocities by
adopting the dependent random coefficients strategy to enhance the exploration ability. +en, the GSA is incorporated into the
PSO by using fixed iteration interval cycle or adaptive evolution stagnation cycle strategies when the swarm drops into local
optimum and fails to improve their fitness. To evaluate the effectiveness and feasibility of the proposed HPSO-GSA, the
simulations were conducted on benchmark test functions.+e results reveal that the HPSO-GSA exhibits superior performance in
terms of accuracy, reliability, and efficiency compared to PSO, GSA, and other recently developed hybrid variants.

1. Introduction

As many real-world optimization problems become in-
creasingly complex, traditional optimization algorithms
cannot sufficiently satisfy the problem requirements and
better effective optimization algorithms are needed. Hence,
various kinds of metaheuristic algorithms that are inspired
by natural phenomena have launched into a center stage in
recent decades for solving complex optimization problems.
Genetic algorithm (GA) [1], particle swarm optimization
(PSO) [2], artificial immune system (AIS) [3], differential
evolution (DE) [4], ant colony optimization (ACO) [5],
glowworm swarm optimization (GSO) [6], artificial bee
colony (ABC) [7], gravitational search algorithm (GSA) [8],
grey wolf optimization (GWO) [9], cat swarm optimization
(CSO) [10], harmony search algorithm (HS) [11], and
bacterial foraging optimization algorithm (BFOA) [12] have
been developed in recent years by researchers and have
shown superior performance for solving a wide range of
optimization problems, such as function optimization

[4–9, 11–15], fuzzy inference system [16, 17], image pro-
cessing [18, 19], economic dispatch [20, 21], and neural
networks training [22, 23].

Overall, the review of the presented literature states that
there is no single superior method for solving optimization
problems. +at is, no one algorithm can solve all of the
optimization problems, but each algorithm can solve a
special class of problems. Although the aforementioned
algorithms that have been proposed to solve optimization
problems do achieve good performance, there are still un-
desirable shortcomings. For instance, PSO often suffers from
premature convergence, whereas it tends to be trapped into
local optima due to the rapid convergence speed [24]. GSA
requires a long computation time to find the solution for
some problems [21]. Hence, there is a lot of room for im-
provement in finding the better optimization algorithm.

Another issue is how to balance the exploration/ex-
ploitation search ability for a single metaheuristic algorithm
including PSO or GSA. +e key operation of metaheuristic
optimization algorithms is how to keep a better trade-off
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between exploitation and exploration abilities in the
searching process. A good algorithm should have the ca-
pability of these two abilities to seek the global optimal
solution. However, some algorithms present more out-
standing advantage on one of these abilities. For instance,
PSO has a tendency to rapid convergence in a multivariable
optimization problem. By comparison, GSAs global explo-
ration performance is particularly conspicuous. Hence, PSO
and GSA approaches possess respective advantages and
potentialities. It encourages us to develop an appropriate
hybridization technique of different metaheuristic algo-
rithms to mitigate the weakness of the original algorithm
and obtain the outstanding optimization performance
against a single algorithm, thereby acquiring rapid response
and avoiding premature convergence.

Inspired by abovementioned ideas, to further improve
the respective drawbacks of PSO and GSA, a novel com-
bination strategy that integrates PSO with GSA, sequential
hybrid particle swarm optimization and gravitational search
algorithmwith dependent random coefficients called HPSO-
GSA, is proposed in this paper based on a sequential hybrid
pattern. To be specific, we first propose a new velocity
updating equation for PSO based on dependent random
coefficients strategy to enhance the balance between ex-
ploitation and exploration search. Second, the existing PSO
evolution framework is improved, and the GSA is incor-
porated into the PSO by using a sequential mode when the
swarm drops into local optimum and fails to improve their
fitness. +at is, the HPSO-GSA first enters into the PSO
phase to update its velocity and position. +en, the GSA
operator is carried out on condition that the fixed iteration
interval cycle or adaptive evolution stagnation cycle strat-
egies are met in the process of evolution. Finally, the per-
formance of the proposed algorithm is evaluated against
PSO, GSA, and state-of-the-art hybrid variants by using a set
of benchmark test functions. +e results reveal that the
proposed HPSO-GSA can achieve better optimization
performance compared with the involved algorithms.

+e remainder of this paper is organized as follows. A
brief review of related works on PSO and GSA is given in
Section 2. Section 3 introduces the proposed HPSO-GSA
approach. In Section 4, the experiments, comparisons, and
discussion for the used benchmark test problems are carried
out to evaluate the performance of the proposed algorithm.
Finally, the conclusion and future work are given in Section
5.

2. Related Works

In this section, we first introduce the relevant backgrounds
including the PSO and GSA algorithms. Next, the state-of-
the-art PSO and GSA hybrid variants are reviewed.

2.1. Particle Swarm Optimization (PSO). PSO is a pop-
ulation-based metaheuristic optimization method, which
was originally introduced by Kennedy and Eberhart [2].
Since its development, PSO has become one of the most
promising optimizing techniques for solving global

optimization problems. +e algorithm is motivated by in-
telligent collective behavior like the movement of a flock of
birds, a school of fish, and a group of ants to seek for foods.
Compared to other optimization techniques, PSO is easy to
implement with few parameters to adjust and is computa-
tionally inexpensive. PSO does not require any gradient
information from the objective functions, and it uses only
primitive mathematical operators through the exchange of
information among candidate individuals (particles), in
order to attain desirable optimization performance. In the
past decades, the PSO has been shown to successfully solve a
wide range of optimization fields. It achieves better results
more speedily andmore cheaply than other methods, such as
GA, DE, and ACO [25].

Suppose that each particle which represents a potential
solution of the problem in the population size N flies
through a D-dimensional search space. It is associated with
two vectors, namely, a position vector xi(t) � [x1

i (t),

x2
i (t), ..., xD

i (t)] and a velocity vector vi(t) � [v1i (t), v2i (t), ...,

vD
i (t)] for the current iteration t. +e personal best expe-
rience of the ith particle is represented by pi(t) �

[p1
i (t), p2

i (t), ..., pD
i (t)], and the best global position of the

swarm found so far is stored in pg(t) � [p1
g(t),

p2
g(t), ..., pD

g (t)]. +e initial position for each particle
xi(0) � [x1

i (0), x2
i (0), ..., xD

i (0)] in the population is ran-
domly generated from in the range of the decision space of
the problem. +e initial velocity vi(0) � [v1i (0), v2i (0), ...,

vD
i (0)] for each dimension is set as a zero vector. +en, the
particle’s velocity and its new position are updated by the
following equations:

v
d
i (t + 1) � w(t)v

d
i (t) + c1(t)r1(t) p

d
i (t) − x

d
i (t)􏼐 􏼑

+ c2(t)r2(t) p
d
g(t) − x

d
i (t)􏼐 􏼑,

(1)

x
d
i (t + 1) � x

d
i (t) + v

d
i (t + 1), (2)

where d ∈ 1, 2, ..., D{ }, i ∈ 1, 2, ..., N{ }.r1(t) and r2(t) are two
mutually independent random coefficients drawn from
uniform distributed within the range [0, 1]. w(t) is the linear
time-varying inertia weight (TVIW) factor within the in-
terval [0.4, 0.9] suggested by Shi and Eberhart [26]. Its goal is
to control the impact of the previous velocity on the current
velocity, thereby influencing the trade-off between global
exploration and local search of the particles. c1(t) and c2(t)

are two linear time-varying acceleration coefficients (TVAC)
suggested by Ratnaweera et al. [27]. +eir objectives are to
control the influence of personal and swarm best experi-
ences, respectively.

2.2. Gravitational Search Algorithm (GSA). GSA inspired by
the Newton law of gravity and mass interactions is a newly
developed swarm-based metaheuristic optimization method
[8]. In GSA, all agents are regarded as objects including
different masses, and their performances are evaluated by
their masses using a fitness function. Each agent attracts each
other agent through the gravity force which is directly
proportional to the product of their masses and inversely
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proportional to the square of the distance between them.
+is force leads to global movement of all agents towards
heavier masses with the aid of the Newtonian law of motion.
+e heavier agent that corresponds to better solution to a
problem moves more slowly than the lighter one. +en, it is
concluded that masses should be attracted by the heaviest
mass which represents an optimum solution in the search
space by lapse of time.

Let us consider a population includingN agents (masses)
in aD-dimensional decision space, and the position vector of
the ith agent is described as xi(t) � [x1

i (t), x2
i (t), ..., xD

i (t)]

at iteration t, where xd
i (t) represents the position of the ith

agent in the dth dimension at iteration t. +e algorithm
initializes theN agents randomly in the given decision space.
During the evolution process, the gravitational force acting
on agent i from agent j at iteration t is defined as (3) and the
whole force that acts on agent i in the dth dimension with
randomly weighted sum of the dth component of the forces
coming from other agents are given as (4):

F
d
ij(t) � G(t)

Mpi(t) × Maj(t)

Rij(t) + ε
x

d
j (t) − x

d
i (t)􏼐 􏼑, (3)

F
d
i (t) � 􏽘

j∈kbest,j≠i
randj × F

d
ij(t), (4)

where Maj(t) represents the active gravitational mass re-
lated to agent j and Mpi(t) represents the passive gravita-
tional mass related to agent i. G(t) is the gravitational
constant defined by (5). ε is a small constant value. Rij(t) is
the Euclidian distance between agents i and j defined by (6).
randj is uniform random number in the interval [0, 1]. kbest
represents the set of first K agents with the best fitness value
and the biggest mass, which is defined as a function of time
with the original value K0 at the beginning, and it is linearly
decreased to 1 by lapse of iteration. Finally, there will be just
one agent applying force to the others:

G(t) � G0 exp −α
t

tmax
􏼠 􏼡, (5)

Rij(t) � xi(t), xj(t)
�����

�����. (6)

According to the Newton law of motion, the acceleration
of an agent is proportional to the resultant force and inverse
of its mass, so the acceleration of the ith agent in dth di-
mension at iteration t is denoted as follows:

a
d
i (t) �

Fd
i (t)

Mii(t)
. (7)

+e next velocity of agent i is defined as a fraction of its
current velocity added to its acceleration. Sequentially, its
next position is calculated based on the corresponding
velocity:

v
d
i (t + 1) � randiv

d
i (t) + a

d
i (t),

x
d
i (t + 1) � x

d
i (t) + v

d
i (t + 1).

(8)

+e mass of agent i is calculated by (9), and the nor-
malization of the calculated mass is given as (10):

mi(t) �
fiti(t) − worst(t)

best(t) − worst(t)
, (9)

Mi(t) �
mi(t)

􏽐
N
j�1 mj(t)

, (10)

Mai � Mpi � Mii � Mi, i � 1, 2, ..., N, (11)

where fiti(t) represents the fitness value of agent i at iteration
t and best (t) and worst (t) represent the best and worst
fitness value in the current population at iteration t, re-
spectively. +e gravitational mass Mi(t) represents the mass
of agent i at iteration twhich embodies the fitness evaluation
value of agent i.

For a minimization optimization problem, best (t) and
worst (t) are defined as follows:

best(t) � min
i∈ 1,...,N{ }

fiti(t),

worst(t) � max
i∈ 1,...,N{ }

fiti(t).
(12)

2.3. State-of-the-Art PSO and GSA Hybrid Variants.
Extensive amounts of works have been performed to im-
prove the original PSO and GSA performance. Among these
works, studies on hybrid systems that combine skilled
metaheuristic optimization algorithms to obtain good
compromise between exploration and exploitation have
gained extensive popularity. +e most classical PSO variants
have been reported in [14, 15, 23, 28–36]. Kao and Zahara
[28] proposed the hybridization strategy of PSO and GA
(GAPSO) for solving multimodal test functions. In GAPSO,
individuals in a new generation are drawn not only from
crossover and mutation operation in GA but also from
movement mechanism in PSO. +e results show the su-
periority of the hybrid GAPSO approach in terms of solution
quality and convergence speed. Esmin et al. [29] introduced
a PSO algorithm coupled with GA mutation operator,
namely, HPSOM, for solving unconstrained global opti-
mization problems. Shunmugalatha and Slochanal [30]
proposed a hybrid particle swarm optimization (HPSO),
which incorporated the crossover, mutation operators, and
subpopulation process in the genetic algorithm into particle
swarm optimization. +e implementation of HPSO on test
functions shows that it converges to better solution much
faster. Zhang and Xie [31] introduced a hybrid particle
swarm optimization with a differential evolution operator
(DEPSO), which provides the bell-shaped mutation with
consensus on the population diversity along with the evo-
lution. A set of benchmark functions was applied to evaluate
its efficiency. A hybrid algorithm named DE-PSO was
proposed by Zhang et al. [32], which incorporates concepts
from DE and PSO, updating particles not only by DE op-
erators but also by mechanisms of PSO. +e proposed al-
gorithm was tested on several benchmark functions. Liu
et al. [14] proposed a novel hybrid algorithm named PSODE,
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where DE is incorporated to update the previous best po-
sitions of PSO particles to force them to jump out of local
attractor in order to prevent stagnation of population. Be-
sides GA and DE, PSO has been hybridized with extremal
optimization (EO) [15], central force optimization (CFO)
[23], estimation of distribution algorithm (EDA) [33], ar-
tificial immune system (AIS) [34], gravitational search al-
gorithm [35], and teaching-learning-based optimization
(TLBO) [36]. Overall, these PSO-based hybrid variants have
been successfully utilized for solving global optimization
problems.

Similarly, a novel hybrid version of GSA variants has
also been reported in [18, 22, 37–39]. For instance, Mir-
jalili et al. [13, 22] proposed a novel hybrid PSOGSA al-
gorithm by adopting a parallel model for solving
benchmark function optimization and feedforward neural
networks. A hybrid approach that integrated differential
evolution into gravitational search algorithm (DE-GSA)
for unconstrained optimization was introduced by Li et al.
[37]. Chen et al. [38] proposed a hybrid gravitational
search algorithm combined with simulated annealing
(GSA-SA) for the traveling salesman problem. A new
hybrid approach, namely, genetic algorithm-based grav-
itational search algorithm (GA-GSA), was proposed to
solve image segmentation [18]. A novel GSA-SVM hybrid
system which hybridizes the GSA with support vector
machine (SVM) was proposed to improve classification
accuracy with an appropriate feature subset in binary
problems [39]. Apparently, these hybrid systems of GSA
have demonstrated powerful results when compared with
other approaches such as the original GSA itself, DE, GA,
and PSO.

2.4. Comparison of Particle Swarm Optimization and Grav-
itational Search Algorithm. To thoroughly understand the
two metaheuristic optimization methods, we have identi-
fied three similarities and four differences between the PSO
and the GSA. +e similarities are as follows: (1) both are
population-based metaheuristic algorithms; (2) particles/
agent positions are updated by iteration; and (3) both al-
gorithms use velocity formulations for position updating.
On the other hand, they differ in the following aspects: (1)
PSO simulates the social behavior of birds, whereas GSA
was inspired by a physical phenomenon; (2) PSO employs
fitness values for the two best positions pbest and gbest,
while GSA uses fitness values to calculate masses that are
proportional to gravitational forces; (3) PSO particles
update their positions by means of dynamic velocities with
cognitive and social behaviors, while GSA agents calculate
their positions using changing accelerations with the
concept of Newtonian gravity; and (4) PSO uses memory to
store and update the velocity with the pbest and gbest,
while GSA is memoryless and is concerned exclusively with
the current status. +erefore, PSO and GSA have their
respective specialties and potentialities to find optimum
solutions. It encourages us to further design a hybridization
of these two techniques to obtain better optimization
performance.

3. Sequential Hybrid Particle Swarm
Optimization and Gravitational
Search Algorithm

As is well known, PSO ensures that the optimization process
converges faster, whereas GSA assures that the search can
jump out of local optima by maintaining the diversity in the
swarm [40]. Moreover, they have different search properties
and movement mechanisms. Hence, we propose the new
sequential hybrid version HPSO-GSA, where PSO is inte-
grated with GSA to combine the merits of both algorithms.
To be specific, first, to further balance between global and
local search of the PSO, dependent random coefficients
(DRCs) strategy (Section 3.1) is introduced into the HPSO-
GSA. Second, to decrease the computational cost due to
GSAs integration in the hybridization, two GSA-embedded
strategies, namely, fixed iteration interval cycle (FIIC)
(Section 3.2) and adaptive evolution stagnation cycle
(AESC) (Section 3.3), are introduced into the algorithm.
Finally, computational complexity of the algorithm in
Section 3.4 is theoretically analyzed based on main
operators.

3.1. Dependent Random Coefficients (DRCs). As shown in
equation (1), the two random coefficients r1(t) and r2(t) are
generated independently, so in some cases, the values of the
r1(t) and r2(t) are too large or too small. For the former
case, both the personal and social influences are excessively
evaluated and the particles are driven too far away from the
suboptimum solution. In the latter case, both the personal
and social influences are negligible and the convergence
speed of the algorithm is sharply reduced. To alleviate these
phenomena, the dependent random coefficients strategies
based on these random variables are introduced as follows:

v
d
i (t +1) � w(t)v

d
i (t) + c1(t)r1(t) 1− r2(t)( 􏼁 p

d
i (t) − x

d
i (t)􏼐 􏼑

+ c2(t)r2(t) 1− r1(t)( 􏼁 p
d
g(t) − x

d
i (t)􏼐 􏼑.

(13)

To demonstrate the impact of the DRC strategy on the
evolution of the population, an experiment was performed
on the Rosenbrock and Ackley test functions. +e average
velocity of particles varying throughout iterations is shown
in Figure 1. On the one hand, it is desirable that the particles
with high velocities can explore large areas in the decision
space to find new regions. From Figure 1, we can see that the
DRC strategy relatively increases the average velocity of the
population in the early iterations, thereby improving the
diversity of the swarm that provides the particles with the
ability to jump out of premature convergence. On the other
hand, in the later stage, the particles in the population need
to exploit local regions more precisely to improve their
performances. It is obvious from the results that the average
velocity of the algorithm with the DRC strategy has a lower
value than that of the algorithm with independent random
coefficients. In this case, the particles can find a better so-
lution with a faster convergence speed in the last iterations.
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Instead, the velocity of the algorithm with independent
random variables decreases slowly. +en, the particles need
more iterations or runtimes to seek an optimum solution.

3.2. Fixed Iteration Interval Cycle (FIIC). A FIIC strategy is
that the GSA is implanted into the PSO evolution framework
according to a fixed iteration interval frequency Tf. For
instance, Tf is set to 10; that is, the GSA can be introduced
into the PSO every ten iterations. However, the optimal
setting of the parameter Tf is relatively challenging and
dependent on the function of termination condition such as
maximum iterations. In most cases, the parameter value Tf is
usually determined through the experience or the parameter
sensitivity analysis. Hence, in this paper, the parameter
sensitivity analysis by means of the experiments was carried
out and the proper parameter value is determined. Too large
or too small values of Tf are not desirable, as the former may
be difficult to utilize the contribution of the GSA, whereas
the latter leads to waste computation resources, thereby
degrading the algorithm convergence speed. According to
the results of the multigroup experiments, the Tf can be set to
a large value in the range [30, 50] to save the convergence
time on condition that the test function is unimodal or
multimodal with relatively less local optima. Similarly, the Tf
can be set to a small value within the range [1, 32] to enhance
the global convergence ability on condition that the opti-
mization function is multimodal with many local optima. In
this work, the Tf is fixed at 20 according to the parameter
sensitivity analysis shown in Section 4.3.

3.3. Adaptive Evolution Stagnation Cycle (AESC). To adap-
tively implant the GSA into the PSO framework to guide the
particles access to potential regions during the entire evo-
lution process, we employ an AESC strategy in the HPSO-
GSA to effectively judge whether the algorithm reaches the

premature stagnation stage.+at is, the particles are found to
be trapped into local optima.+e AESC strategy is defined as
follows:

Definition 1 (evolution stagnation). Suppose the fitness
evaluation function for a given optimization problem is
defined as f(·), and the global best position of the pop-
ulation found so far at iteration t is described as pg(t). For a
small positive constant δ ≥ 0, if and only if
|f(pg(t)) − f(pg(t + 1))|≤ δ is satisfied, in such a way, the
population presents evolution stagnation situation at iter-
ation t+1 in the evolving process, where δ is the evolution
stagnation radius.

Definition 2 (evolution stagnation cycle). For a small po-
sition constant δ ≥ 0, if the population is unvaryingly kept in
evolution stagnation at minimum successive iterations Smin
for radius δ, then the value Smin is defined as evolution
stagnation cycle for radius δ.

+e evolution stagnation cycle is calculated by (14) at the
successive evolving process:

S(t + 1) �
S(t) + 1, f pg(t)􏼐 􏼑 − f pg(t + 1)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ δ,

0, f pg(t)􏼐 􏼑 − f pg(t + 1)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌> δ.

⎧⎪⎨

⎪⎩

(14)

In the HPSO-GSA, the AESC strategy is applied when
the condition S(t + 1)≥ Smin is satisfied; that is, evolution
stagnation cycle S(t + 1) reaches or exceeds its threshold
value Smin. In this case, the GSA operator is added to the PSO
to increase its flexibility for solving more complicated
problems. Hence, the parameter Smin has a direct impact on
the performance of the HPSO-GSA. Too small or too large
value of Smin is undesirable for the HPSO-GSA. In our work,
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Figure 1: Comparison results of average velocity of particles for (a) Rosenbrock and (b) Ackley function.
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we set Smin � 4 in terms of the result of the parameter
sensitivity analysis shown in Section 4.3.

3.4. Computational Complexity Analysis. Computational
complexity is usually regarding the analysis of storage
space requirements and computational time costs. In
most cases, the time complexity analysis is the main issue
for population-based metaheuristic algorithms [15, 23].
Generally, the time complexity of an algorithm is pro-
portional to the number of dimensions D and the number
of particles or agents N in the swarm when only con-
sidering a main loop and therefore can be calculated
according to their main operations and worst case in a full
iteration cycle. A greater number of dimensions D or a
larger population size N will directly result in higher
running time. As a result, the computational step analysis
for PSO, GSA, and HPSO-GSA in an iterative loop is
given in Table 1. From Table 1, the time consumed
considering their main operations and worst case in an
iterative loop for the PSO and the GSA is O(2N + 2ND)

and O(2N + 3ND), respectively. +erefore, the worst-
case consuming time for the HPSO-GSA in a single it-
erative loop is O(3N + 3ND). Apparently, the consuming
time of the algorithm is proportional to the number of
particle N and the dimension of decision space D in the
population. A larger population size N and/or a greater
dimension D will directly result in more running time.
+en, the time complexity for the HPSO-GSA is greater
than that of the PSO or the GSA when the GSA is entered
into the PSO. However, the hybrid approach can avoid
premature convergence and thus is capable of escaping
from local optima with the help of an increase in diversity.
+erefore, the HPSO-GSA is still a very competitive
optimization approach at the expense of a little higher
time resource.

In order to describe clearly the steps of the proposed
algorithm, the detailed pseudocode of the HPSO-GSA al-
gorithm is summarized in Figure 2. It is obvious that the
HPSO-GSA procedure is mainly dependent on the PSO
algorithm with DRCS, and the GSA can be allowed to
perform when the AESC and/or the FIIC strategies are
satisfied.

4. Experimental Setup, Results, and Discussion

In this section, the experimental studies that have been
performed to investigate the performance of the proposed
HPSO-GSA method for classical benchmark test functions
are presented. We first describe the benchmark test func-
tions in Section 4.1. Second, the experimental design in-
cluding parameter settings of the involved algorithms for
comparison is described in Section 4.2. +e parameter
sensitivity analysis of Tf and Smin and the effect of different
strategies in the HPSO-GSA are discussed in Sections 4.3
and 4.4, respectively. Finally, the performance investigation
and comparison of the proposed algorithm is evaluated
between the PSO, the GSA, and other variants of hybrid
algorithm.

4.1. Benchmark Test Functions. +e classical benchmark test
functions with different complexities of the fitness landscape
are shown in Table 2.+ese functions were considered in the
study [15, 41] as well. +is table consists of the brief de-
scriptions of function expressions, their feasible domains,
their optimal positions, and global minimum. All the
functions are minimization problems. +e variable D de-
notes the dimensions of the test functions. +ese functions,
grouped into three sets, were designed to evaluate various
aspects of algorithms.+e first set of f1 (x) to f3 (x) consists of
unimodal test functions. +e second set of f4 (x) to f9 (x) is
multimodal high-dimensional test functions withmany local
optima. Moreover, f8 (x) and f9 (x) are hybrid composition
test functions. +e third set, given by f10 (x), consists of
multimodal test functions with fixed dimensions.

4.2. Parameter Settings of the Involved Algorithms. In this
section, we employ PSO [26], GSA [8], and five hybrid
variants such as DEPSO [31], GAPSO [28], DE-GSA [37],
GA-GSA [18], and PSOGSA [22] for comparison with the
HPSO-GSA. +ese algorithms have a few parameters, some
of which are common and others are specific to the
algorithms.

Common parameters are the number of dimensions for
the search space, the maximum number of iterations, the
population size, and the total number of trials. For all test
functions, except the 2D function Schaffer, we test the ex-
periments with 30 dimensions, that is, D� 30. To assure the
fair assessment between HPSO-GSA and its peers, all PSO
variants are run independently 100 times on the test
functions employed.+e population size is also set to 60.+e
maximum number of function evaluations FEmax is 5000 for
the Schaffer function and 30,000 for the remainders, re-
spectively. +e evolution stagnation radius δ is chosen as
1.0e− 2. +e convergence criterion ε for test functions in 30
dimensions is fixed at 1.0e− 3. Each run stopped when the
maximum number of iterations or the convergence criterion
is reached. Similarly, the population is initialized with its
position and velocity, both of which are randomly selected
from the range [xmax]. We set vmax � 0.5xmax.+e upper and
lower bounds of the particle’s position are limited to the
interval [xmin, xmax], and the maximum velocity is restricted
to vmax. Note that all the experiments are conducted in a
Windows XP Professional OS environment using Intel Core
i5, 2.67GHz, 2G RAM, and the codes are performed in
Matlab 7.0.1.

Besides the common parameters, the parameter con-
figurations for all variants employed are extracted from their
optimized suggestions in the corresponding publications
and are described in Table 3. For our HPSO-GSA, it is
important to note that the evolution stagnation cycle Smin is
selected as 4 and the fixed iteration interval cycle Tf is set to
20 according to the analysis of parameter sensitivity
observation.

4.3. Parameter Sensitivity Analysis. +e key parameters Tf
and Smin have a direct effect on the performance of the
HPSO-GSA. Hence, the experiments are performed to
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investigate the effect of different parameters on the proposed
HPSO-GSA. For simplicity, the maximum number of it-
erations is set as 1000, and other parameters are the same as
previously mentioned. Four well-known test functions,
namely, the Sphere, Rosenbrock, Rastrigrin, and Griewank
problems, have been employed to observe how the algorithm
is affected by these parameters.

First, the parameter Tf of the proposed HPSO-GSA is
tuned. Each test function has been tested on HPSO-GSA
with different values of Tf; however, it is impossible to
evaluate all the cases of the parameter. Hence, the eight
selected values for this parameter Tf � 2, Tf � 5, Tf � 10,
Tf � 15, Tf � 20, Tf � 30, Tf � 40, and Tf � 50 are considered,
respectively. +e results are averaged over 100 independent
runs, and the normalized average best fitness values achieved
for each parameter Tf are shown in Figure 3. Note that the
normalized average best fitness is defined by means of the
variable (Hi(τ) ∈ [0, 1]) calculated as follows:

Ηi(τ) �
fiti(τ) − fitmin(τ)

fitmax(τ) − fitmin(τ)
, (15)

where i represents the group index of different parameters Tf
(apparently, i� 1, 2, . . ., 8) and τ denotes the Sphere,
Rosenbrock, Rastrigrin, and Griewank functions. fiti(τ) is
the average best fitness under the ith parameter Tf for
function τ. fitmin(τ) and fitmax(τ) denote the minimum and
maximum fitness under all of the cases for function τ, re-
spectively. +e aim of normalizing is to reduce the influence
of different magnitudes in the same coordinate. From
Figure 3, it is apparent that the searching capabilities of the
HPSO-GSA are influenced by different parameter Tf. It is an
interesting conclusion that too small or two large values of Tf
tend to compromise the convergence accuracy of the HPSO-
GSA. +e best results are obtained when Tf is fixed at 20 for
most of test functions. Hence, in our simulations, the HPSO-
GSA uses the parameter Tf � 20.

Table 1: Computational complexity analysis for PSO, GSA, and HPSO-GSA.

Main step for PSO Complexity Main step for GSA Complexity Main step for HPSO-GSA Complexity
Evaluate objectives N Evaluate objectives N Evaluate objectives N

Update best positions N Compute masses N Update best positions N

Update velocities N × D Compute accelerations N × D Compute masses N

Compute new positions N × D Update velocities N × D Compute accelerations N × D

Compute new positions N × D Update velocities N × D

Compute new positions N × D

Figure 2: Pseudocode of the HPSO-GSA algorithm.
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Second, the parameter Smin is similarly considered. +e
possible ten scenarios are tested when the range of this
parameter is selected from [1, 10] by step size 1. +e results
obtained by the HPSO-GSA for test functions are given in
Figure 4. It is clear that, for the Rosenbrock function, Smin �

5 produces the best average best fitness. For other functions,
the best results are obtained for Smin � 4. Hence, Smin � 4 is a
desirable choice for the proposed algorithm in the following
experiments.

4.4. Effectiveness of Different Strategies. +e proposed al-
gorithm employs three strategies, namely, DRC, FIIC, and
AESC. To evaluate the impact on the performance im-
provement incurred by each of these strategies, we inves-
tigate the performance of (1) HPSO-GSA without the DRC
strategy and with the FIIC strategy (HPSO-GSA1), (2)
HPSO-GSA without the DRC strategy and with the FIIC
strategy (HPSO-GSA2), (3) HPSO-GSA with the DRC
strategy and the FIIC strategy (HPSO-GSA3), (4) HPSO-
GSA with the DRC strategy and the AESC strategy (HPSO-
GSA4), and (5) the complete HPSO-GSA. For HPSO-GSA,
the three strategies are integrated with the algorithm. In this
experiment, seven test functions, except for function
Schaffer, in 10 dimensions are considered. +e maximum

number of iterations is set to 500, and a total of 30 runs for
each algorithm are conducted.

To assure a fair comparison, we compare the average best
fitness fitaverage values obtained by HPSO-GSA1, HPSO-GSA2,
HPSO-GSA3, HPSO-GSA4, and HPSO-GSA with those ob-
tained by the PSO. +e comparison results are expressed
according to the percentage improvement (%improve) com-
puted as follows [36]:

%improve �
fitaverage(PSO) − fitaverage(η)

fitaverage(PSO)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
× 100%, (16)

where η represents HPSO-GSA variants. If η has better per-
formance (that is smaller average fitness) than PSO, %improve
is positive. Otherwise, it is negative. +e results of fitaverage and
%improve for all involved algorithms are given in Table 4.

From Table 4, all of HPSO-GSA variants have obtained
performance improvement in comparison with the PSO,
implying that the utilization of any strategies, namely, DRC,
FIIC, and AESC, can contribute to improving the PSOs
searching accuracy. Among all the HPSO-GSA variants, the
HPSO-GSA shows best performance according to the largest
average %improve, followed by the HPSO-GSA4, HPSO-
GSA3, HPSO-GSA2, and HPSO-GSA1. +is conclusion
suggests that the integration of three strategies into the

Table 3: Parameter settings of the involved algorithms.

Algorithms Parameter settings Reference
PSO wmax � 0.9, wmin � 0.4, c1 � c2 � 2.0 [26]
GSA G0 � 100, α � 20 [8]
DEPSO c1 � c2 � 2.0, w � 0.4, CR � 0.9, F � 0.5 [31]
GA-PSO c1 � c2 � 2.0, w � 0.4, Pc � 0.55, Pm � 0.01 [28]
DE-GSA G0 � 100, α � 20, CR � 0.9, F � 0.5 [37]
GA-GSA G0 � 100, α � 20, Pc � 0.65, Pm � 0.01 [18]
PSOGSA G0 � 1.0, α � 20, c1 � c2 � 1.0, wmax � 0.9, wmin � 0.4 [22]
HPSO-
GSA G0 � 100, α � 20, wmax � 0.9, wmin � 0.4, c1min � 0.5, c1max � 2.5, c2min � 0.5, c2max � 2.5, Tf � 20, Smin � 4 Present work
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Figure 3: Results of the HPSO-GSA for different parameter Tf.
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HPSO-GSA has significantly improved its optimizing per-
formance. Hence, we use the HPSO-GSA for comparative
study in the following section.

As shown in Table 4, HPSO-GSA3 and HPSO-GSA4
obtain higher average %improve than HPSO-GSA1 and
HPSO-GSA2, especially in multimodal functions. +is
implies that the DRC strategy helps to escape from the
local optima. On the other hand, HPSO-GSA2 and HPSO-
GSA4 show better results against HPSO-GSA1 and HPSO-
GSA3, respectively. +is observation suggests that our
AESC strategy performs better than the FIIC strategy.
Finally, we observe some performance deteriorations in
the functions fSchw and fRas for HPSO-GSA2 and HPSO-
GSA3, as the %improve value of HPSO-GSA3 is lower
than that of HPSO-GSA2. It indicates that the AESC
strategy can effectively improve the searching accuracy in
certain functions in the absence of having the DRC
strategy. +e AESC strategy is more likely to help the
HPSO-GSA to enhance the performance in some cases.

4.5. Comparative Study. To assess the performance of the
HPSO-GSA compared to seven other optimization algo-
rithms, the simulation experiments based on different
measures are presented. +ese measures provide the ability
to evaluate algorithms from different points. First, the
performance results of the HPSO-GSA compared to PSO,
GSA, and other state-of-the-art hybrid variants like DEPSO,
GAPSO, DE-GSA, GA-GSA, and PSOGSA are presented in
Section 4.5.1. Following the experiments, the statistical
comparisons among the involved algorithms are also given
to determine whether improvements of the proposed
method are significant, as shown in Section 4.5.2.

4.5.1. Performance Results. +e simulation results for each
test function are recorded in Tables 5 and 6 based on three
evaluation criteria such as accuracy, reliability, and efficiency
bymeans of themean best fitness (mean), standard deviation
(std. dev.), success rate (SR), and searching time (ST). In
these tables, mean is defined as the average result of best
fitness generated by each algorithm for each function in 100
independent trials. A lowmean is desirable as it indicates the
algorithm has better optimizing accuracy. Std. dev. measures
the amount of variation from the average. A small std. dev.
indicates an algorithm has good stability. SR represents the
consistency of an algorithm to achieve a predefined

convergence level ε among the maximum iterations. A larger
SR implies that an algorithm is more reliable as it can
consistently solve a problem with the accuracy level ε. Fi-
nally, the computational cost can be evaluated by the mean
STwhich represents the algorithm’s convergence speed with
the predefined solution accuracy. +e best results obtained
by the algorithms are shown in bold for each metric.

From Table 5, we observe that HPSO-GSA has the lowest
optimizing accuracy for solving all test functions except for
functions quartic noise and Schwefel. Specifically, for the
previous three unimodal functions, HPSO-GSA shows no
much superior searching accuracy for function quartic
noise, as the smallest mean values have been obtained by
GA-GSA. +e HPSO-GSA significantly outperforms other
algorithms for function Rosenbrock. It implies that the
proposed algorithm provides better exploration ability for
avoiding the premature convergence, as the global optimum
of this function is located in a narrow, long, and parabolic
shaped flat valley. So it is often used to evaluate the ability of
an algorithm in mitigating the stagnation problem. For the
great majority of multimodal functions including complex
hybrid composition, the HPSO-GSA surpasses all the other
contenders as it has the smallest convergence accuracy.
Hence, the HPSO-GSA can provide an appropriate level of
global search escaping from many local optima.

Meanwhile, we present the SR and ST results produced
by all the involved algorithms, as shown in Table 6, in order
to compare the algorithm’s reliability and computational
cost, respectively. First, we observe that the HPSO-GSA and
DE-GSA have more superior searching reliability than their
peers for all the problems, as it converges successfully to the
acceptable accuracy level with success rate 1. It is mentioned
that the PSO never converges to the criteria for test functions
at the predefined level ε. +e remaining algorithms, espe-
cially the DEPSO, GAPSO, GA-GSA, and PSOGSA, are able
to partially solve all the test functions. As a consequence, the
proposed algorithm provides appropriate balance between
exploration and exploitation abilities, guaranteeing to
converge towards the predefined criteria. Second, as for the
searching times, it is clear from Table 6 that the involved
algorithms show various STvalues for each test function. For
instance, the computational overload of the PSO is the
lowest, as it has advantage of fast convergence with simple
implementation and global searching guide, whereas the
second lowest ST values are achieved by the HPSO-GSA for
all the employed functions. +is is because GSA operator is

Table 4: Faverage and %improve results obtained by PSO and HPSO-GSA variants for 10 dimensions in test functions.

Function
Faverage (%improve)

PSO HPSO-GSA1 HPSO-GSA2 HPSO-GSA3 HPSO-GSA4 HPSO-GSA
fSph 1.68e− 13 1.62e− 13 (3.02) 1.56e− 13 (7.16) 1.36e− 13 (20.04) 1.02e− 13 (40.28) 2.61e − 14 (84.52)
fRos 2.92e+ 01 6.87e− 01 (97.26) 4.63e− 01 (98.40) 3.42e− 03 (100.00) 3.56e− 03 (100.00) 2.18e − 03 (100.00)
fQua 8.63e+ 00 8.21e+ 00 (4.86) 6.52e+ 00 (24.45) 4.06e+ 00 (52.95) 3.62e+ 00 (58.05) 1.06e + 00 (87.72)
fSchw −3521.6 −3862.6 (9.68) −4104.3 (16.55) −4043.1 (14.81) −4176.4 (18.59) −4189.8 (18.97)
fRas 6.04e− 02 2.63e− 02 (56.46) 3.62e− 04 (99.42) 5.26e− 04 (99.15) 6.02e− 06 (100.00) 5.08e − 08 (100.00)
fAck 2.68e− 03 1.93e− 03 (27.99) 3.72e− 04 (86.12) 3.11e− 06 (99.88) 8.63E− 08 (100.00) 7.82e − 10 (100.00)
fGri 4.28e− 03 8.32e− 04 (80.56) 2.36e− 05 (99.45) 5.87e− 06 (99.86) 2.31E− 06 (99.95) 2.08e − 10 (100.00)
Average %improve 39.97 61.65 69.52 73.84 84.45
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added to our algorithm, resulting in the smaller com-
putational overload. Other algorithms such as GSA,
DEPSO, GAPSO, DE-GSA, GA-GSA, and PSOGSA re-
quire higher computational times compared to PSO and
HPSO-GSA.+e excellent performance of the HPSO-GSA
in terms of accuracy and success rate also confirms that
the HPSO-GSA is more computationally efficient than
other hybrid variants.

To further evaluate the algorithm’s convergence speed
qualitatively, the convergence curves of all algorithms for all
test functions are presented in Figure 5. +e evolution
tendency of an algorithm represents its convergence be-
havior and its convergence speed throughout the iterations.
From Figure 5, the rapid convergence properties of HPSO-
GSA are reflected by the convergence curves except for
quartic noise and Schwefel functions; that is, HPSO-GSA

Table 5: Mean best fitness (mean) and standard deviation (std. dev.) results for benchmark test functions.

Function PSO GSA DEPSO GAPSO DE-GSA GA-GSA PSOGSA HPSO-GSA

fSph
Mean 1.47e+ 00 5.72e− 07 1.97e− 02 2.06e− 17 2.18e− 23 5.18e− 21 2.52e− 23 1.83e − 24

Std. dev. 3.36e− 01 1.46e− 07 6.26e− 03 2.82e− 18 4.52e− 23 6.22e− 21 1.35e− 23 2.42e − 24

fRos
Mean 8.92e− 01 2.62e− 08 3.06e− 10 3.69e− 09 1.36e− 13 1.11e− 14 1.84e− 16 5.19e − 19

Std. dev. 6.83e− 01 3.26e− 08 2.02e− 10 6.26e− 09 2.74e− 13 2.41e− 14 2.76e− 17 9.25e − 20

fQua
Mean 3.38e+ 00 1.36e− 04 5.42e− 02 4.05e− 04 9.72e− 04 3.12e − 16 2.47e− 06 2.12e− 06

Std. dev. 1.56e+ 00 8.54e− 05 1.63e− 02 4.61e− 04 6.82e− 04 2.41e − 16 6.25e− 06 8.35e− 06

fSchw
Mean 2.88e− 02 3.81e+ 03 1.18e+ 02 8.72e+ 00 2.61e − 08 2.88e− 05 1.11e− 02 2.55e− 05

Std. dev. 5.42e− 01 5.52e+ 02 4.54e+ 02 3.65e+ 00 9.52e − 08 3.51e− 06 7.26e− 02 1.37e− 06

fRas
Mean 3.12e+ 02 5.87e+ 01 1.09e+ 01 1.76e− 15 6.91e− 12 1.98e+ 00 8.95e+ 00 4.02e − 22

Std. dev. 3.57e+ 01 5.52e+ 00 7.26e+ 00 3.25e− 15 4.21e− 12 4.56e− 01 2.73e+ 00 2.84e − 22

fAck
Mean 2.01e+ 01 3.56e− 10 2.59e− 09 2.66e− 15 1.92e− 10 8.77e− 10 8.88e− 16 1.86e − 19

Std. dev. 5.42e− 00 4.65e− 10 3.81e− 09 6.26e− 15 4.26e− 10 2.15e− 10 3.55e− 16 2.37e − 19

fGri
Mean 1.67e− 01 1.97e− 02 5.91e− 02 1.21e− 01 3.06e− 07 7.39e− 03 9.85e− 03 1.21e − 09

Std. dev. 6.83e− 02 8.21e− 02 3.31e− 02 6.24e− 01 4.65e− 07 1.26e− 04 5.73e− 03 6.52e − 09

fPen1
Mean 2.68e+ 00 6.22e− 01 6.39e− 09 9.37e− 23 3.26e− 21 1.52e− 19 5.21e− 23 2.54e − 32

Std. dev. 1.34e+ 00 6.37e− 01 3.62e− 09 5.36e− 23 4.25e− 21 5.62e− 19 4.26e− 23 1.53e − 32

fPen2
Mean 3.11e− 01 1.09e− 02 1.29e− 18 4.08e− 18 2.18e− 22 1.52e− 08 2.86e− 20 1.25e − 22

Std. dev. 9.64e− 02 4.22e− 02 4.62e− 18 6.85e− 18 3.25e− 22 5.23e− 08 3.65e− 20 9.64e − 22

fSch
Mean 9.72e− 02 5.77e− 04 1.57e− 04 3.94e− 09 1.54e− 09 2.24e− 05 1.99e− 17 9.13e − 19

Std. dev. 2.23e− 03 4.62e− 04 3.64e− 04 2.12e− 09 6.73e− 09 6.42e− 05 2.12e− 17 8.35e − 19
Best results are provided in bold.

Table 6: Success rate (SR) and searching time (ST, in seconds) results for benchmark test functions.

Function PSO GSA DEPSO GAPSO DE-GSA GA-GSA PSOGSA HPSO-GSA

fSph
SR 0.58 1.00 0.86 1.00 1.00 1.00 1.00 1.00
ST 2.54 15.62 18.46 12.62 22.85 20.26 20.24 4.83

fRos
SR 0.12 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ST 2.66 16.06 26.21 16.52 25.85 21.34 19.42 6.33

fQua
SR 0.00 1.00 0.52 1.00 1.00 1.00 1.00 1.00
ST 4.23 23.74 22.46 16.88 30.22 24.62 25.42 8.32

fSchw
SR 0.34 0.00 0.00 0.00 1.00 1.00 0.75 1.00
ST 4.63 18.22 24.86 15.32 24.52 20.68 20.66 4.68

fRas
SR 0.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00
ST 3.22 19.68 24.63 16.22 26.53 23.52 20.08 5.26

fAck
SR 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ST 3.56 18.86 20.31 13.94 25.44 20.28 19.51 4.36

fGri
SR 0.00 0.85 0.32 0.00 1.00 0.90 0.92 1.00
ST 3.34 19.08 22.35 14.82 26.73 23.90 19.06 5.43

fPen1
SR 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
ST 5.83 20.52 16.85 19.73 25.06 22.52 22.05 9.17

fPen2
SR 0.00 0.26 1.00 1.00 1.00 1.00 1.00 1.00
ST 4.32 16.53 15.66 16.08 25.23 23.55 20.04 8.26

fSch
SR 0.72 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ST 0.92 3.06 4.52 3.44 5.21 4.81 4.52 1.08

Best results are provided in bold.
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Figure 5: Continued.
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Figure 5: Continued.
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requires the less computational time to converge to ac-
ceptable level ε with less iteration. To be specific, PSO and
DEPSO do not reach the specified convergence level if the
function evaluation numbers are extended for function
sphere. For Rosenbrock function, all the algorithms except
for PSO converge to reach the criterion. Moreover, the best
results are obtained by HPSO-GSA. As for multimodal
functions, DE-GSA and HPSO-GSA show similar conver-
gence curves for function Rastrigin; however, HPSO-GSA
achieves better optimization accuracy. Meanwhile, GSA,
DEPSO, DE-GSA, GA-GSA, and HPSO-GSA can contin-
uously optimize the function Ackley throughout the func-
tion evaluation numbers, though they only provide a slower
convergence speed. It reveals that the convergence accuracy
may improve if the evolutionary process is continued. It is
worth mentioning that more than half of hybrid variants
including GAPSO, DE-GSA, GA-GSA, PSOGSA, and
HPSO-GSA exhibit better convergence characteristics by
extending the evolutionary process.+ey can converge to the
predefined level ε in the early or middle stages of optimi-
zation. +is implies that the incorporation of different al-
gorithms can enhance optimization ability of the original
algorithm, as it provides more mechanisms to mitigate the
stagnation problem. Generally, the HPSO-GSA provides
more competitive performance in terms of global accuracy
and success rate, compared to other hybrid variants.

4.5.2. Statistical Comparisons of Different Algorithms. To
thoroughly compare the HPSO-GSA with its competitors,
we perform a two-tailed Taillard test (t-test) [42] with 58
degrees of freedom at a 0.05 level of significance and the
Wilcoxon test [43]. Results of t-test (T) achieved by all the

involved algorithms based on mean best fitness and success
rate are reported in Tables 7 and 8, respectively. Addi-
tionally, we rank (R) the algorithms from the smallest mean
value to the largest one for each function. +e algorithms
that are not statistically different from each other are given
the same rank. +e corresponding ranking R values are also
listed in Table 7. To obtain the overall performance, we
summarize the T values among HPSO-GSA and other peers
as “+/� /−” in the last row of the table. +e “+/� /−” denotes
the number of test functions that HPSO-GSA performs
significantly better, almost the same as and considerably
worse than its competitors, respectively. Meanwhile, the
overall average ranks over the number of test functions and
the order of the average ranks are listed in Table 7.

From Table 7, we observe that the number of test
functions where HPSO-GSA performs considerably better
than its contenders (T� “+”) is much larger than the number
of test functions where HPSO-GSA obtains significantly
worse results than its peers (T� “−”). +en, the best
searching accuracy of HPSO-GSA among 8 algorithms is
further validated by the t-test results. Particularly, the
HPSO-GSA significantly surpasses all of its peers for
functions Sphere, Rosenbrock, Rastrigin, Ackley, Griewank,
Penalized1, Penalized2, and Schaffer. Moreover, the t-test
results indicate that HPSO-GSA is statistically different in all
the compared algorithms including PSO, GSA, DEPSO, and
GAPSO. Also, based on the average ranks, the algorithms are
sorted into the following order: HPSO-GSA, PSOGSA, DE-
GSA, GA-GSA, GAPSO, DEPSO, GSA, and PSO. Due to the
total and average ranks of HPSO-GSA are smaller than those
of other algorithms, HPSO-GSA obtained a better overall
performance than all other algorithms. Moreover, the
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Figure 5: Convergence curves of mean best fitness obtained by all algorithms for benchmark test functions: (a) Sphere; (b) Rosenbrock;
(c) quartic noise; (d) Schwefel; (e) Rastrigin; (f ) Ackley; (g) Griewank; (h) Penalized1; (i) Penalized2; (j) Schaffer.
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analysis indicates that HPSO-GSA (with both the private
thinking parts of the PSO and sequential mode) performs
better than PSOGSA (without the personal thinking part of
the PSO).

It is apparent from Table 8 that the number of test
functions where HPSO-GSA performs considerably better
than and almost the same as its contenders (T � “+” and
“�”) is much larger than the number of test functions where
HPSO-GSA obtains significantly worse results than its
peers (T� “−”). It reveals that HPSO-GSA is statistically
different from GAPSO, DE-GSA, GA-GSA, and PSOGSA.
If we increase the convergence level in the experiments, the
“+” values in this table would increase and HPSO-GSA
exhibits more excellent performance compared to other
algorithms.

To compare the performance difference between HPSO-
GSA and the other nine algorithms, we also conduct a

Wilcoxon signed-rank test. Table 9 shows the resultant p

values when comparing HPSO-GSA with other algorithms.
+e p values below 0.05 are shown in bold. +e results show
that HPSO-GSA is significantly better than other algorithms

Table 8: Results of t-test (T) of all the involved algorithms based on success rate.

Function PSO GSA DEPSO GAPSO DE-GSA GA-GSA PSOGSA HPSO-GSA
fSph + = + = = = =
fRos + = = = = = =
fQua + = + = = = =
fSchw + + + + = = +
fRas + + + = = + +
fAck + = = = = = =
fGri + + + + = + +
fPen1 + + = = = = =
fPen2 + + = = = = =
fSch + = = = = = =
+/ = /− 10/0/0 5/5/0 5/5/0 2/8/0 0/10/0 2/8/0 3/7/0

Table 7: Results of t-test (T) and ranking (R) of all the involved algorithms based on mean best fitness.

Function PSO GSA DEPSO GAPSO DE-GSA GA-GSA PSOGSA HPSO-GSA

fSph
T + + + + + + +
R 8 6 7 5 2 4 2 1

fRos
T + + + + + + +
R 8 7 5 6 4 3 2 1

fQua
T + + + + + − =
R 8 4 7 4 4 1 2 2

fSchw
T + + + + − = +
R 6 8 6 5 1 2 4 2

fRa
T + + + + + + +
R 8 6 6 2 3 4 4 1

fAck
T + + + + + + +
R 8 4 7 3 4 4 2 1

fGri
T + + + + + + +
R 7 5 5 7 2 3 3 1

fPen1
T + + + + + + +
R 8 7 6 2 4 5 2 1

fPen2
T + + + + + + +
R 8 7 4 4 1 6 3 1

fSch
T + + + + + + +
R 8 6 6 3 3 5 2 1

Average
ranks 8 (9.63) 7 (7.50) 6 (7.37) 5 (5.13) 3 (3.50) 4 (4.63) 2 (3.25) 1 (1.50)

+/= /− 10/0/0 10/0/0 10/0/0 10/0/0 9/0/1 8/1/1 9/1/0

Table 9: Results of Wilcoxon test between HPSO-GSA and other
algorithms on test functions.

HPSO-GSA p values
PSO 0.003
GSA 0.016
DEPSO 0.012
GAPSO 0.036
DE-GSA 0.263
GA-GSA 0.042
PSOGSA 0.292
+e p values below 0.05 are shown in bold.
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except for DE-GSA and PSOGSA. However, HPSO-GSA
significantly outperforms DE-GSA and PSOGSA according
to the searching accuracy in Table 5 and the average ranks in
Table 7.

Based on the aforementioned performance evaluation
and statistical results, we conclude that the proposed hybrid
algorithm performs better overall in the involved test
functions compared to PSO, GSA, DEPSO, GAPSO, DE-
GSA, GA-GSA, and PSOGSA.

5. Conclusion

In this paper, a novel hybridization approach of PSO and
GSA through sequential pattern, namely, HPSO-GSA, which
consists of three learning strategies, dependent random
coefficients, fixed iteration interval cycle, and adaptive
evolution stagnation cycle, is proposed to solve the global
optimization problems. +e employment of the dependent
random coefficients enhances the better balance between
global and local searches, as it improves the diversity of the
swarm. +e fixed iteration interval cycle and adaptive
evolution stagnation cycle is proposed for seamlessly inte-
grating PSO and GSA in a less computational cost, thereby
enhancing the algorithm’s convergence speed. Meanwhile,
the GSA operators encourage exploration and thus improve
the premature stagnation problem.+e experimental studies
were performed to assess the performance of the proposed
HPSO-GSA for solving benchmark test functions, as well as
the impact of each employed strategy on the performance of
the algorithm. +e results indicate that the HPSO-GSA
achieves better performance than its contenders investigated
in this paper in terms of searching accuracy, algorithm
reliability, and computational cost. Hence, the HPSO-GSA is
a promising alternative solution to optimization problem.
Possible future work includes extending the application of
HPSO-GSA in the real-world optimization problem. In
addition, we will investigate the suitable hybridization
strategies to alleviate the stagnation tendency of HPSO-GSA.
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