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Aerosol concentration in the flow is usually time varying, and aerosol particle size distribution (PSD) is considered to be
unchanged, which increases the difficulty of the measurement of aerosol PSD and concentration online. To solve these problems, a
kind of multistep inversion method based on the angular light-scattering (ALS) signals is proposed. First, the aerosol PSD is
estimated using shuffled frog-leaping algorithms (SFLAs) from relative ALS signals. +en, with aerosol PSD as priori information,
the aerosol concentration is obtained by the Kalman filter (KF) algorithm, widely used in the real-time control system of industrial
facilities for its ability of fast predictions. +e result reveals that the performance of the improved SFLA is better than that of the
original SFLA in solving the aerosol PSD. Moreover, in studying the aerosol concentration, more accurate results can be obtained
with larger standard deviation of process noise or smaller standard deviation of measurement noise, while decreasing sampling
time interval can improve the accuracy of retrieval results and reduce time delay to a certain degree. So, to improve retrieval
accuracy, the noise should be controlled, and appropriate sampling time interval should be selected. All the numerical simulations
confirm that the methodology provides effective and reliable results in real-time estimating.

1. Introduction

Aerosols usually play a pivotal role in determining the
properties of the atmosphere, e.g., by reducing visibility or
affecting the net radiative fluxes and temperature [1–3].
Considerable researches have been carried out on studying
the aerosol particle size, optical constant, and concentration
in the particle dispersed medium, e.g., Aerosol Robotic
Network (AERONET) and Moderate Resolution Imaging
Spectroradiometer (MODIS), which are the global ground-
based aerosol observation networks established to study the
properties of the atmospheric aerosols [4, 5]. Usually, in the
atmosphere, the aerosol affects the radiative transfer, me-
teorological phenomena, and climate trends. +e aerosol
particle size distribution (PSD) and concentration are
regarded as the important indicators of industrial emissions.
+e aerosol PSDs are usually treated as constants, while the

aerosol concentration is usually changing over time, which
increases the difficulty of the online monitoring of the PSDs
and time-varying particle concentration [6–9].

+e online particle monitoring has been widely studied
[10–12], and the common measurement techniques for
studying the properties of the particles contain optical
measurement methods, acoustic measurement methods, and
electric induction methods [10, 13]. In the past few years, the
optical measurement method (e.g., spectral extinction
method, angular light-scattering method, diffraction light-
scattering method, dynamic light-scattering method, laser-
induced incandescence method, and laser-induced break-
down spectroscopy method) has been widely utilized to
study the properties of particle system owing to offering a
useful and effective approach to characterize a large number
of industrial production processes.+eir measurements vary
from nanometer to millimeter [14]. Among these optical
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measurement methods, the angular light-scattering (ALS)
method is regarded as one of the most viable. For example,
the ALS method was applied to study the fractal dimension
and size distribution of noncompact soot aggregates [15], the
optical constants of the particle [16], the particle size dis-
tribution [17, 18], and the particle concentration [19–22]. In
the author’s previous work [23, 24], the ALS method
combined with inverse radiative problem technique is
successfully applied to study the PSD and optical constants.
Moreover, the convergence accuracy and robustness of the
ALS method was proved to be better than that of the spectral
extinction method.

In the present study, to make the problem mathemati-
cally trackable, the aerosol particle is assumed to be
spherical, and the optical properties of aerosol particles are
simulated by the Mie theory. +e ALS method is introduced
to study the aerosol PSD and time-varying aerosol con-
centration. Moreover, considering the properties of the
aerosol PSD and aerosol concentration mentioned above, a
kind of multistep inversion method is proposed. First, the
aerosol PSD is retrieved by shuffled frog-leaping algorithms
(SFLAs) [25] from the relative ALS signals, which is inde-
pendent of the aerosol concentration. +en, the solved
aerosol PSD is regarded as known quantity, and the aerosol
concentration is monitored by the Kalman filter (KF) al-
gorithm, which performs very well in real-time control
systems of industrial facilities for its ability of fast predic-
tions, such as the particle monitoring [26, 27], species
monitoring in combustion applications [28, 29], and others
[26, 28, 30–32]. Finally, main conclusions and prospects for
further research are provided.

2. Methodology

2.1. Angular Light-Scattering (ALS) Method. When a colli-
mated light with intensity I0 impinges on a particle system,
the transmitted light is scattered and absorbed by the par-
ticles. If the aerosol is optically thin and the independent
scattering dominates, the real-time angular light-scattering
(Figure 1) intensity I (θ, t) at the angle θ can be expressed as
follows [33–36]:

I(θ, t) �
πND(t)

λ
􏽚

Dmax

Dmin

i θ, mλ, D, λ( 􏼁f(D)dD, (1)

where D is the diameter of the particle; Dmin and Dmax
denote the lower and upper integration limits of particle size;
I (θ, t) denotes the angular light-scattering intensity at angle
θ and time t, which can be measured by the optical sensor;
ND (t) is the unknown number concentration of suspended
particle system which is a function of measurement time t; f
(D) is the unknown particle size distribution (PSD) which is
usually regarded as unchanged in the particle system; and i
(θ,mλ,D, λ) denotes the light-scattering intensity of particles
with diameter D at the angle θ from the incident direction,
which can be derived in terms of theMie scattering functions
i1 (θ, mλ, D, λ) and i2 (θ, mλ, D, λ) [18, 37, 38]:

i θ, mλ, D, λ( 􏼁 �
i1 θ, mλ, D, λ( 􏼁 + i2 θ, mλ, D, λ( 􏼁

8π2
λ2I0, (2)

where mλ, an optical constant, refers to the interaction
between particles and incident light and λ denotes the in-
cident wavelength (μm).

2.2. Shuffled Frog-Leaping Algorithms (SFLAs)

2.2.1. Original SFLA. +e original SFLA, based on the
evolution of memes carried by interactive individuals and
global exchange of information among the interactive
population, was developed by Eusuff and Lansey [39] to seek
a global optimal solution by performing an informed
heuristic search using a heuristic function. +e concept of
memetic comes from the word “meme” which can be
considered as the unit of culture evolution and the sample of
virtual frogs which stands for a possible solution constitutes
a population.

First, the total number of the frogs S in the swarm and
the number of unsolved variables N are fixed and the initial
virtual frog population PX � [X1, X2, . . ., XS] is generated
randomly in the original SFLA. Each frog is represented by a
1-D vector Xi � [xi1, xi2, . . ., xiN], which denotes a potential
solution of the inverse problem. +e frogs are evaluated and
sorted in a descending order according to the value of fitness
function, and the frog with the global best fitness is recorded
and identified asXg.+en, the entire swarm is divided intom
memeplexes each holding n frogs such that N�m× n. +e
memeplexes can be regarded as the parallel frog cultures for
the same goal. Each frog culture proceeds towards their goal
independently. +e kth memeplexes Mk are defined as
[25, 39, 40]

Mk � Xk+m(l− 1) ∈ PX
􏼌􏼌􏼌􏼌 l � 1, 2, . . . , n􏽮 􏽯, k � 1, 2, . . . , m.

(3)

+e frogs with the best and worst fitness values of each
memeplex are identified as Xb and Xw. After the previous
preparation, the evolution process is conducted to search the
solution of the inverse problem. However, not all the frogs
change their positions in the searching process, but only the
ones with the worst fitness in each memeplex. +e corre-
sponding positions of the worst frogs are adjusted as follows:

d � Rand1 · Xb − Xw( 􏼁, (4)

Xw′ � Xw + d, (5)

where d� [d1, d2, . . . , dN] with dmin ≤ dj ≤dmax, dmax and
dmin denote the maximum and minimum allowed limits for
a frog’s position, respectively; Rand1 is the uniformly dis-
tributed random numbers in the range of [0, 1]; and Xw′
denotes the new position of the worst frog. +e new gen-
erated position will be valuated after updating, and the worst
frog will be replaced if the fitness function value of the new
position is superior to that of the original one. Otherwise, the
execution of equations (4) and (5) is repeated with respect to
the global best frog. In the calculation of the step size d, the
best frog in this memeplex Xb is replaced by the global best
frog Xg. +is operation is going to be repeated for Emax times
before taking the next step. A new random frog will be
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generated to replace the worst frog if there is no im-
provement of the new frog. All the frogs are mixed together
and redivided intommemeplexes when this process is done.
+e information of each memeplex is passed between each
other through the shuffling process. +e whole process is
repeated unless the iteration number reaches the user-de-
fined iteration limit, or the fitness function value of global
best position is less than the tolerance. +e details of the
SFLA are available in Ref. [25].

2.2.2. Improved SFLA. In the SFLA, the initial positions are
generated by random numbers. In this way, some of the
initial positions are too close to each other. To solve these
problems, the Chaos theory, the highly unstable motion of
deterministic systems in finite phase space often existing in
nonlinear systems, is applied to initialize the positions of the
frogs. +e Chaos theory studies the behavior of dynamical
systems that are highly sensitive to initial conditions, an
effect that is popularly referred to as the butterfly effect [41].
+e typical logistic mapping to generate the Chaos signal is
described as follows [41]:

r(0) � Rand2,

r(k + 1) � μr(k)[1 − r(k)], k � 0, 1, . . . , S − 1,
􏼨 (6)

where Rand2 is a uniformly distributed random number in
the range of [0, 1] and μ is the control number; when μ� 4.0,
the logistic mapping is in a fully chaotic state.

Moreover, although each frog culture evolves a certain
iteration without the exchange of information with other
cultures to improve the local searching ability, the infor-
mation exchange within each culture only proceeds between
the best and worst frogs which will restrict the convergence
speed and the local search ability. Each memeplex is iterated
plenty of times caused by the low convergence, which oc-
cupies large amount of calculation time. To remedy these
problems, the particle swarm optimization (PSO) algorithm
is introduced to improve the SFLA by accelerating the
convergence speed and local searching ability in each
memeplexes. +e basic principle of the algorithm can be

explained as follows. After local search process, i.e., updating
the worst frog in each memeplex, the whole frog population
is shuffled and divided into new memeplexes. Subsequently,
the PSO algorithm is introduced to improve the local search
process in each memeplex. +e velocity and position evo-
lution equations of the worst frog in each memeplex are
expressed as [42]

Vw′ � C1 · Rand3 · Vw + C2 · Rand4 · Xg − Xw′􏼐 􏼑, (7)

Xw″ � Xw′ + Vw′ , (8)

where Rand3 and Rand4 are two uniformly distributed
random numbers in the range of [0, 1] and C1 and C2 are two
positive constants called acceleration coefficients. +e
pseudocode for the improved SFLA can be summarized as
follows:

(i) Step 1: input the system control parameters of the
improved SFLA, i.e., the total number of frogs in
the swarm S, the numbers of memeplexes m, the
number of frogs in eachmemeplex n, the number of
evolutionary iterations Emax, the maximum itera-
tion limit Nc, the number of unsolved variables N,
the searching space [lowi, highi] of each variable,
and the tolerance for minimizing the fitness
function value ε.

(ii) Step 2: initialize the frogs’ positions by mapping the
chaotic sequence, which is generated by equation
(6), to the search space.

(iii) Step 3: evaluate the frogs and calculate the corre-
sponding fitness, and then rank them in the
descending order.

(iv) Step 4: divide the frogs into m memeplexes
according to equation (3).

(v) Step 5: generate the new position of the worst frog
in each memeplex by using equations (7) and (8). If
the position of the new frog is better, then use it to
update the worst frog. Otherwise, repeat this step by
replacing Xb with Xg.
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Figure 1: Geometry and physical model of the angular light-scattering method.
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(vi) Step 6: evaluate the new generated frog. If the
position of the new frog is superior, then use it to
update the worst frog and go to Step 7. Otherwise
go to Step 5 until the maximum evolution iterations
Emax is reached.

(vii) Step 7: go to Step 4 until one of the stop criteria is
reached. +e stop criteria are as follows:

(1) +e iteration number reaches the user-defined
iteration limit Nc, iter (t)>Nc

(2) +e fitness function value of global best position
is less than the tolerance ε, Fitness (Xg)< ε

2.3. Kalman Filter Algorithm (KF). In this study, the un-
known time-varying particle number concentration in a
particle dispersed system is predicted by measuring real-
time ALS intensity, and the equation (1) can be transformed
to a linear system and described as
I(θ, t)

I0
� B · ND(t),

B �
λ
8π

􏽚
Dmax

Dmin

i1 θ, mλ, D, λ( 􏼁 + i2 θ, mλ, D, λ( 􏼁􏼂 􏼃f(D)dD.

(9)

According to the Kalman filter algorithm, when there is
white Gaussian noise added to the measurement signals, the
linear system can be expressed by the following state and
measurement equations [43, 44]:

X(k) � Φ(k − 1)X(k − 1) + w(k − 1),

Y(k) � H(k)X(k) + v(k),
(10)

where X(k),X(k − 1) ∈ Rn denotes the n-dimensional state
vector at instant k and k − 1, respectively, and
X(k) � ln τ(tk) in the present study; Y(k) ∈ Rm represents
them-dimensional observation vector at instant k;Φ(k − 1)

represents the state transition matrix at instant k − 1; H (k)
stands for the observation matrix at instant k; and w (k − 1)
and v (k) denote the mutually uncorrelated process noise at
instant k − 1 and measurement noise at instant k, respec-
tively, with zero mean and covariance matrix written as
[43, 44]

E[w(k)] � 0,

E w(k)wT
(j)􏽨 􏽩 � Q(k) � diag σ2Q􏽨 􏽩,

E[v(k)] � 0,

E v(k)vT
(j)􏽨 􏽩 � R(k) � diag σ2R􏽨 􏽩,

(11)

whereQ andR denote the covariance matrices of the process
noise and themeasurement noise, respectively; σQ and σR are
the standard deviations of the process noise and measure-
ment noise, respectively. To simplify the problem, the
measurement noise is assumed to be additive noise and obey
the standard Gaussian distribution. Usually, the Kalman
filter algorithm contains two update steps. +e time update
mainly can be divided into state prediction and covariance

prediction, while the measurement update is composed of
gain calculation, state correction, and covariance correction.
+e time update equations and measurement update
equations of the Kalman filter algorithm can be written as
follows [44, 45]: (i) Predicting the present stage on the basis
of the previous moment stage

X(k | k − 1) � Φ(k − 1)X(k − 1),

P(k | k − 1) � Φ(k − 1)P(k − 1)ΦT
(k − 1) + Q(k − 1).

(12)

(ii) Updating the measurement stage from the corrected
prediction stage based on the present measurement signals

s(k) � H(k)P(k | k − 1)HT
(k) + R(k),

K(k) � P(k | k − 1)HT
(k)s

− 1
(k),

Y(k) � [Y(k) − H(k)X(k | k − 1)],

X(k) � X(k | k − 1) + K(k)Y(k),

ND tk( 􏼁 �
X(k)

B
.

(13)

Moreover, the posterior covariance is updated as follows:

P(k) � [I − K(k)H]P(k | k − 1), (14)

where P denotes the error covariance matrix of the state
estimate vector. +e flowchart of numerical procedures for
retrieving the real-time particle number concentration using
the KF algorithm is shown in Figure 2. First, the exact value
of particle concentration is used to calculate the ALS signals,
which is treated as the measurement signals in the simu-
lation experiment without noise. +en, the measurement
noise and process noise are added to the measurement
signals to simulate observation measurement signals with
noise. Finally, the KF algorithm is applied to obtain the
retrieval value of particle concentration from the obversion
measurement signals with noise.

2.4. Inverse Process. According to the theory of the inverse
radiative problems [46], the inversion of multiple parame-
ters usually requires the inverse model to have better con-
vergence characteristics to avoid the multivalue
characteristics of the retrieval results and make sure each
parameter with good inverse accuracy. So, when the inverse
model and algorithm are fixed, the dimension of the un-
solved parameters should be reduced as much as possible,
and the inversion strategies are very important.

To solve the problem, a kind of multistep inversion
strategy is proposed in this study. +e strategy is to perform
the inversion studies on some easily accessible parameters
first. +en, these parameters are regarded as known quantity
to reconstruct other unsolved parameters. Based on this
idea, the aerosol PSDs are estimated from the relative ALS
signals at first, and the mathematical expression of IR (θ) is
derived as
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IR(θ) �
I(θ, t)

I θ0, t( 􏼁
�

􏽒
Dmax

Dmin
i θ, mλ, D, λ( 􏼁f(D)dD

􏽒
Dmax

Dmin
i θ0, mλ, D, λ( 􏼁f(D)dD

, (15)

where θ0 denotes the angle of the reference signals which can
be found in Figure 1. From equation (15), it can be found
that the relative ALS signals are not involved with the
number concentration of suspended particle system. So, the
aerosol PSDs can be reconstructed without considering the
effect of the time-varying particle number concentration.
Subsequently, the time-varying particle number concen-
trationND(t) is estimated from the real-time light-scattering
intensity with the aerosol PSDs as the priori information. In
this study, the aerosol PSDs are estimated by the SFLA and
improved SFLA from relative ALS signals, respectively, and
the time-varying particle number concentration ND(t) is
estimated by the KF algorithm from the real-time light-
scattering intensity. +e logical relationship of numerical
procedures for online monitoring the aerosol PSDs and the
real-time particle number concentration is shown in
Figure 3.

3. Numerical Simulation

According to our previous work [23], the optical constant of
the aerosol particle in the present study is set as
mλ � 1.53 + 0.01i, and the measurement wavelength is set as
λ� 0.5 μm. All the simulations were performed on an Intel
Core i7–6500 PC by using Matlab 2016. According to Ref.
[46], the particle size range is set as [0.1 μm, 10 μm]. To make
the problem mathematically trackable, the particle size
distribution was assumed to be constant and obeys the
common log-normal (L-N) and gamma function,

respectively, and the corresponding mathematical expres-
sions are expressed as

fL− N(D) �
1

���
2π

√
D ln σ

× exp −
(lnD − lnD)2

2(ln σ)2
􏼢 􏼣,

fGamma(D) � D
α

× exp − βD
c

( 􏼁,

(16)

where D is the average diameter of L-N distribution; σ
denotes the width of the distribution; and α, β, and c are the
characteristic parameters of the gamma distribution. Usu-
ally, in the modified form, c � 1, so only parameters α and β
in the gamma distribution need to be investigated, re-
spectively. +e retrieval of the aerosol PSDs is solved by
minimizing the fitness function value Fitness, which is
defined as the sum of the square residual between the es-
timated and measurement signals ratios. +e mathematic
expression of Fitness is derived as

Fitness � 􏽘

Nθ

i�1

IR θi( 􏼁est − IR θi( 􏼁mea
IR θi( 􏼁mea

􏼨 􏼩

2

, (17)

where Nθ is the number of the measurement angles. For the
inverse algorithms are the stochastic optimization method
and all optimizations have certain randomness, all the
calculations are repeated 20 times. To ensure the online
monitoring, the relative ALS signals for repeated calcu-
lations are obtained at 20 different measurement moments.
+e PSD is assumed to be unchanged during different
measurement moments, and the average value of the 20
times retrieval results is regarded as the final retrieval
results. For the purpose of investigating the reliability and
feasibility of the inverse algorithms, the relative standard
deviation ξ, which means the sum of the deviation between
the probability distribution estimated from the inverse
calculation and the true distribution of aerosol PSDs in
every subinterval, is studied to evaluate the quality of
inverse results, and its mathematic expression is described
as
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Figure 3: Logical relationship of multistep inversion method for
online monitoring the aerosol PSDs and real-time particle number
concentration.
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Figure 2: Flowchart of the numerical procedure for studying the
real-time particle number concentration using the KF algorithm.
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ξ �
􏽐

N′
i�1 fX,est

􏽥Di( 􏼁 − fX,true
􏽥Di( 􏼁􏽨 􏽩

2
􏼚 􏼛

1/2

􏽐
N′
i�1 fX,true

􏽥Di( 􏼁􏽨 􏽩
2

􏼚 􏼛
1/2 , X � L − NorGamma,

(18)

where N′ denotes the number of subintervals which the
particle size range [Dmin, Dmax] is divided into; Di is the
midpoint of the ith subinterval [Di, Di+1]; fX,true(Di) is the
true aerosol PSDs in the ith subinterval; and fX,est(Di) is the
estimated aerosol PSDs in the ith subinterval.

+e time-varying particle number concentration ND(t)
in this study is assumed to obey two common time-varying
distributions, e.g., sine wave-type equation (19) and linear-
type equation (20), and the corresponding mathematical
expressions are as follows:

ND(t) � 5 + sin(0.2t), (19)

ND(t) �

0.4t − 3, 10≤ t≤ 25,

− 0.4t + 17, 25≤ t≤ 40,

1, others.

⎧⎪⎪⎨

⎪⎪⎩
(20)

To investigate the reliability and feasibility of the Kalman
filter algorithm, the effects of measurement noise and
process noise on the estimated results are studied. +e av-
erage deviation δ, which means the average value of the
deviation between estimated time-varying particle number
concentration ND,est(ti) and the true time-varying particle
number concentration ND,true(ti) in each sampling time
interval, is used to evaluate the estimated results, and its
mathematic expression is described as

δ �
1
Nt

􏽘

Nt

i�1
ND,est ti( 􏼁 − ND,true ti( 􏼁􏽨 􏽩

2⎧⎨

⎩

⎫⎬

⎭

1/2

, (21)

where T is the total sample time and Nt denotes the number
of sampling time intervals, Nt � T/Δt. Moreover, to make
the problem mathematically trackable, the distribution
functions of the aerosol PSDs and aerosol concentration are
assumed to be known beforehand.

3.1. Retrieval of Aerosol Particle Size Distributions. With the
help of the original SFLA and improved SFLA, the aerosol
PSDs are estimated from the relative ALS signals, and the
real values are shown in Table 1. According to our previous
work [24], the measurement angles are set as θ� 5°, 10°, 15°,
and 20°, and the reference angle θ0 � 30°. Table 1 also lists
the retrieval results of aerosol PSDs using the SFLA and
improved SFLA, respectively, and the corresponding in-
verse curves are depicted in Figure 4. It can be found that
without random measurement noise, the value of relative
standard deviation ξ obtained by the improved SFLA is
smaller than that by the SFLA. When adding the random
measurement noise to the relative ALS signals, the value of
δ will increase, but it is still easy to find that the retrieval
results obtained by the improved SFLA is acceptable. +at
is to say, the accuracy and robustness of the inverse results

retrieved by the improved SFLA are higher than those by
the SFLA, especially with random measurement noise.

3.2. Retrieval of Time-Varying Particle Number Concentration.
Figure 5 shows the real-time ALS signals. +e black line
denotes the signals without random noise, the gray line
denotes the original observation signals, and the red line
denotes the filtered results of the original observation signals
using the KF algorithm. Figure 6 depicts the retrieval results
with and without Kalman filter algorithm. +e exact time-
dependent particle number concentration is set as the sine
wave type (19), and the standard deviation of measurement
noise is assumed to be 0.05, i.e., σR � 0.05. It is obvious that if
the measurement ALS signals with noise are used to re-
construct particle number concentration directly, the ab-
solute value of maximal relative error reaches 11%. If the
ALS signals are filtered by the Kalman filter algorithm be-
forehand, the absolute value of relative error will reduce
quickly (less than 6%). +e time-varying aerosol particle
number concentration can be effectively reconstructed by
employing the technique mentioned above.

Considering the applicability of the ALS method and
Kalman filter algorithm, the following research should be
done to study the effects of characteristic parameters in the
measurement technique on the accuracy and stability of re-
trieval results to choose suitable parameter settings. Figure 7
depicts estimated results obtained under different process
noise. +e sampling time interval Δt is set as 0.1 s. +e
standard deviation of measurement noise σR is set as 0.05. It
can be found that reducing the standard deviation of process
noise will result in larger deviation between real value and
estimated result of aerosol particle number concentration and
increase of time delay, i.e., requiring more time to response
the mutation of particle number concentration. +e amount
of overshoot of peak value reduces with the decreasing
standard deviation of process noise. +ese phenomena in-
dicate that the dynamic performance and steady-state values
of the system are reduced. +e main reason is that decreasing
standard deviation of process noise results in the reduction of
filter gain matrix K (k), an important matrix that affects the
correction weight, steady-state value, and dynamic perfor-
mance of the system. +erefore, although the process noise
and corresponding standard deviation are unknown be-
forehand in practical problem, a larger standard deviation of
process noise should be selected to retrieve particle number
concentration successfully.

Figure 8 shows the effects of measurement noise on the
accuracy and stability of retrieval results. +e sampling time
interval Δt is set as 0.1 s. +e standard deviation of process
noise σQ is set as 0.01. From Figure 8, it can be found that
increasing standard deviation of measurement noise will
reduce the retrieval accuracy and increase time delay. +e
amount of overshoot of the peak value also shows increasing
first and then reduces with the increasing of standard de-
viation of measurement noise. +e reason is that according
to the KF algorithm, the relationship between standard
deviation of measurement noise and filtering gain K (k) is
negative. Increasing the filtering gainK (k) will be conducive
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Figure 4: Reproducibility of the aerosol PSDs using the SFLA and improved SFLA, respectively.

Table 1: Retrieval results of the aerosol PSDs by the SFLA and improved SFLA.

Aerosol PSDs Noise, σR (%)
Improved SFLA SFLA

D σ ξ D σ ξ

L-N (D, σ) � (3, 2)

0 3.00 2.00 0.00000 3.01 2.00 0.00474
3 2.95 1.98 0.01998 3.12 1.92 0.08235
5 3.08 1.96 0.04651 3.22 1.90 0.12335

Gamma (β, α) � (8, 4)

0 8.00 4.00 0.00000 8.01 4.00 0.00768
3 7.73 3.90 0.02543 8.14 4.09 0.08676
5 7.57 3.86 0.03971 8.26 4.16 0.14181

+e mean inverse results and relative standard deviation of the 20 times calculations are shown in the tables.
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Figure 5: Different real-time ALS signals of the particle system.
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to reduce the time lag of retrieval results, and more valuable
information obtained from measurement signals Y (k)
rather than priori estimation vector X(k | k − 1) and last
estimated results ND(tk− 1) will be used to improve the
retrieval accuracy. +erefore, although the measurement
noise is unknown in practice, we should better try our best to
control it to improve the retrieval accuracy.

During measurement experiments, except for these
noises mentioned above affecting the measurement results,
the sampling time interval Δt also plays an important role
in retrieving the time-varying particle number concen-
tration. +e standard deviations of process noise and
measurement noise are set as 0.01 and 0.03, respectively.
Figure 9 shows the effect of different sampling time

intervals Δt on the retrieval results. It can be found that
more accurate results and less time delay can be obtained, if
the sampling time interval is reduced. +e reason may be
that more useful information about the particle system can
be used to improve the retrieval accuracy when the sam-
pling time interval Δt is smaller. Moreover, from Figure 9,
it can also be found that although there are process noise
and measurement noise existed in the measurement ALS
signals, the retrieval results are still acceptable, if appro-
priate sampling time interval is selected. So, the ALS
method combined with Kalman filter algorithm can be
proposed as a kind of effective and reliable measurement
technique to study the real-time estimation of aerosol
concentration.
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Figure 6: Reconstruction results of time-varying particle number concentration with and without the KF algorithm.
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Figure 7: Effects of process noise on retrieval results: (a) linear-type distribution; (b) sine wave-type distribution.
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4. Conclusions

A kind of multistep inversion method based on the angular
light-scattering (ALS) measurement signals is proposed to
solve the online monitoring of the aerosol PSDs and aerosol
concentration. +e aerosol PSD is retrieved by the shuffled
frog-leaping algorithms (SFLAs) from relative ALS signals,
and then the time-varying aerosol concentration is ob-
tained by the Kalman filter algorithm from the real-time
ALS signals. Moreover, the influences of characteristic
parameters, i.e., sampling time interval, measurement
noise, and process noise, on the estimated results have been
studied. +e conclusions drawn from the results are as
follows:

(1) +e convergence accuracy and robustness of the
improved SFLA are higher than those of the original
SFLA in studying the aerosol PSDs.

(2) With the aerosol PSDs known beforehand, the time-
varying aerosol particle number concentration can
be reconstructed effectively by the Kalman filter
algorithm from the ALS signals even with process
noise and measurement noise.

(3) +e process noise and measurement noise have an
important influence on the estimated results. In-
creasing standard deviation of process noise or re-
ducing that of measurement noise benefit to
obtaining more useful information to improve
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Figure 8: Effects of measurement noise on retrieval results: (a) linear-type distribution; (b) sine wave-type distribution.
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retrieval accuracy and reduce time delay. Moreover,
the reliability and stability of retrieval results are also
dependent on sampling time interval, and decreasing
sampling time interval can improve the accuracy of
retrieval results and reduce time delay to a certain
degree. So, to improve retrieval accuracy and reduce
time delay, the noise should be controlled, and
suitable sampling time interval should be selected.

+e results obtained show that the proposed method-
ology is a promising approach for online monitoring of
aerosol PSDs and time-varying aerosol particle number
concentration. Further study will focus on performance
improvement of the methodology as well as its applications
in studying the nonspherical aerosol.

Nomenclature

D: Particle diameter (μm)
d: Frog position in the shuffled frog-leaping algorithm
f(D): Volume frequency distribution of particle size
H: Observation matrix
I: Intensity of the measurement laser (W/(m2·sr))
I0: Intensity of incident laser (W/(m2·sr))
K: Kalman gain
mλ: Particle optical constant at wavelength λ
Mk: kth memeplexes in the shuffled frog-leaping

algorithm
ND: Unknown number concentration of the suspended

particle system (m− 3·μm− 1)
Nt: Number of sampling time intervals
P: Error covariance matrix of the state estimate vector
PX: Frog population in the shuffled frog-leaping

algorithm
Q: Process noise covariance
Qext: Extinction efficiency of particle
R: Measurement noise covariance
T: Total sampling time (s)
t: Time (s)
Δt: Sampling time interval (s)
v: Measurement noise matrix
Vi: Velocity of the particle in the PSO algorithm
w: Process noise matrix
X: State vector
XS: Sth frog in the shuffled frog-leaping algorithm

Greek symbols
Φ: State transition matrix
λ: Incident wavelength of the laser (μm)
μ: Control number in the Chaos theory
σ: Sum of the deviation between retrieval result and real

value for ND (t)
ξ: Sum of the deviation between retrieval result and real

value for f (D)
σQ: Standard deviation of process noise
σR: Standard deviation of measurement noise

Subscripts
est: Estimated value
L-N: Log-normal distribution

Gamma: Gamma distribution
true: True value.
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