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Extraction of the weak signals is crucial for fault prognostics in which case features are often very weak andmasked by noise. In the
time domain, the detection of weak signals depends on the identification of nonlinear parameters. A new signal detection and
estimation method based on the incremental harmonic balance (IHB) is developed from the stochastic Van der Pol–Duffing
equation with delayed feedback under parametric excitation. ,is is the first time that the IHB has been applied for the
identification of parameters in stochastic delay differential equations (SDDEs). Compared to the method of intermittency
transition between order and chaos to detect weak signals, this new method is more direct and the calculation result is what we
want to obtain. ,is new method is suitable for the generalization and application of SDDEs.

1. Introduction

It is well known that a self-excited system can exhibit a
remarkable complex dynamical behaviour. ,e earliest
mathematical model has been proposed by Van der Pol to
describe the vacuum tube circuit [1], and subsequently,
many researchers have studied the complex phenomena
observed from experiments and computer simulations in the
fields of mechanical, electric, ecological, and chemical sys-
tems and so on. For rotating machinery, undesirable bi-
furcations, high-amplitude vibrations caused by resonance,
quasiperiodic motion, and chaotic behaviour may occur and
cause degradation or catastrophic failure of the system.

Bearing failure is one of the foremost causes of break-
downs in rotating machinery, and such failure can be cat-
astrophic, resulting in huge economic losses. To prevent
these kinds of failures from happening, various bearing
condition monitoring techniques have been developed.
Among them, vibration analysis has been used extensively
due to its intrinsic advantage of revealing bearing failure
[2–4]. Detecting the dangerous vibrations is very crucial for
engineering science, and various papers have been dedicated
for the control of resonantly forced systems in various
applicative fields; Atay [5] studied the effect of delayed

position feedback on the response of a Van der Pol oscillator,
showing that the delay can change the amplitude of limit
cycle oscillations or suppress them altogether. Lai and Leng
[6] considered a two-dimensional Duffing oscillator and
proposed the weak-signal detection approach based on the
GPASR model. A filtering technique through chaotic re-
gime-switching is proposed by Denis et al. [7]. ,e inherent
deficiency of the measuring mechanism leads to a mass of
various noises to the effective signal inevitably. ,e signal of
a defective bearing is spread across a wide frequency band
and hence can become masked by noise and low-frequency
signals with ease [8]. Prognostics is achieved by detecting the
failure and defect at its initial stage and alerting maintenance
personnel before it develops into a sharp loss. Nevertheless,
in the early failure stage, it is difficult to detect the weak
rolling bearing failure signal.

To solve the problem of detecting effective weak failure
signals under strong noise, numerous scholars have pro-
posed various methods: (1) apply the transform to achieve a
goal of signal demodulation. Pang et al. [9] present an
improved Hilbert time transform (IHTT), and the wavelet
transform has been used for signal demodulation [10]. (2)
Construct filters based on noise type and application to
conduct the denoising [11, 12]. (3) Utilize the characteristics
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of chaos system which is immune to noise and sensitive to
weak signals at the same time to detect the weak effective
failure signals. Zhao [13] detects the weak signal submerged
in strong noise successfully by the transition from the
chaotic state to a large-scale periodic state. (4) Use noise to
enhance the amplitude of weak failure signal. Yang and Cao
[14] uses the principle of primary resonance and stochastic
resonance to study time delay-controlled SD oscillator with
stiffness nonlinearities, and it shows that the weak harmonic
signal can be enhanced with appropriate noise and time
delay. (5) In recent years, detecting weak signals based on the
deep network has become a new way in the background of
machine learning artificial intelligence that can automati-
cally extract bearing signals and identify faults [15, 16]. Xia
et al. [17] propose an ensemble framework based on con-
volutional bidirectional long short-term memory with
multiple time windows (MTW CNN-BLSTM ensemble) for
accurately predicting remaining useful life.

It is worth noting that stochastic resonance is a nonlinear
system involving noise and weak periodic signals; under the
right conditions, the noise enhances the periodic signal of
the weak signal where Kramers rate [18] is the key. And, the
chaotic threshold is of great importance for detecting har-
monic weak signal in the way of transition from the chaos to
large-scale period, where the method of Melnikov function
[19] can solve this problem very well. Moreover, a mass of
data is needed to train the network layer with deep network
detecting weak signals. In addition, Dong et al. [20] integrate
a Bayesian updating prognostic model using sensor-based
degradation information for computing each machine’s
time-to-failure (TTFs), with an opportunistic maintenance
policy handling flexible system structures for optimizing the
maintenance scheduling. In this paper, a new method for
detecting weak signals is proposed based on SDDEs.

In the time domain, the basis of detecting weak signals is
parameter identification, starting from the 1970s, showing a
variety of system parameter recognition methods. Nayfeh
[21] proposed a nonlinear system parameter recognition
method, which is based on the response of nonlinear systems
and the comparison between the system hypothesis model.

A method of recognition parameters based on the
wavelet transform principle is proposed by Staszewski [22],
which can identify parameters in multi-DOF nonlinear
systems, but this method can only deal with free vibration
system. Chen et al. [23] carried out parameter identification
of nonlinear systems based on neural networks. In recent
years, parameter identification is applied in various fields,
such as automatic identification and medical research
[24–26].

,e incremental harmonic balance (IHB) method was
originally developed by Lau et al. [27] for treating periodic
structural vibrations and which is a semianalytical method;
moreover, it is remarkably effective in computer imple-
mentation for obtaining both the stable and unstable so-
lutions. ,en, through the efforts of many scholars, the IHB
method has been successfully applied to many fields of
nonlinear vibration, and Shen [28] successfully applied the
IHB method to study the bifurcation and the route-to-chaos
analyses. Dou and Ye [29, 30] raised the method of IHB to

rectify the harmonic coefficients in frequency response
calculating, which may help the identification algorithm to
correct the noise-induced distortion in the experiment, and
compared with the harmonic balance (HB) method, the
accuracy of parameter identification has obvious advantages.
Moreover, these methods are applied in ordinary differential
equations (ODEs), and it is necessary to study identifying
parameters with the delay differential equations (DDEs).,e
study of time-delay system is more consistent with the real
vibration because a state in the past will affect the vibration
state now [31]. Recently, Zhang [32] applies the IHB method
to solve the superharmonic resonance solution of nonlinear
time-delay differential equations. ,e research methods of
parameter estimation in time-delay chaotic systems are
endless, for example, neural network method [33] and self-
synchronization method [34].

In this paper, for the first time, the IHB method is
applied to SDDEs for the identification of weak signals, and
from the result of parameter identification, it is more direct
than the chaos detection method. We take stochastic delay
Van der Pol–Duffing equation, for example, to identify
parameters. ,e delay τ is reduced by scaling, and the results
show that it does not affect the identification. Calculating the
explicit expressions K, P, andR is the important point of
this paper, and then the explicit expressions of K, P, andR

are substituted into equation (9) and iterated until the ‖R‖ is
small enough; then, the result is the value of the parameter to
be identified, which is clearly expressed. Finally, the ability of
stochastic delay Van der Pol–Duffing system to detect weak
signals is evaluated through the signal to noise ratio (SNR).

2. Stochastic Van der Pol–Duffing
Oscillator under Time-Delayed Feedback

,e Van der Pol–Duffing oscillator is a representative kind
of system in the nonlinear system, and the system can show
rich nonlinear dynamic behaviour with the change in
strength in the period force [19, 35, 36]. As a classic chaotic
system, Van der Pol–Duffing oscillator is often used in the
modeling of dynamical systems; nowadays, there are many
nonlinear problems in the fields of material resources, bi-
ology, engineering, psychiatry, and economics, which can be
discussed and analyzed based on the modeling of nonlinear
systems [37]. With the further study of vibration equation
and the process of modeling, the stochastic Van der
Pol–Duffing equation under the time-delayed feedback is
more consistent with the process of actual measurement and
signal acquisition, which has rich dynamic behaviour. ,e
characteristic of being sensitive to a weak signal with strong
noise perturbation makes it possible to be used in the field of
weak signal detection. For stochastic Van der Pol oscillator
with time-delayed feedback, some scholars have studied its
response and stability analysis [38].

,e stochastic Van der Pol–Duffing oscillator under
time-delayed feedback is in the form of the following:

€x(t) + α x
2
(t − τ) − 1  _x(t) + βx(t) � f cos(Ωt) + σξ(t),

(1)
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where α and β are the damping coefficient and stiffness
coefficient, respectively; f cos(Ωt) is the external excitation;
f andΩ are the amplitude and angular frequency of external
excitation, respectively; τ is the time delay; x2(t − τ) _x(t)

indicates that the square of displacement at t − τ will affect
the velocity at t, namely, displacement feedback; and ξ(t) is
the Gaussian white noise with a constant power spectral
density K and autocorrelation function R(υ) � E[ξ(t)ξ
(t + υ)] � δ(υ), where υ is autocorrelation time and δ is
Diarc function; moreover, E[·] denotes the expectation
operator and σ �

����
2π K


denotes noise intensity.

For various parameters f,τ, and Ω, the system has rich
nonlinear dynamic behaviours, seen from Figures 1–3.

3. The Process of Parameter Identification

,e influence of noise on the result of parameter identifi-
cation can be fully considered in the process of numerical
simulation. We can write equation (1) without noise as the
equation of state, as follows:

_y1(t) � y2(t),

_y2(t) � f cos(Ωt) − αy2
1(t − τ)y2(t) + αy2(t) − βy1(t).



(2)

,en, take scale transformation t⟶ (t/τ) and write it
as follows for convenience:

€y(t) − ατ2 _y(t) + βτ2y(t) + 

M

i�1
bigi(y(t), _y(t), y(t − 1), τ, t) � 0,

(3)

where M � 2, b1 � τ2α, b2 � −τ2f, g1 � y2(t − 1) _y(t),

g2 � cos(Ωτt), and b1 b2 are nonlinear parameters to be
identified.

4. Construct Increment Process

y, y(t − 1), and bi | i � 1, 2  are as follows:

y(t) � y0(t) + Δy(t),

y(t − 1) � y0(t − 1) + Δy(t − 1),

bi � bi0 + Δbi, i � 1, 2.

(4)

Working with initial values bi0 � 0 | i � 1, 2 . Determine
the initial values of the displacement y0(t) and y0(t − 1)

based on the experimental data, that is, depending on the
displacement response on the [t0, t0 + T] when the system
enters the steady-state period. Let ω � Ω/μ (μ is an integer),
period T � 2π/ω. ,e initial values of displacement are
expanded into the Fourier series in plural form, and they are
written in the following matrix form, where N is the degree
of expansion of harmonic term:

y0(t) � 
N

k�−N

e
jkωt

· ak � Y1 · A0, (5)

y0(t − 1) � 
N

k�−N

e
jkω(t− 1)

· ak � Y2 · A0, (6)

where

Y1 � e
j(− N)ωt

. . . 1 . . . e
jNωt

 ,

Y2 � e
j(− N)ω(t− 1)

. . . 1 . . . e
jNω(t− 1)

 ,

A0 � a− N . . . a0 . . . aN 
T
.

(7)

Each element in A0 is the Fourier coefficient of each
order, where the k-order Fourier coefficient is obtained by
numerical integral transformation of the data series of the
displacement response:

ak1 �
1
T


T

0
y0(t) · e

− jkωtdt,

ak2 �
1
T


T

0
y0(t − 1) · e

− jkω(t− 1)dt,

(8)

where y0(t) and y0(t − 1) are a sequence of displacement
response measured and collected in experiments. To the
extent that the error allows ak1 ≈ ak2,
ak � (1/T) 

T

0 y0(t) · e− jkωtdt. Working with the incre-
mental processes. Write Δy(t) and Δy(t − 1) in the form of
Fourier series in the plural form:
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Figure 1: ,e bifurcation diagram of f with certain fixed pa-
rameters τ � 2, α � 5, β � 1, andΩ � 1 shows that chaotic state⟶
quasiperiodic motion⟶ period-doubling bifurcation⟶ peri-
odic motion with the increasing f.
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Δy(t) � Y1 · ΔA,

Δy(t − 1) � Y2 · ΔA,

ΔA � Δa− N . . .Δa0 . . . aN 
T
.

(9)

,e increments of the parameters are Δb � Δb1 Δb2 
T.

Formulas in (4) are substituted into equation (3), by
the means of Taylor unfold, and omitting the incremental
two times and more than two high-order items, we can
obtain

Δ€y(t) − ατ2Δ _y(t) + βτ2Δy(t) + 2b10y0(t − 1) _y0(t)Δy(t − 1)

+ b10y
2
0(t − 1)Δ _y(t) + y

2
0(t − 1) _y(t)Δb1 + cos(Ωτt)Δb2

� − €y0(t) + ατ _y0(t) − βτ2y0(t) − b10y
2
0(t − 1) _y0(t) − b20 cos(Ωτt).

(10)

5. Construct Increment Equation

With the method of Galerkin and the regular
Δy(t) � Y1ΔA � ΔATY1

T � (ΔAY1)
T � (Δy(t))T, we can

obtain

(δΔA)
T


t0+T

t0

Y
T
1

€Y1 − ατ _Y1 + βτ2Y1 + 2b10y0(t − 1) _y0(t)Y2

+ b10y
2
0(t − 1) _Y1dt · ΔA

+(δΔA)
T


t0+T

t0

Y
T
1 y

2
0(t − 1) _y(t) dt · Δb1

+(δΔA)
T


t0+T

t0

Y
T
1 [cos(Ωτt)]dt · Δb2

�(δΔA)
T


t0+T

t0

Y
T
1 − €y0(t) + ατ _y0(t) − βτ2y0(t)

− b10y
2
0(t − 1) _y0(t) − b20 cos(Ωτt)dt.

(11)

With arbitrary of δΔA, we can obtain the incremental
equation as follows:

KΔA + PΔb � R. (12)

,e elements of K, P, and R are

K �
1
T


t0+T

t0

Y
T
1

€Y1 − ατ _Y1 + βτ2Y1 + 2b10y0(t − 1) _y0(t)Y2

+ b10y
2
0(t − 1) _Y1dt,

P1 �
1
T


t0+T

t0

Y
T
1 y

2
0(t − 1) _y(t) dt , P2 �

1
T

Y
T
1 [cos(Ωτt)]dt,

R �
1
T


t0+T

t0

Y
T
1 − €y0(t) + ατ _y0(t) − βτ2y0(t)

− b10y
2
0(t − 1) _y0(t) − b20 cos(Ωτt)dt.

(13)
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Figure 2: ,e bifurcation diagram of τ with certain fixed parameters α � 0.5, β � 1, Ω � 1, and f � 1.
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Figure 3: ,e bifurcation diagram of Ω with certain fixed pa-
rameters α � 0.45, β � 1, τ � 2, and f � 1.
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Table 1: Parameter recognition results of incremental harmonic equilibriummethod in different states of time-delay system, where b∗1 � ατ
and b∗2 � −τ2f are exact values.

Parameters σ 0% 1% 5%
N f � 6 f � 7 f � 8 f � 6 f � 7 f � 8 f � 6 f � 7 f � 8

b1

10 10.00968 10.00962 10.00515 10.00962 10.00962 10.00512 10.00975 10.00965 10.00515
15 10.00956 10.00957 10.00497 10.00961 10.00951 10.00511 10.00957 10.00950 10.00503
20 10.00959 10.00954 10.00503 10.00961 10.00951 10.00506 10.00972 10.00952 10.00503
25 10.00961 10.00951 10.00501 10.00957 10.00950 10.00510 10.00963 10.00954 10.00502
30 10.00959 10.00949 10.00503 10.00973 10.00950 10.00500 10.00951 10.00963 10.00501

b2

10 24.00924 28.00882 32.00723 24.00920 28.00860 32.00723 24.00903 28.00873 32.00723
15 24.00941 28.00886 32.00769 24.00950 28.00871 32.00710 24.00933 28.00871 32.00810
20 24.00937 28.00889 32.00769 24.00934 28.00882 32.00820 24.00932 28.00872 32.00841
25 24.00940 28.00882 32.00774 24.00931 28.00881 32.00720 24.00891 28.00881 32.00790
30 24.00932 28.00886 32.00769 24.00943 28.00881 32.00770 24.00937 28.00877 32.00757
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Figure 4: ,e influence of noise on parameter recognition in a periodic state with f � 8 and τ � 2.
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Figure 5: ,e influence of noise on parameter recognition in period-2 state with f � 7 and τ � 2.
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To know the explicit expression of elements in K, P, and
R, according to the plural form of Fourier series of the initial
displacement expansion, the coefficients of the Fourier series
in the plural form corresponding to
_y0(t), y0

2(t − 1), y0
2(t − 1) _y0(t), €y0(t), cos(Ωt) are

obtained:

_y0(t) � 
N

k�−N

ak3 · e
jkωt

, ak3 � am · jmωδk
m,

y
2
0(t − 1) � 

N

k�−N

ak4 · e
jkωt

, ak4 � amal · e
− jω(m+l)δk

m+l,

y0(t − 1) _y0(t) � 
N

k�−N

ak5 · e
jkωt

, ak5 � aman3e
− jmωδk

m+n,

y
2
0(t − 1) _y0(t) � 

N

k�−N

ak6 · e
jkωt

, ak6 � am4al3δ
k
m+l,

€y0(t) � 
N

k�−N

ak7 · e
jkωt

, ak7 � −m
2ω2

amδ
k
m.

(14)

Calculate the Fourier coefficient qk of the harmonic
excitation item cos(Ωτt) based on the experimental data:

cos(Ωτt) � 
N

k�−N

qk · e
jkωt

, qk �
1
T


T

0

F(t)

ρ
e

− jkωtdt,

(15)

where F(t) is the excitation force signal collected experi-
mentally and ρ is shaking force amplitude. Let
m � m + N + 1, n � n + N + 1, then we can write the ex-
plicit expression of elements in K, P, and R:

K(m, n) � −n
2ω2

− ατjnω + βτ2 δ0m+n

+ 

N

k�−N

2b10ak2 + b10ak3jnω( e
− jnωδ0m+n+k,

P1(m, 1) � ak4δ
0
m+k P2(m, 2) � qkδ

0
m+k,

R(m, 1) � −ak5 + ατak1 − βτ2ak − b10ak4 − b20qk δ0m+k.

(16)

Equation (16) is substituted into equation (12) iteratively.
It is clear that equation (12) has 2N + 1 + 2 unknowns
Δak, k � −N, . . . , N; Δb1,Δb2 , but there are 2N + 1
equations. So the increment of the harmonic item coeffi-
cients ΔA and Δb as the tuning amount is obtained by
equation (12) on condition that no less than 2 principal
harmonic coefficients increment Δak zero. Δy, y, and
b1, b2can be obtained from equations (4) and (9), respec-
tively, and then replace the initial values of y0 and b10, b20 to
(16) and enter the next iteration, and so on. We do not stop
iterating until ‖R‖ is small enough. When the iteration stops,
the results of b1 and b2 are the value of the parameter to be
identified.

6. The Results of Identification

Consider the parameters b1 � ατ2 and b2 � −fτ2 to be
identified, and given parameter initial value b10 � b20 � 0;
constructing incremental equations, select a0, a±1, a±2 as the
main harmonic coefficients, that is, Δa0 � Δa±1 � Δa±2 � 0;
solve the remaining harmonic item increments and pa-
rameter increments. and iterate over and over until the
algorithm converges steadily. ,e identification results are
shown below (Table 1).
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Figure 6: ,e influence of noise on parameter recognition in a chaotic state with f � 6 and τ � 2.
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Figures 4–6 show that the recognition results of pa-
rameters b1 and b2 when the system is in different states, such
as period, period-2, and chaos. We can get from the figures
that the results of parameter recognition are stable when the

system is in different states. It is worth noting that the dif-
ficulty of parameter recognition using the IHB method is
finding the appropriate period initial displacement value from
the steady-state response to recognize the parameters.

Table 2: Results of parameters identification with the method of IHB.

Parameter σ 0% 1% 5%
N Results of parameter identification

b

(b∗ � −τ2(f + r))

10 −32.020632 −32.020633 −32.020623
15 −32.020632 −32.020637 −32.020638
20 −32.020633 −32.020643 −32.020641
25 −32.020641 −32.020631 −32.020630
30 −32.020619 −32.020620 −32.020625

0 10 20 30
–32.0042

–32.0041

–32.004

–32.0039

–32.0038

N

b 
= 

–(
f +

 r)
τ2

σ = 0%
σ = 1%
σ = 5%

Figure 7: ,e influence of noise on parameter recognition with fixed parameters f � 8, r � 0.001, α � 5, β � 1,Ω � 1, and τ � 2.
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7. Identify the Amplitude of Weak Signals

Add the weak signal under strong noise
rτ2 cos(Ωτt) + στ2ξ(t) to equation (3) with r � 0.001 and
τ � 2, and we can obtain

€y − ατ2 _y(t) + βτ2y(t) + ατ2 y
2
(t − 1) _y(t)

� (f + r)τ2 cos(Ωτt) + στ2ξ(t),
(17)

where the parameter to be identified is b� −(f+ r)τ2. From
the results of identifying Table 2 and Figure 7 with certain
parameters, we can obtain that b ≈ − 32.004 and then the
amplitude of the weak harmonic signal is r � 0.001, which is
consistent with the added signal amplitude so that the weak
signal can be identified well.

Consider the SNR to judge how well the system detects
weak signal under the noise intensity σ � 0.05:

SNR � 10 lg 0.5
r2

σ2
  � 10 lg 0.5

0.0012

0.052
  � −36.99dB.

(18)

,e amplitude of the weak signal can be detected under
the condition of low SNR, and it is proved that this method is
worthy of application and popularization in the field of
DDEs.

According to the system response power spectral density
function under different noises, we can obtain the power
spectral density (PSD) images, as shown in Figure 8; the
frequency at the highest energy is fre � (1/T) � 0.3180
obviously. ,e angular frequency of a weak signal is
Ωτ � (2π/T), so T � π, and then, the frequency of a weak
signal is (1/T) � 0.3182. We can detect weak signals from
strong noise.

8. Conclusions

In this paper, there is a rich dynamic behaviour of the
stochastic Van der Pol–Duffing oscillator with noise inter-
ference, and the parameters can be identified by the method
of IHB in different states. For a very low SNR, the detection
results are very good and this method can be extended to
detect weak signals in nonlinear DDEs containing the
certain noise.
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