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Back analysis for seepage parameters is a classic issue in hydraulic engineering seepage calculations. Considering the charac-
teristics of inversion problems, including high dimensionality, numerous local optimal values, poor convergence performance,
and excessive calculation time, a biological immune mechanism-based quantum particle swarm optimization (IQPSO) algorithm
was proposed to solve the inversion problem. By introducing a concentration regulation strategy to improve the population
diversity and a vaccination strategy to accelerate the convergence rate, the modified algorithm overcame the shortcomings of
traditional PSO which can easily fall into a local optimum. Furthermore, a simple multicore parallel computation strategy was
applied to reduce computation time. ,e effectiveness and practicability of IQPSO were evaluated by numerical experiments. In
this paper, taking one concrete face rock-fill dam (CFRD) as a case, a back analysis for seepage parameters was accomplished by
utilizing the proposed optimization algorithm and the steady seepage field of the dam was analysed by the finite element method
(FEM). Compared with immune PSO and quantum PSO, the proposed algorithm had better global search ability, convergence
performance, and calculation rate. ,e optimized back analysis could obtain the permeability coefficient of CFRD with
high accuracy.

1. Introduction

In hydraulic engineering, a seepage calculation is used to
obtain hydraulic factors such as head, discharge, and gra-
dient by utilizing the basic seepage parameters for seepage
stability analysis and operation management [1]. Deter-
mining correct seepage parameters is an important issue in
seepage calculation, which directly influences the accuracy
and rationality of seepage field analysis. Generally, there are
three methods to determine seepage parameters including
the empirical formula method, testing method, and back
analysis method. Based on mathematical assumptions and
empirical estimations, the results of the empirical formula
method are inaccurate and not suitable in complex struc-
tures. ,e testing method, including indoor and in situ tests,
can acquire accurate permeability coefficients. However,
when the number of samples is small, the results are in-
accurate for whole structures, and then, the number of
samples is large and the cost is excessive. ,e back analysis

method, based on the measured data and numerical sim-
ulation results, can cost-effectively obtain rational seepage
parameters. ,erefore, it is necessary to develop a back
analysis method to supplement and improve the work of
determining seepage parameters.

,e essence of the back analysis method is to acquire
material parameters while minimizing the error between the
computed and measured values. Considering that the back
analysis method requires repeated iterations and numerous
calculations, many scholars have recently introduced various
optimization algorithms into back analysis to solve the
global optimal solution. Some intelligent algorithms, such as
genetic algorithm (GA) [2], particle swarm optimization
(PSO) [3], support vector machine (SVM) [4, 5], artificial
bee colony (ABC) [6], and artificial neural network (ANN)
[7–9], have been widely used in back analysis for mechanical
parameters. ,e work in the seepage field has also achieved
some progress. For example, based on the concept of
“nonlinear mapping,” Chi et al. [10], Ni and Chi [11], and
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Liu et al. [12] built different neural network optimization
models for the forward finite element analysis process and
established a corresponding relationship between the
measured values and simulated values. An improved GAwas
used by Wang and Liu [13, 14] to solve the seepage pa-
rameter inversion problem in a fractured rock mass. Prasad
and Rastogi [15] developed a groundwater-system inversion
method based on the GA and built an inversion model of
regional aquifers. By combining the FEM and adaptive GA, a
back analysis method based on a stress-seepage coupling
model was established by Deng et al. [16, 17]. Although
much work has been performed on back analysis algorithms,
the optimization of the algorithm is not perfect. Due to the
poor global search ability, limited convergence performance,
and long FEM calculation time, these traditional algorithms
cannot be applied practically in hydraulic engineering in-
version problems.

,e PSO algorithm proposed by Kennedy and Eberhart
[18] has attracted great attention in recent years, because of
its simple structure and fast convergence speed. Many
scholars [19–21] have realized the application of PSO in back
analysis for seepage parameters. Somemechanisms have also
been developed to improve the PSO algorithm, such as
immune particle swarm optimization (IPSO) [22–24],
simulated annealing particle swarm optimization (SAPSO)
[25], and chaotic particle swarm optimization (CPSO) [26].
However, considering the PSO is not a global convergence
algorithm, conventional improvement is limited. Inspired by
Clerc and Kennedy’s [27] analysis of the convergence of
traditional PSO, Sun et al. [28, 29] proposed a quantum
particle swarm optimization algorithm (QPSO), which is a
new algorithm model developed based on quantum me-
chanics theory. ,e particles with quantum behaviour have
the capacity to search in the whole feasible solution place
during iteration, so QPSO has a better global optimization
ability. ,us, QPSO is utilized as an optimization algorithm
in back analysis in this paper. Furthermore, to improve the
population diversity and convergence performance, the
concentration regulation strategy and the vaccination
strategy based on a biological immune mechanism [30, 31]
are introduced to QPSO. In addition, a simple multicore
parallel computing strategy is applied to reduce the FEM
calculation time.

Based on the above three improvement strategies, we
proposed an immune quantum particle swarm optimization
algorithm in this paper and applied it in a back analysis for
seepage parameter optimization. ,e effectiveness and
practicability of IQPSO were assessed by numerical exper-
iments. A case study was adopted to validate the effectiveness
of the proposed algorithm for solving complex inversion
problems in engineering seepage.

2. Biological Immune Mechanism-Based
Quantum PSO Algorithm

2.1. Basic QPSO Algorithm. QPSO is an improved PSO al-
gorithm based on quantum mechanics theory, which has
been proven to be a global convergence algorithm [32].
Assuming that the PSO system is similar to a quantum

particle system, particles have quantum behaviour. ,e
velocity and position of particles in quantum space cannot
be determined at the same time, so the state of a particle is
depicted by a wave function, instead of velocity.,is method
can make the particle appear at any point in the space with a
certain probability, so that the particle can search in the
whole feasible solution space and has a good global opti-
mization ability.

According to the principle of QPSO, N is the size of the
particle population, which acts as a search for better per-
meability coefficients. In addition, there are T iterations for
D parameters. ,e position of the ith particle in the tth
iteration is the vector Xi(t) � [xi1(t), xi2(t), . . . , xi D

(t)], i � 1, 2, . . . , N without a velocity vector. ,e ith par-
ticle position corresponding to the historical optimal fitness
in the tth iteration is stored as Pbest(t) �

[Pbesti1(t), Pbesti2(t), . . . , Pbesti D(t)], and the particle
position corresponding to the global optimal fitness in the
previous tth iteration is also stored and updated as
Gbest(t) � [Gbesti1(t), Gbesti2(t), . . . , Gbesti D(t)]. Each
particle is updated according to the following equations [33]:

Mbest(t) �
1
N

􏽘

N

i�1
Pbesti(t), (1)

Pi(t) � r1 · Pbesti(t) + 1 − r1( 􏼁 · Gbesti(t), (2)

Xi(t + 1) � Pi(t) − α · Mbest(t) − Xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · ln 1/r2( 􏼁, r2 ≥ 0.5,

(3)

Xi(t + 1) � Pi(t) + α · Mbest(t) − Xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · ln 1/r2( 􏼁, r2 < 0.5,

(4)

where Mbest(t) is the mean best position which is defined as
the mean of all the best positions of the particles in the tth
iteration. Pi(t) is the random position between Pbesti(t) and
Gbesti(t) in the tth iteration, and r1 and r2 are random
numbers distributed uniformly on [0, 1]. ,e parameter α in
equations (3) and (4) is called the contraction expansion
coefficient, which can be tuned to control the convergence
rate of QPSO. In the early stage of evolution, a larger α value
is beneficial to global search and can avoid falling into local
convergence; with the increase of evolutionary algebra, a
smaller α value is conducive to the convergence of the al-
gorithm. ,e value is adaptively allocated per equation:

α �
αmin + αmax − αmin( 􏼁 · (T − t)

T
, (5)

where αmax is the initial contraction expansion value, αmin is
the final contraction expansion value, and the values are 1.0
and 0.5, respectively.

In addition, to prevent particles from exceeding the
range of values, the following constraints are set:

xid(t) �

xdmax, xid(t)≥ xdmax,

xid(t), xdmin ≤ xid(t)≤ xdmax,

xdmin, xid(t)≤ xdmin,

⎧⎪⎪⎨

⎪⎪⎩
(6)

2 Mathematical Problems in Engineering



where xi d(t) represents the dth parameter value of the ith
particle in the tth iteration. xdmax and xdmin are the maxi-
mum and the minimum of the dth parameter, respectively.

2.2.-ree Improvement Strategies onQPSO. Although QPSO
can improve the global convergence of PSO effectively, it is
found that the particles will still converge to the global
optimal position during evolution, resulting in a loss of
population diversity and a decrease of particle searching
ability. ,erefore, three improvement strategies are intro-
duced to QPSO to improve the algorithm performance.

2.2.1. Concentration Regulation Strategy. In order to im-
prove the particle searching ability and the population di-
versity, a concentration regulation strategy based on the
particle similarity values is adopted. Based on the idea of the
“Hamming distance,” the particle similarity value is calcu-
lated by using equation (7) and the particle concentration is
calculated by using equation (8). By inhibiting (or pro-
moting) the particles with high (or low) concentration, the
strategy can self-regulate to generate an appropriate number
of new particles and maintain the particle concentration
balance. ,e maximum concentration of particles is used to
control the quality of the population. When the maximum
concentration of particles reaches the threshold ξ, it is
considered that the population diversity is poor and the
evolutionary ability of the particle is not good. ,en, the
particle concentration values will be sorted in decreasing
turn and the subpopulation number M is determined by
multiplying the maximum concentration dmax by the
population size N. Finally, the first M high-concentration
particles are eliminated, and the left N-M low-concentration
particles are kept. ,is regulation strategy effectively im-
proves the population diversity and can effectively avoid
local convergence during evolution.

ρ Xi( 􏼁 � 􏽘
N

j�1
􏽘

D

d�1

1, 0.95≤
xid

xjd

≤ 1.05,

0, others

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, i � 1, 2, · · · , N,

(7)

d Xi( 􏼁 �
ρ Xi( 􏼁

N · D
, i � 1, 2, · · · , N, (8)

where ρ(Xi) represents the proximity degree of similarity
between all particles and the ith particle. For example, if a
particle in the population is close to the ith particle in the dth
dimension, the value will be 1, otherwise, 0. d(Xi) represents
the concentration of the ith particle. ,e larger the value is,
the more similar the particles are and the worse the pop-
ulation diversity is. N and D represent the population size
and the particle dimension, respectively.

2.2.2. Vaccination Strategy. To accelerate the convergence
rate and improve the algorithm performance, the immune
memory operator is introduced to preserve the excellent
particles in the evolution, which can prevent population

degradation and guide the evolution process of the algo-
rithm directionally. ,e global optimal solution Gbest in
each iteration will be preserved and updated as a “vaccine.”
Furthermore, two different vaccination patterns are taken
into account; one is that half of M high-concentration
particles (mentioned in Section 2.2.1) will be replaced by
new random particles. In another pattern, the other half of
particles are selected to carry out vaccination by the “vac-
cine” particle. Particularly in the second pattern, these
particles will be replaced by the memory particle first, and
then, they will be chosen based on the mutation probability
Pm to suffer genetic mutation operations. ,e location of
mutation particles is shown in equation (9).,is vaccination
strategy can not only ensure the existence of excellent
particles (high fitness values) but also maintain the ran-
domness of particles, which strongly improves the pop-
ulation quality and convergence performance:

xid(t) �

xid(t) + xdmax − xid(t)( 􏼁 × r × 1 −
t

T
􏼒 􏼓, r> 0.5,

xid(t) + xid(t) − xdmin( 􏼁 × r × 1 −
t

T
􏼒 􏼓, r≤ 0.5,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

where r is a random number distributed uniformly on [0, 1].
A schematic diagram of the immune mechanism is

shown in Figure 1. ,e particles in the initial population
have low fitness values but a good evolutionary ability. As the
iteration continues, the particles begin to aggregate, and the
fitness values of some particles become higher but the
evolutionary ability becomes worse. In this paper, the bio-
logical immune mechanism is used to improve particle
performance. According to the two strategies mentioned
above, M high-concentration particles are replaced and
adjusted. ,en, merged with the previously kept N-M
particles, a new evolutionary population is produced. To be
clear, in Figure 1, the red circle represents the global optimal
particle Gbest in each generation, the green circle is the
random particle, the yellow circle is the mutation particle
based on Gbest, and the other grey circles are the initial
population particles.

2.2.3. Multicore Parallel Computing Strategy. With the
popularity of multicore processors and the development of
parallel computing research, parallel computing has grad-
ually become an important way to improve computing ef-
ficiency. Computing tasks are assigned tomultiple CPUs and
performed simultaneously, which offers a good way to re-
duce calculation time. ,e existing parallel programming
models can support many programming languages and have
powerful functions such as MPI [34, 35] and OpenMP [36].
However, these models are too complex, abstract, and dif-
ficult to program. In this paper, the MATLAB platform is
applied in parallel computing, which is a simple and easy
way to develop parallel optimization programs to realize
multicore parallel computation of the IQPSO algorithm.

During the optimization process, the calculation of the
fitness value is the most time-consuming part. It is a

Mathematical Problems in Engineering 3



reasonable choice to adopt the Master-Slave parallel
structure. In the MATLAB platform, the “parpool” function
is used to configure and open a parallel pool and the “client
and worker” pattern is used to execute the “parfor” loop in
parallel computing. ,e MATLAB client is the main process
responsible for controlling the entire calculation process,
including particle initialization, particle location updating,
fitness value comparison, concentration regulation strategy,
and vaccination strategy. ,e MATLAB worker is a slave
process, which is mainly responsible for the calculation of
fitness values. ,e communications between the master and
slave processes are shown in Figure 2. Parameter n in
Figure 2 represents the number of slave processes. In par-
ticular, to avoid slave process idling, the particle number of
the particle swarm is an integer multiple of n.

2.3. IQPSO Algorithm Procedures. ,e steps of the IQPSO
algorithm are as follows and the flow chart of the IQPSO
algorithm is shown in Figure 3:

Step 1: set initial parameters. Population size N, di-
mension D, maximum iteration number T, population
diversity threshold ξ, and mutation probability Pm are
determined. Initialize the position of each particle and
calculate the fitness value. In addition, update the
historical optimal position of the particle Pbest, the
mean best position of the population Mbest and the
global optimal position of the population Gbest which,
is stored in the memory bank as a “vaccine.”
Step 2: initiate population diversity judgement. ,e
concentration of each particle is calculated using
equations (7) and (8), and the population diversity is
judged. If the maximum concentration of particles
reaches the population diversity threshold ξ, then go to
Step 3; otherwise, jump to Step 5.
Step 3: realize concentration regulation. Sort by the
particle concentration values and control

subpopulation size with maximum concentration.
Eliminate M high-concentration particles and keep N-
M low-concentration particles.
Step 4: implement vaccination. Half of M high-con-
centration particles are replaced by new random par-
ticles that meet the constraint, and the other half of
particles are selected to carry out vaccination with the
memory particle. ,e particles in the second pattern
may suffer genetic mutations based on the mutation
probability Pm. ,e N-M particles are kept in Step 3,
and the M particles generated in Step 4 are merged to
make up a new population.
Step 5: Update the particles. ,e position of particles
is updated using equations (1)∼(6), and a new gen-
eration of N particles is produced. According to the
objective function and a simple multicore parallel
computing strategy, the fitness value of each particle
is calculated and the positions of Pbest, Mbest, and
Gbest are updated. Finally, the memory bank will be
reset.
Step 6: Implement algorithm iterations. Judge whether
the number of iterations reaches the predetermined
value; if not, return to Step 2; otherwise, end the it-
eration and output the global optimal solution and
fitness value.

3. Numerical Experiments

In order to verify the feasibility and validity of the proposed
IQPSO algorithm, three typical single-peak functions,
Sphere, Step, and Rosenbrock, and three complex multipeak
functions, Ackley, Rastrigin, and Griewank, are selected for
numerical experiments. ,e mathematical formula, the
searching space, and the optimum solution of six test
functions are shown specifically in Table 1.,e experimental
results of the IQPSO algorithm are compared with PSO,
QPSO, and IPSO.
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Figure 1: Schematic diagram of the immune mechanism.
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In the numerical experiment, the particle swarm N, the
maximum iteration number T, the population diversity
threshold ξ, the mutation probability Pm, the acceleration
constants c1 and c2, and the initial and final inertial weights
are set as 40, 1000, 0.35, 0.5, 2.0, 2.0, 0.9, and 0.4, respectively.
In addition, the searching hyperspace dimension D is
considered to be 30, 60, and 90. To ensure the stability of the
calculation results, each test function is performed 50 times
independently using four different algorithms. ,e average
optimum value of the results in different dimensions is also
listed in Table 2, and the best calculation results between four
algorithms are roughly marked. Figure 4 shows the con-
vergence process curves of the logarithmic average fitness
values for four algorithms in 60 dimensions. ,e smaller the
value is, the higher the solution accuracy is.

As shown in Table 2, the results of the IQPSO algorithm
are extremely close to the optimal value 0 and obviously
better than those obtained from other three algorithms in
almost all cases. ,e proposed algorithm has better per-
formance whether the test function is single-peak or mul-
tipeak. Figure 4 indicates that, in the early stage of evolution,
the four algorithms can search for the optimal solution
quickly, and the fitness value curve decreases continuously.
However, as the evolution continues, the other three algo-
rithms begin to fall into a local optimal solution and appear
to converge prematurely, while the fitness value curve of the
IQPSO algorithm (marked in red) continues to decline and
is able to search for the better solution. Actually, if given
enough iteration, the optimal solution can ultimately be
found. In conclusion, the experimental results show that the
proposed algorithm in this paper has higher solution ac-
curacy, stronger global search ability, and better robustness.

4. Case Study

4.1. Engineering Overview. In order to verify the effective-
ness of the proposed algorithm in hydraulic engineering
optimized back analysis, a three-dimensional finite element
model of a Chinese concrete-face rock-fill dam (CFRD) was
established. Based on a geological survey andmonitor data, a
back analysis for seepage parameters was accomplished with
the proposed IQPSO algorithm.More specifically, the dam is
located in the Sinan River, Yunnan Province, China, and the
maximum height of the dam is 115m. ,e normal storage
level and the dead water level are 900.00m and 860.00m,
respectively. ,e dam has the standard CFRD structure,

including an upstream concrete face slab, bedding material,
transition material, primary rock-fill zone, secondary rock-
fill zone, and impervious curtain. ,e bottom boundary of
the impervious curtain enters the water-proof layer (q< 3
Lu) and its deepest depth is 45m. ,e maximum cross
section of the dam body is shown in Figure 5.

,e permeability coefficients of five materials need to be
optimized. ,ese materials are impervious curtain, primary
rock-fill zones, and three strata of the dam foundation. Based
on geological prospecting data and engineering experience,
permeability coefficients of these five materials are limited to
a reasonable range. Assuming that all the materials are
isotropic, permeability coefficients are shown in Table 3.

4.2. Analysis of Measured Osmotic Pressure Data. ,e os-
mometers in the project are marked in red in Figure 5 and
are distributed at the downstream side of the impervious
curtain and the dam foundation. In view of themeasurement
bias and the sensitivity of back analysis, the osmotic pressure
data of points P11–P13 and P15–P19, a total of 8 observation
points, are selected as the basic information for back
analysis. Figure 6 shows the upstream water level of the dam
and the measured hydraulic head of a typical osmometer
(P11) from 19 January 2009 to 12 February 2014.

Comparing the time curve of the upstream water level
and the measured hydraulic head of the typical osmometer
in Figure 6, we find out that the hydraulic head of the
measured point (P11) changes periodically during the res-
ervoir stable storage period.,at is, with the upstream water
level rising and declining, the hydraulic head increases and
decreases, which is consistent with the conclusion drawn by
Wu [37] in his book. Considering that there is a seepage
process during the upstream water level fluctuation, the
measured hydraulic head lags behind the reservoir water
level, which is called the “lag effect.” Hence, one complete
and stable storage period is selected as the calculation period
(2009-8-20–2010-8-20). ,e upstream water level is
887.36m, and the downstream water level is 800.59m. ,e
measured hydraulic head values (listed in Table 4) during
this calculation period are taken as the basic data in back
analysis.

4.3. Finite Element Analysis. ,e finite element method
[38, 39] is a common numerical method to solve the
seepage field of earth-rock dams, and the numerical

Master process
(particle position updating)

MATLAB
client

MATLAB
workers

Slave process 1
(fitness calculation)

Slave process 2
(fitness calculation)

Slave process n
(fitness calculation)

Parfor

Figure 2: Communications between the master process and the slave processes.
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simulation technology is relatively mature. In this paper, a
three-dimensional seepage “CNPM” finite element pro-
gram compiled by the research group is used to calculate
the steady seepage field. According to the similar engi-
neering experience, the numerical model domain is set as

follows. In the x-direction, the length of the dam foun-
dation beyond the dam body is the height of the dam along
the upstream and downstream. In the z-direction, the
depth of the foundation is twice the height of the dam. ,e
three-dimensional finite element model is established

Start

Multicore parallel computing

t = 1Step 1
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Step 3
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Adopt two different vaccination methods for M particles
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If population diversity reaches threshold

No
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Figure 3: Flow chart of the IQPSO algorithm.
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(shown in Figure 7), and 7582 nodes and 3686 elements are
built by using the superelement division method. ,e
reservoir water level data are given as the boundary con-
dition of the upstream and downstream water levels, and
other parts of the model are considered as impermeable
boundary in FEM calculation. ,e measured values in
Table 4 are selected as the water-head constraint condition.
With the unit width dam section, the hydraulic head values
are calculated under different combinations of permeability
coefficients by FEM. Additionally, 13 colours represent 13
material regions, as shown in Figure 7.

4.4. Optimized Back Analysis for Permeability Coefficient

4.4.1. Mathematical Model. ,e mathematical model for
permeability coefficients of the dam is based on the calcu-
lation results of the FEM and the measured hydraulic head
values. Generally, according to the hydraulic head data, only
the ratio of permeability coefficients in each material area
could be inverted. However, if given some certain perme-
ability coefficients of certain materials, permeability coeffi-
cients of other materials can be basically determined. In this
case, the optimization mathematical model is established as
follows:

minF(k) � 􏽘
8

i�1
wi h

c
i − h

m
i( 􏼁

2
, (10)

s.t. aj ≤ kj ≤ bj, (j � 1, 2, . . . , 5). (11)
In the above model, equation (10) is the objective

function based on the least-squares criterion.
k � [k1, k2, · · · , k5]

T is a group of permeability coefficients to
be inverted. hc

i and hm
i are the ith computed and measured

hydraulic head, respectively, and wi is the ith weight which
adds up to 1 (wi (i� 1, 2, · · ·, 8)� [0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1] in this case). Equation (11) is the constraint condition
that gives the range of permeability coefficients. aj and bj are
the jth minimum and maximum of kj, respectively.

Next, based on the IQPSO algorithm mentioned in
Section 2, the optimization back analysis for permeability
coefficients is carried out and the inversion results are
compared with QPSO and IPSO. In addition, in order to
allow for the time superiority of a multicore parallel com-
puting strategy, a back analysis by serial IQPSO is also
performed. ,e particle swarm N, the maximum iteration
number T, the population diversity threshold ξ, the muta-
tion probability Pm, the acceleration constants c1 and c2, and
the initial and final inertial weights are set as 30, 200, 0.35,

Table 2: Comparison of average optimum values on test functions.

Test function Dimension PSO QPSO IPSO IQPSO

Sphere
30 5.50E− 05 5.56E− 11 2.64E− 06 8.84E− 16
60 7.44E− 01 9.88E− 04 9.00E− 03 6.08E− 07
90 3.66E+ 00 1.50E− 01 1.16E− 01 5.18E− 04

Step
30 3.34E− 02 1.75E− 09 3.60E− 03 6.50E− 04
60 1.16E+ 00 4.70E− 02 5.10E− 02 3.37E− 02
90 6.35E+ 00 5.33E+ 00 4.39E− 01 2.46E− 01

Rosenbrock
30 9.39E+ 01 6.99E+ 01 5.54E+ 01 2.58E+ 01
60 6.15E+ 02 5.02E+ 02 3.38E+ 02 1.67E+ 02
90 2.37E+ 03 1.22E+ 03 8.08E+ 02 4.92E+ 02

Ackley
30 4.62E+ 00 1.99E− 05 8.38E− 03 7.69E− 08
60 6.40E+ 00 3.06E− 01 2.78E+ 00 2.40E− 03
90 7.61E+ 00 2.26E+ 00 4.64E+ 00 5.42E− 02

Rastrigin
30 4.61E+ 01 1.92E+ 01 4.43E+ 01 1.42E+ 01
60 1.61E+ 02 8.19E+ 01 1.01E+ 02 4.99E+ 01
90 3.25E+ 02 1.97E+ 02 1.56E+ 02 1.20E+ 02

Griewank
30 4.21E+ 00 5.92E− 05 9.91E− 01 1.18E− 09
60 1.45E+ 01 2.50E− 01 2.46E+ 00 5.08E− 04
90 2.48E+ 01 1.49E+ 00 4.10E+ 00 5.11E− 02

Table 1: Six typical test functions.

Function name Mathematical formula Searching space Optimal solution
Sphere f(x) � 􏽐

D
i�1 x2

i [−5.12, 5.12] 0
Step f(x) � 􏽐

D
i�1 (xi + 0.5)2 [−30, 30] 0

Rosenbrock f(x) � 􏽐
D−1
i�1 [100(xi+1 − x2

i )2 + (xi − 1)2] [−30, 30] 0

Ackley f(x) � −20 exp(−0.2
�����������
(1/n) 􏽐

n
i�1 x2

i

􏽱
) − exp((1/n) 􏽐

n
i�1 cos(2πxi)) + 20 + e [−30, 30] 0

Rastrigin f(x) � 10n + 􏽐
n
i�1[x2

i − 10 cos(2πxi)] [−5.12, 5.12] 0
Griewank f(x) � (1/4000) 􏽐

n
i�1 x2

i − 􏽑
n
i�1 cos(xi/

�
i

√
) + 1 [−600, 600] 0
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0.5, 2.0, 2.0, 0.9, and 0.4, respectively. ,e running envi-
ronment is a 64-bit operating system, Intel (R) Core (TM)
i5-8400 CPU, 6 cores, 2.80GHz. Hence, 6 cores are applied
in parallel computing. Based on the three-dimensional
seepage “CNPM” finite element program, MATLAB is used
to adjust the permeability coefficients bymodifying the input
file of the program and to read the hydraulic head of the
nodes. ,en, based on equation (10), fitness function is
established to optimize the permeability coefficients in a
specific range. In particular, this case sets 200 iterations
because with approximately 125 iterations, the algorithm
can be considered to converge in a tentative calculation.

However, for different cases, iterations of the algorithm
should be adjusted according to the actual results of the
tentative calculation.

4.4.2. Back Analysis Results. ,e optimal fitness curves for
the three algorithms are shown in Figure 8, and the sim-
ulated and measured hydraulic head of the steady seepage
field at the measuring points are listed in Table 5, which also
contains the absolute error and relative error of the simu-
lated andmeasured hydraulic head. From the above analysis,
all three algorithms can achieve convergence under the 200-
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Figure 4: Convergence process curves of average fitness for four algorithms (60 dimensions): (a) Sphere function; (b) Step function;
(c) Rosenbrock function; (d) Ackley function; (e) Rastrigin function; (f ) Griewank function.

8 Mathematical Problems in Engineering



iteration condition. Compared with QPSO and IPSO,
IQPSO has a smaller optimal objective function value and a
smaller error between the measured values and the

simulated values, which indicates that the proposed algo-
rithm in this paper has higher accuracy, stronger global
search ability, and better robustness. Based on the error
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Figure 5: ,e maximum cross section of the dam body.

Table 3: Permeability coefficient of the dam body and dam foundation (cm/s).

Inversion material Range of permeability coefficient Determined material Value of permeability coefficient
Relative impermeable layer 3×10−6∼3×10−4 Upstream face slab 1× 10−7

Aquitard layer 6×10−6∼6×10−4 Bedding material 5×10−4

Weak weathered layer 8×10−5∼8×10−3 Transition material 3×10−1

Primary rock-fill 1× 10−1∼1× 101 Secondary rock-fill 1× 10−1

Impervious curtain 3×10−6∼3×10−4 Upstream blanket 1× 10−2

Upstream arbitrary fill material 1× 100
Downstream slope 5×10−2

Dam crest material 3.5×10−7
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Figure 6: Time curve of upstream water level and measured hydraulic head of typical osmometer (P11).
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analysis method [10], the maximum absolute error by
IQPSO is 1.42m and the maximum relative error is 9.97%,
within a reasonable range, which strongly indicates that the
permeability coefficients are reasonable.

Compared with serial IQPSO, the computation time of
parallel IQPSO is decreased dramatically from 22.28 h to
4.52 h. According to the parallel performance analysis
[40], the computing acceleration ratio and parallel
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Figure 8: ,e optimal fitness curves for three algorithms.

Figure 7: Finite element mesh of unit width dam section.

Table 4: Measured hydraulic head of osmometers in back analysis (m).

Osmometer number P11 P12 P13 P15 P16 P17 P18 P19
Measured hydraulic head 31.06 21.26 12.82 9.43 7.56 5.24 5.76 5.96
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efficiency are 4.93 and 0.82, respectively, which indicates
that the time superiority of the multicore parallel strategy
is remarkable. ,is parallel strategy not only provides
convenience for the debugging and operating of the model
but also offers a good approach for applying various op-
timization algorithms to complex hydraulic engineering
inversion problems.

,e permeability coefficients acquired from IQPSO
are listed in Table 6. ,e contour map of the maximum
section of the dam body and dam foundation under steady
seepage field is shown in Figure 9. Given the permeability
coefficients of upstream face slab and other materials, the
ratio of permeability coefficients predicated from seepage
hydraulic water data is the absolute value of materials. It
can be seen from the contour map that the antiseepage
system composed of “face slab-toe plate-impervious
curtain” has a good antiseepage effect. ,e hydraulic head
is reduced by 78.10m, accounting for 90.01% of the total
water head. ,e phreatic line of the dam (marked red in
Figure 9) is at a low position and decreases continuously,

which indicates that the dam body is waterless and has
good seepage stability.

5. Conclusion

Aiming at the characteristics of seepage parameter inversion
problems, including high dimensionality, numerous local
optimal values, poor convergence performance, and ex-
cessive calculation time, a biological immune mechanism-
based quantum particle swarm optimization algorithm was
proposed in this paper to solve the inversion problem.
IQPSO was tested by numerical experiments. ,en, an
optimized back analysis for permeability coefficients of one
concrete face rock-fill dam was realized and the steady
seepage field of the dam was analysed. ,e main conclusions
are as follows:

(1) Based on the concentration regulation strategy and
the vaccination strategy, the global search ability and
the convergence performance of the novel algorithm
had been improved significantly. ,e numerical

Table 6: Inversion results of permeability coefficients by IQPSO (cm/s).

Inversion material Range of permeability coefficient Value of permeability coefficient
Relative impermeable layer 3×10−6∼3×10−4 2.58×10−4

Aquitard layer 6×10−6∼6×10−4 4.05×10−4

Weak weathered layer 8×10−5∼8×10−3 7.91× 10−3

Primary rock-fill 1× 10−1∼1× 101 2.03×10−1

Impervious curtain 3×10−6∼3×10−4 3.39×10−5
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Figure 9: Contour map of the maximum section of the dam body and dam foundation.

Table 5: Results of the simulated and measured hydraulic head for three algorithms.

Algorithm Osmometer number P11 P12 P13 P15 P16 P17 P18 P19

IPSO

Measured value (m) 808.06 806.26 805.82 805.43 805.56 804.24 804.76 802.96
Simulated value (m) 808.65 807.18 805.62 804.30 805.19 806.02 804.95 803.56
Absolute error (m) 0.59 0.92 −0.20 −1.13 −0.36 1.78 0.19 0.60
Relative error (%) 3.27 5.63 −1.29 −7.30 −2.34 12.51 1.26 4.66

QPSO
Simulated value (m) 808.54 807.06 805.50 804.20 805.09 805.92 804.86 803.56
Absolute error (m) 0.48 0.80 −0.32 −1.23 −0.47 1.68 0.10 0.60
Relative error (%) 2.66 4.94 −2.02 −7.98 −2.99 11.81 0.67 4.66

IQPSO
Simulated value (m) 808.41 806.67 805.43 804.17 805.06 805.66 804.84 803.55
Absolute error (m) 0.35 0.41 −0.39 −1.26 −0.50 1.42 0.08 0.59
Relative error (%) 1.93 2.52 −2.49 −8.16 −3.19 9.97 0.54 4.56
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experimental results of IQPSO were obviously better
than the other three algorithms, which proved the
effectiveness and practicability of the algorithm.

(2) ,e back analysis results showed that compared with
QPSO and IPSO, IQPSO had a smaller objective
function value and fewer errors between the calcu-
lated hydraulic head values and the measured values.
,e maximum absolute error by IQPSO was 1.42m,
and the maximum relative error was 9.97%. ,e
analysis results of the steady seepage field indicated
that during the normal operation of the reservoir, the
antiseepage system composed of “Face slab-toe plate-
impervious curtain” had a good antiseepage effect.

(3) Compared with serial IQPSO, the computing time
was obviously shortened by parallel IQPSO and the
acceleration ratio and parallel efficiency were 4.93
and 0.82, respectively, which indicated that the time
superiority of the multicore parallel strategy was
remarkable.
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