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-is article presents analytical solutions to the problem of dynamic stress concentration and the surface displacement of a partially
debonded cylindrical inclusion in the covering layer under the action of a steady-state horizontally polarized shear wave (SH
wave); these solutions are using the complex function method and wave function expansion method. By applying the large-arc
assumption method, the straight line boundary of the half-space covering layer is transformed into a curved boundary. -e wave
field of the debonded inclusion is constructed utilizing a Fourier series and boundary conditions of continuity. -e impact of
debonding upon the dynamic stress concentration and surface displacement around the cylindrical concrete or steel inclusion is
analyzed through numerical examples of the SH waves that are incident at normal angles, from a harder medium to a softer
medium and from a softer medium to a harder medium. -e examples show that various factors (including the medium
parameters of the soil layers and the inclusion, the frequency of the incident waves, and the debonding situations) jointly affect the
dynamic stress concentration factor and the surface displacement around the structure.

1. Introduction

-e development and utilization of underground space is an
important factor to consider when seeking to optimize the
urban spatial structure and ease the strain on urban land
resources. Ensuring the safety of underground structures
during an earthquake is vital for protecting people’s lives and
property. Various wave fields around the underground
structure will interact and interfere with each other, which
make analyzing the dynamic response of the underground
structure very complicated; this has caused widespread
concern among scholars [1]. Stress concentration refers to
the phenomenon of a local increase in stress in an object,
which has a very important relationship with the damage
inflicted on a structure during an earthquake. Studies have
revealed that, during an earthquake, the dynamic stress
concentration around an underground tunnel is attributed
to the multiple scattering of seismic waves by the earth’s
surface and cavities [2]. Because of factors such as con-
struction technology, soil settlement, and changes in the
groundwater level, at some parts of the structure, it will veer

away from the interface between itself and the surrounding
soil medium, forming a debonded area. -e existence of
debonding both causes a dramatic change in the dynamic
stress concentration at the edges of the structure and has a
substantial impact on the ground surface vibration at the
same time; consequently, this affects the nearby buildings.
-erefore, it has become necessary to study the impact of
this debonding. In engineering, when studying various
mechanical problems, the earth is often regarded as a whole
elastic half space. -us far, the research results regarding
horizontally polarized shear wave (SH wave) scattering in
full space and half space are plentiful [2]. However, when the
ground is considered to consist of multiple soil layers, the
boundary conditions become more complicated, and this
means that the mirror method, which is often used in the
study of SH wave scattering in a half space, is no longer
applicable. Furthermore, in reality, each soil layer often has
different mechanical properties, which will make it more
difficult to model and thus solve. Scholars from various
countries have not yet devised an ideal method for solving
such problems, and their research has only encompassed the
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problem of elastic wave scattering in the covering layer of
specific terrain [3, 4]. From the perspective of engineering
applications, in this paper, we consider comprehensively the
material differences in various soil layers and structures and
try to obtain a solution to the problem of dynamic stress
concentration and the surface displacement of SH waves
scattered by the debonded structure in the covering layer,
thus providing a theoretical reference for seismic design in
engineering. -erefore, the impact of seismic waves on a
structure can be reduced by means of changing materials,
changing dimensions, and strengthening weak areas, which
has extensive practical significance for tunnel engineering
and mining engineering.

In 1961, Baron used the integral transform method and
wave function expansion method to provide an analytical
solution to the compressional wave pulse scattering problem
for a cylindrical cavity [5]. Following this, Mow and Mente
studied the scattering of shear waves by a cylinder [6]. Liu
et al. solved successfully the dynamic stress concentration
problem with respect to cavities of arbitrary shape in 1982,
and they applied the complex variable function method to
the two-dimensional elastic dynamics scattering problem
[7]. -ey also used the complex function method and
moving coordinate method effectively to solve the problem
of the scattering of SH waves by shallowly buried structures
in a half space [8, 9]. Successively, Qi and Yang have ex-
tended this into the areas of half space, half-space interface,
circular cavities in half-space bidirectional media, and in-
clusion [10, 11]. -e debonding of a structure can be
considered to be a crack without surface contact. In the
1980s, Coussy studied the case where a cylindrical inclusion
and the substrate were debonded [12]. In the 1990s, Yang
and Norris studied the condition of a single-arc crack and
provided near-field and far-field solutions at arbitrary
wavelengths [13, 14].Wang analyzed and solved the problem
of plane-wave scattering by a partially detached, rigid, or
elastic cylindrical inclusion, based on the wave function
expansion method [15, 16]. In 2008, Yang revealed the finite
element numerical results of the transient response of an
infinite half space to a covering layer crack under the action
of SH waves [17]. At the end of the 20th century, Lee and
Karl used the large-arc assumption method to turn the
traditional straight boundary problem into a curved
boundary problem, and they devised analytical solutions for
the scattering of the primary waves and other shear waves by
a single circular cavity [18–21]. Recently, Fang et al. [22–24]
investigated the interface effect in the propagation and
diffraction of elastic waves.

In addition, the theory of elastic waves also has a great
value in engineering applications, such as fatigue failure of
structural materials [25–27] due to cyclic strain of the
loading waves. In this paper, the concrete and steel struc-
tures commonly used in engineering have been selected as
the research objects, and they are each regarded as a cy-
lindrical inclusion in the covering layer. On the basis of the
large-arc assumption, we transform the straight boundary of
two soil layers into a curved (or arc) boundary to construct a
scattered wave field in each soil layer. We then decompose
the model into circular cavity scattering and inclusion

scattering problems in the covering layer using the cutting
method. -e conjunction between the two is then applied to
the common boundary, and the wave field of the debonded
inclusion is constructed using a Fourier series and contin-
uous boundary conditions, which avoids the processing of
singular points on the edges of the debonded structure and
obtains an analytical solution for the problem. Moreover, in
the numerical programming calculations used, unlike in the
standard literature, this paper does not only perform the-
oretical derivation and idealized parameter selection but also
provides the actual material parameters of the soil layers and
inclusion based on actual engineering. -e problems of the
dynamic stress concentration and the surface displacement
surrounding debonded inclusion are analyzed comprehen-
sively in two typical geological combinations: SH wave
propagation from a harder medium to a softer medium and
from a softer medium to a harder medium.

2. Theoretical Model and
Fundamental Equations

A two-dimensional model of a single cylindrical debonded
inclusion in the covering layer is shown in Figure 1. -e
lower soil layer is Domain I, in which the shear velocity is c1,
the density is ρ1, the shear modulus is μ1, and the SH
wavenumber is k1; the upper covering layer is Domain II, in
which the shear velocity is c2, the density is ρ2, the shear
modulus is μ2, and the SH wavenumber is k2; and the
circular inclusion in the covering layer is Domain III, in
which the shear velocity is c3, the density is ρ3, the shear
modulus is μ3, and the SH wavenumber is k3. -e upper
boundary of the covering layer is marked as TU, and the
lower boundary is TD, and the boundary of the circular
inclusion isTC.-e inclusion radius is r, and the thickness of
the covering layer is h. -e distance from the center of the
circular inclusion to the upper boundary, Tu, of the covering
layer is h1 and to the lower boundary, TD, is h2. Using the
large-arc assumption method, the upper and lower
boundaries of the covering layer are approximated using
concentric arcs, each with a large radius; the upper
boundary, Tu, becomes Tu, and the lower boundary, Tu,
becomes Tu. A rectangular coordinate system, X1O1Y1, is
established with the center of the large arc as the origin O1; a
rectangular coordinate system, X2O2Y2, is established, with
the center of the inclusion as the origin O2, and a line parallel
to the interface Tu is taken as the axis X2 so that the axis Y1
and the axis Y2 are on the same straight line. -e polar
coordinate angle of any point in the space under the co-
ordinate system X1O1Y1 is θ1, and the polar coordinate
angle of any point of the inclusion boundary in the coor-
dinate system X2O2Y2 is θ2. When there is debonding in the
inclusion, θ3 and θ4 are the starting and ending angles of the
debonded structure, respectively, and θ4 ≥ θ3. -e steady-
state SH wave is incident from Domain I, with an incident
angle of α0.

In this paper, we study the scattering of SH waves in out-
of-plane shear motion. -e steady-state SH wave displace-
ment field W(X, Y) excited by a half space satisfies the
Helmholtz equation [7]:
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in which k is the wavenumber and k � ω/c; ω is the circular
frequency of the displacement field W(X, Y); and c is wave
velocity and c �

���
G/ρ

􏽰
, in which G and ρ are the shear

modulus and density of the medium, respectively. -e
complex variable functions zs � Xs + iYs and zs � Xs − iYs

are introduced, where S � 1, 2 and the complex planes
(z1, z1) and (z2, z2) corresponding to the coordinate sys-
tems X1O1Y2 and X2O2Y2, respectively, are established. -e
relationship of each geometric variable is as follows:
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In the complex plane, (1) can be expressed as follows:
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2.1. Wave Fields. In plane (z1, z1), the displacement field of
the incident wave in Domain I is as follows [7]:

W
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In plane (z1, z1), the displacement field of the scattered
wave generated in Domain I by the boundary TD can be
divided into two parts of W
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and W
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W
(S1)

z1 ,z1( )
� 􏽘

n�+∞

n�−∞
AnH

(2)
n

k1

z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼠 􏼡

z1

z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼠 􏼡

n

,

W
(S2)

z1 ,z1( )
� 􏽘

n�+∞

n�−∞
BnH

(1)
n

k2

z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼠 􏼡

z1

z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼠 􏼡

n

.

(6)

In addition, in plane (z2, z2),W
(S2)
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follows:

W
(S2)

z2 ,z2( )
� 􏽘

n�+∞

n�−∞
BnH

(1)
n k2 z2+

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

z2+

z2+

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼠 􏼡

n

, (7)

in which Z2+ � z2 + i(RD + h2).
In plane (z2, z2), the displacement field of the scattered

wave generated in the Domain I by the boundary TC can be
divided into two parts of W
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and W

(S4)
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.

-e former is as follows:
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In addition, in plane (z1, z1), it is expressed as follows:
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Figure 1: Schematic diagram of the layer half space.
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in which Z1− � z1 − i(RD + h2).
In plane (z1, z1), the latter is as follows:
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In addition, in plane (z2, z2), it is expressed as follows:
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In the complex plane (z2, z2), the standing wave W(ST)

generated by the circular inclusion TC in Domain III of the
covering layer satisfies both stress freedom on the boundary
C, and displacement and stress continuity on the boundary
C:
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-e standing wave corresponding to (12) is as follows:
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where En and F1 are undetermined coefficients and W3 is the
maximum amplitude of a standing wave, which is set to
W3 � 1 in this paper.

Expanding the previous formula (12) into a (10), Fourier
series in [−π, +π] gives the following:
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In complex plane (z2, z2), θ3 and θ4 are the starting and
ending angles of the debonded structure, respectively, and
θ4 ≥ θ5.

On comparing (15) and (14) with |z2| � R, we obtain the
following:
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By replacing (13) with (17), we determine the standing
wave in the inclusion:
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-e standing wave solution in Domain III is (17), which
satisfies the stress freedom on the boundary C; the dis-
placement and stress are continuous on the boundary C, and
the corresponding stress expression is as follows:
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3. Boundary Conditions

-e boundary conditions to be met are as follows:

(i) Continuous displacement on TD(|z1| � RD):
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(v) Free radial stress on TU(|z1| � RU): τ(S2)
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A Fourier series expansion is performed on the two ends
of the equation, according to the angular variable θ, and an
infinite term equation system containing infinite unknown
coefficients is obtained. According to the attenuation
properties of the scattered wave, the finite terms are
intercepted form and n to ensure accuracy. -ese boundary
condition equations can be transformed into a finite term
linear equation set, and the coefficients An, Bn, Cn, Dn, and
En are obtained.

4. Dynamic Stress Concentration Factor and
Surface Displacement Amplitudes

We define the dynamic stress concentration factor (DSCF)
denoted by τ∗
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at the edge of a cylindrical inclusion, which is abbreviated as
DSCFσ ∗θz, for which the maximum value is DSCFσ ∗θzmax. -e
DSCF represents the stress response of an elastic medium to
an external load. -e total wave field of the displacement in
Domain II in the covering layer is W(t) � W(S2) + W(S3)

+W(S4). -is can also be expressed as W(t) � |W(t)|ei(ωt− ϕ),
in which ϕ is the phase of W(t), and the frequency of the
incident wave ω can be combined with the radius of the
circular inclusion to obtain an incident wavenumber. From
k � ω/c and λ � cT, in which λ is the wavelength and c is the
velocity, we can determine that the incident wavenumber is
kr � 2πr/λ.

5. Numerical Results and Discussion

-enumerical examples focus on the effects of debonding on
the dynamic stress concentration and the surface dis-
placement of a cylindrical concrete or steel inclusion when
SH waves are incident vertically. We assume that the
debonding position exists in the upper half of the inclusion,
that is, the starting angle and the ending angle of the
debonding are θ3 � 0 and θ4 � π/2, respectively. -e inci-
dent angle of the SH wave α0 � 90∘, the depth of the cy-
lindrical inclusion h1 � 1.5 r, radius r � 1, the density of
Domain I ρ1 � 1, the shear velocity c1 � 1, and the shear
modulus μ1 � 1 can be obtained from C �

���
μ/ρ

􏽰
. For con-

venience and to facilitate the analysis, all parameters in this
example are dimensionless. By defining the parameter
combination c∗ � c2/c1, c# � c3/c1, ρ∗ � ρ2/ρ1, ρ# � ρ3/ρ1,
k∗ � k2/k1, and k# � k3/k1 and from k � ω/c, we obtain k∗ �

1/c∗ �
�����
ρ∗/μ∗

􏽰
and k# � 1/c# �

�����

ρ#/μ#
􏽱

. A value of k∗ > 1
indicates that Domain I is “harder” than Domain II, that is,
the incident wave propagates from the “harder” half space,
and, at this moment, the circular inclusion is positioned in

the “softer” covering layer. Two commonly used materials
are applied to create the inclusion:

(1) C30 concrete, with density ρ3 � 2400 kg/m3, shear
modulus μ3 � 12GPa, and shear velocity
C3 � 2240m/s

(2) Q345 steel, with density ρ3� 7850 kg/m3, shear
modulus μ3 � 79GPa, and shear velocity
C3 � 3160m/s

Two geological conditions are selected:

(i) SH wave incident from the harder medium to the
softer medium: where, Domain I is granite of density
ρ1� 2800 kg/m3 and shear velocity c1 � 3200m/s,
and Domain II in the covering layer is sandstone of
density ρ2 � 2240 kg/m3 and shear velocity
c2 � 2100m/s. When ρ1 � 1, ρ∗ � 0.8 and k∗ � 1.5.
When the inclusion is C30 concrete, ρ# ≈ 0.85 and
k# ≈ 1.4. When the inclusion is Q345 steel, ρ# ≈ 2.8
and k ≈ 1.0.

(ii) SH wave incident from the softer medium to the
harder medium: where, Domain I is coal of density
ρ1� 1500 kg/m3 and shear velocity c1 � 1000m/s,
and Domain II in the covering layer is sandstone of
density ρ2 � 2240 kg/m3 and shear velocity
c2 � 2100m/s. When ρ1 � 1, ρ∗ ≈ 1.7 and K# ≈ 0.4.
When the inclusion is C30 concrete, ρ# � 1.6 and
K# ≈ 0.45. When the inclusion is Q345 steel,
ρ# ≈ 5.2 and K# ≈ 0.3.

When μ∗ � k∗ � ρ∗ � 1, the parameters of Domain I and
Domain II are the same, so the boundary TD does not exist,
and Domains I and II merge into one. At this time,
μ∗ � k∗ � ρ∗ � 1, and Domain III can be seen as a circular
cavity without media. -is degenerates into the problem of
the scattering of an SH wave by a circular cavity in the half
space, as illustrated in Figure 2. Figure 3 shows that when
Rd ≥ 120 r, k1 � 0.1 and h1 are the DSCFs around the circular
cavity when 1.5c and when 12 r, respectively, and the results
are basically consistent with the results of Figure 4 in [8].
Figure 5 identifies that when h1 is 3 r and 12 r, the changes in
the amplitude of the horizontal surface displacement with
x/r, respectively. -e results are fundamentally consistent
with what is demonstrated in Figures 3 and 5 in [9], that is,
when h1 ≥ 12 r, the DSCFs and the ground surface horizontal
displacement approach a constant, which also verifies the
rationality of using the large-arc assumption method.

Figure 6 illustrates the dynamic stress concentration
around the concrete inclusion in the sandstone covering
layer when the SH wave for geological combination A is
perpendicularly incident from the granite layer to the
sandstone layer. In this instance, the SH wave is incident
from the harder medium to the softer medium, and the
parameters are ρ∗ � 0.8, k∗ � 1.5, ρ# ≈ 0.85, and k# ≈ 1.4.
When k1r � 0.1, which is a low-frequency incidence, the
DSCF around the inclusion is elliptical. When the inclusion
is not debonded, DSCFσ ∗θzmax appears at about 200° and 340°.
When bonded, the overall DSCFσ ∗θzmax increases to a certain
extent, but there is no obvious change in the DSCFσ ∗θz
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position. When the incident frequency increases to an in-
termediate frequency with k1r � 1.0, the increase in the
DSCFσ ∗θz of the debonded structure is very substantial
compared with the low-frequency incidence, and the dis-
tribution shape also changes considerably. Regardless of
whether the structure is debonded or not, the positions of
DSCFσ ∗θzmax are at approximately 20° and 160°. Comparing

this with when k1r � 0.1, there is a nearly three times in-
crease in DSCFσ ∗θzmax when debonding occurs and k1r � 1.0.
Under the same geological conditions, a debonded concrete
inclusion’s dynamic response to the intermediate-frequency
incident wave is more sensitive, that is, there is a resonance
phenomenon between the structure and the site when under
intermediate-frequency conditions. When k1r � 2.0, which
is a high-frequency incidence, the overall amplitude of
DSCFσ ∗θz tends to decrease compared with when k1r � 1.0,
but the distribution shape changes radically.-e distribution
shape of the structure’s DSCFσ ∗θz after debonding is obvi-
ously different from that when it is not debonded. -e
DSCFσ ∗θzmax appears at 0° and 180° when the structure is not
debonded, and the DSCFσ ∗θzmax appears at 220° and 320°
when debonding exists. -e overall value of DSCFσ ∗θz is
much larger when the structure is debonded than when it is
not debonded. Under geological combination A, with an
increase in k1r, the DSCFσ ∗θz of the concrete structure tends
to change gradually from low to high and then to low again.
When the incident wave is at a high frequency, debonding
has the most substantial effect on the distribution shape and
the positions of the DSCF maximums of the concrete
inclusion.

Figure 4 shows the dynamic stress concentration around
the steel inclusion in the sandstone covering layer when the
SH wave for geological combination A is perpendicularly
incident from the granite layer to the sandstone layer. In this
instance, the parameters are ρ∗ � 0.8, k∗ � 1.5, ρ# ≈ 2.8, and
k# ≈ 1.0. -e density and shear modulus of steel are much
larger than those of concrete. It can be concluded that the
inclusion’s stiffness is greater, and the inclusion is “harder.”
Compared with what is revealed in Figure 6, the DSCFσ ∗θz in
Figure 4 is considerably reduced overall. -e reason for this
may be that the concrete is relatively soft, and it more easily
absorbs more energy under the action of dynamics, where
this differs from the concrete inclusion is in that, in addition
to high-frequency incident waves, low-frequency incident
waves also affect the distribution shape and the maximum
positions of the DSCFσ ∗θz for the debonded steel inclusion.
When k1r � 1.0 and the structure is not debonded, the
positions of DSCFσ ∗θzmax are at about 200° and 340°, and
when the structure is debonded, the positions of DSCFσ ∗θzmax
are at about 220° and 320°; the value of DSCFσ ∗θz in the
debonded area is greater than when the structure is not
debonded. When k1r � 1.0, debonded steel inclusions, such
as debonded concrete structures, are more sensitive to the
dynamic response of intermediate-frequency incident
waves, and, overall, DSCFσ ∗θz is greater than when k1r � 0.1
and k1r � 2.0.

Figure 7 illustrates the dynamic stress concentration
around the concrete inclusion in the sandstone covering
layer when the SH wave for geological combination A is
perpendicularly incident from the coal layer to the sand-
stone layer. In this instance, the SH wave is incident from
the softer medium to the harder medium. -e parameters
are ρ∗ ≈ 1.7, k∗ � 0.4, ρ# ≈ 1.6, and K# ≈ 0.45. Compared
with what is revealed in Figure 6, the overall decrease in
DSCFσ ∗θz shown in Figure 7 is considerable, that is, as the
shear modulus of the covering layer increases, the DSCFσ ∗θz
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Figure 2: Schematic diagram of the half-space modification.
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of the inclusion in the covering layer tends to decrease.
Figure 7 also demonstrates that, as the frequency of the
incident wave increases, the overall DSCFσ ∗θz increases
gradually. When the incident wave is low frequency or
intermediate frequency, whether the structure is debonded
or not has little effect on the distribution shape and the
positions of the DSCFσ ∗θzmax for the structure. When the
incident wave is at a high frequency, the existence of
debonding also only slightly changes the overall value of the
DSCFσ ∗θz, and it does not change the distribution shape.
-e reason may be that, in such a geological combination,
the density of the concrete inclusion and sandstone layers
and the wave velocity are relatively close to the parameters
of the lower coal layer, and the effect of debonding is not
pronounced. In this case, the concrete structure and the
sandstone layer are close to forming a whole, and this

reveals a simultaneously strong reflection effect for the SH
wave transmitted from the lower coal layer; this is the
energy barrier effect.

Figure 8 depicts the dynamic stress concentration
around the steel inclusion in the sandstone covering layer
when the SH wave for geological combination A is per-
pendicularly incident from the coal layer to the sandstone
layer. In this instance, the parameters are ρ∗ ≈ 1.7, k∗ � 0.4,
ρ# ≈ 5.2, and k∗ � 0.3. Compared with what is shown in
Figure 7, the overall value of the DSCFσ ∗θz is greatly reduced,
which further confirms the phenomenon that the larger the
shear modulus of the inclusion, the smaller the amount of
energy absorbed and the smaller the DSCFσ ∗θz. It can be seen
from Figure 8 that when k1r � 0.1 and k1r � 2.0, the
DSCFσ ∗θz shape for the steel inclusion in the presence of
debonding changes drastically compared with when

D
SC

F 
σ∗ θz

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0.1

0.0

0.1

0.2

0.2

k1r = 0.1

Nondebonded
Debonded

α0 = 90°
ρ∗ = 0.8
ρ# = 2.8
k∗ = 1.5
k# = 1.0

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0.4

0.8

1.2

0.0

0.4

0.8

1.2

k1r = 1.0

D
SC

F 
σ∗ θz

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0.2

0.4

0.0

0.2

0.4

k1r = 2.0

D
SC

F 
σ∗ θz

Figure 4: DSCFσ ∗θz of geological combination A with a debonded Q345 steel inclusion.
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debonding is absent, and the DSCFσ ∗θz value of the debonded
position undergoes a notable increase. When debonding
exists in the inclusion and k1r � 0.1, the DSCFσ ∗θzmax po-
sitions change to 130° and 50°, and when k1r � 2.0, the
DSCFσ ∗θzmax positions change to 160° and 20°. Furthermore,
when k1r � 1.0, the shape of the DSCFσ ∗θz of the steel in-
clusion with debonding is close to that without debonding,
and there is a slight increase in the DSCFσ ∗θz for the
debonded position. Figures 8 and 7 also demonstrate that,
under geological combination B, the change in the frequency
of the incident wave has no obvious effect on the DSCFσ ∗θz of
a nondebonded steel inclusion, and the impacts of low-
frequency and high-frequency SH waves on the debonded
steel inclusion are notable.

Figures 9 and 10 identify the changes in the DSCFσ ∗θzmax
around the debonded concrete or steel inclusion in the
sandstone covering layer in geological combination A in
response to incident wave k1r. In this instance, the pa-
rameters p∗ ≈ 0.8 and K# ≈ 1.5 of the covering layer are the
same, and the parameters ρ# and K# of the two inclusions
are different. -e worth of analyzing this problem lies in

finding the frequency bands in which the concrete and steel
structures are most sensitive to the dynamic response of the
incident waves under the two common geological combi-
nations, which will further provide a theoretical basis for
how to reduce the effect of dynamic stress concentration in
engineering design. In Figure 9, when there is no debonding
of the concrete structure, the DSCFσ ∗θzmax increases grad-
ually along with k1r, reaches a maximum when k1r ≈ 0.35,
and then follows a trend of decreasing vibration. When
debonding exists, the DSCF reaches the maximum simul-
taneously when k1r ≈ 0.35 and k1r ≈ 1.1, and the values of
the two are relatively close. Subsequently, DSCFσ ∗θzmax also
decreases slowly, but the overall value of the DSCFσ ∗θzmax is
still larger than that for the nondebonded structure.-is also
explains the phenomenon that the DSCFσ ∗θzmax progressively
becomes larger first and then becomes smaller, as demon-
strated in Figure 6. In Figure 10, the DSCFσ ∗θzmax of the
nondebonded steel inclusion is revealed to be smaller than
the overall DSCFσ ∗θzmax value for the concrete inclusion, but
the trends of the two are closer to each other. In the case of
debonded steel inclusion, the DSCFσ ∗θzmax appears only
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Figure 7: DSCFσ ∗θz of geological combination B with a debonded C30 concrete inclusion.
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when k1r ≈ 1.1 and then decreases gradually. -e overall
value of the DSCFσ ∗θzmax is still much larger than that of
nondebonded structures. Under the same geological condi-
tion, because of utilizing different materials, the dynamic
characteristics of the structure are very different. It is therefore
essential to take the necessary measures at the design stage to
reduce this adverse effect, according to the actual situation
and in view of the possible debonding problems.

Figures 11 and 12 depict the changes in the DSCFσ ∗θzmax
around the debonded concrete or steel inclusion in the
sandstone covering layer with incident wave k1r in geo-
logical combination B. In this instance, the parameters
p∗ ≈ 1.7 and k∗ � 0.4 are the same, and the parameters ρ#
and K# of the two inclusions are different. Compared with
what is revealed in Figures 9 and 10, Figures 11 and 12
identify that because of the relative increase of the shear
modulus of the covering layer with respect to the lower soil
layer, the overall value of the DSCFσ ∗θzmax is reduced con-
siderably. -e regularity of the change of the DSCFσ ∗θzmax
between k1r � 0.1 and k1r � 2.0 illustrated in Figures 11 and
12 can be confirmed by Figures 8 and 9, but the DSCF only
becomes close to the maximum when k1r � 2.3. -is phe-
nomenon also shows that the dynamic response’s sensitive
frequency is affected by the parameters for the upper and
lower soil media. Under geological combination B, the in-
clusion’s dynamic response to the high-frequency incident
wave is more obvious. In Figure 11, because the media
parameters of concrete and sandstone are relatively close, it
is not obvious whether the structure experiences a change
due to debonding. Figure 12 demonstrates that, as the in-
cident wave frequency increases, the increase in the
DSCFσ ∗θzmax of the debonded steel inclusion is large, which is
consistent with Figure 8.

Figures 13 and 14 show the variation in the ground
displacement amplitude |W(t)| with the position x/r when
the sandstone covering layer in geological combination A
has a debonded concrete or steel inclusion. -e horizontal
surface displacement is close to a constant when k1r � 0.1.
-is confirms that when k1r is relatively small and the wave
is incident at a low frequency, the influence of the inclusion
on the horizontal displacement of the ground is not sizable,

regardless of whether the structure is debonded or not. As
the frequency of the incident wave increases, the surface
displacement oscillates and presents more obvious dynamic
characteristics. -e larger the value of k1r, the more severe
the surface displacement shock. -e presence or absence of
debonding at an inclusion has a prodigious effect on ground
displacement. When k1r � 1.0, the surface displacement
near a nondebonded concrete or steel inclusion increases
considerably, but the oscillation amplitude is small, and the
maximum increase is close to 4.5. When the inclusion is
debonded, the closer to the inclusion, the greater the re-
duction in surface displacement. When k1r � 2.0, the re-
sponse of a nondebonded concrete inclusion to ground
displacement is not large, whereas the surface displacement
near a steel inclusion increases slightly.

Figures 15 and 16 identify the variation of the ground
displacement amplitude |W(t)| with the position x/r when
the sandstone covering layer in geological combination B has
a debonded concrete or steel inclusion. When k1r � 0.1, the
amplitude of the ground surface displacement far away from
the inclusion location is close to 2.0, and there is only an
incident wave and a reflected wave in a half space. -e sum
of the amplitudes of the two is 2.0, which is essentially
consistent. -e closer to the inclusion, the larger the am-
plitude of the surface displacement. Compared with Fig-
ures 13 and 14, Figures 15 and 16 show that the medium
parameters of different soil layers are dissimilar, and the
influence of the presence of an inclusion on surface dis-
placement is also different. As the frequency of the incident
wave increases, the amplitude of the surface displacement
also increases, but the overall amplitude of the surface
displacement of geological combination B is reduced sub-
stantially compared with geological combination A, which
also shows that the soft covering layer is effective with re-
spect to surface displacement. It has a magnifying effect,
whereas the covering layer with a large shear modulus has a
reducing effect on the ground surface displacement. When
k1r � 1.0, the two curves in Figures 15 and 16 are effectively
the same, which indicates that, in this case, the presence of
debonding at the inclusion has little effect on the amplitude
of the surface displacement. When k1r � 2.0, so the fre-
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Figure 12: Variation of the DSCFσ ∗θz with k1r for geological combination B with debonded Q345 steel inclusion.
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Figure 15: Variation of surface displacement amplitudes |W(t)| with x/r for geological combination B with debonded C30 concrete
inclusion.
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quency of the incident wave is high, the debonded inclusion
amplifies the displacement of the nearby surface.

6. Conclusions

-is paper has obtained analytical solutions to the problem
of SH wave scattering by a cylindrical inclusion with partial
debonding in the covering layer. Furthermore, it has used
numerical examples to analyze the effects of debonding on
the dynamic stress concentration and surface displacement
of a concrete or steel inclusion under two geological com-
binations. -e following conclusions have been drawn.

-e soft cover layer has a relatively obvious amplification
effect on the DSCFσ ∗θzmax and |W(t)|, whereas the hard
covering layer has a reflection and energy shielding effect on
SH waves.

-e smaller the shear modulus of the inclusion, relative
to the soil medium, the larger the DSCFσ ∗θzmax and |W(t)|.

When comparing the problem of SH wave scattering in a
half space with SH wave scattering in a covering layer, the
combination of the parameters for the soil layer mediums
and the inclusion is more complicated.When a structure in a
soft covering layer is debonded, it is more sensitive to the
dynamic response of incident waves at low and intermediate
frequencies and has a greater impact on the DSCFσ ∗θzmax and
|W(t)|. When a structure in a hard covering layer is
debonded, it is more sensitive to the dynamic response of
incident waves at high frequencies and has a greater impact
on the DSCFσ ∗θzmax and |W(t)|.

-e parameters of the different soil layer mediums and
the inclusion, the frequency of the incident wave, and the
presence or absence of debonding at the inclusion all affect
the DSCF around the structure and the horizontal surface
displacement. -erefore, engineering designs should con-
sider the influence of various factors in combination with
different geological conditions.
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