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Hypertension (high blood pressure) is an important disease seen among the public, and early detection of hypertension is
significant for early treatment. Hypertension is depicted as systolic blood pressure higher than 140mmHg or diastolic blood
pressure higher than 90mmHg. In this paper, in order to detect the hypertension types based on the personal information and
features, four machine learning (ML) methods including C4.5 decision tree classifier (DTC), random forest, linear discriminant
analysis (LDA), and linear support vector machine (LSVM) have been used and then compared with each other. In the literature,
we have first carried out the classification of hypertension types using classification algorithms based on personal data. To further
explain the variability of the classifier type, four different classifier algorithms were selected for solving this problem. In the
hypertension dataset, there are eight features including sex, age, height (cm), weight (kg), systolic blood pressure (mmHg),
diastolic blood pressure (mmHg), heart rate (bpm), and BMI (kg/m2) to explain the hypertension status and then there are four
classes comprising the normal (healthy), prehypertension, stage-1 hypertension, and stage-2 hypertension. In the classification of
the hypertension dataset, the obtained classification accuracies are 99.5%, 99.5%, 96.3%, and 92.7% using the C4.5 decision tree
classifier, random forest, LDA, and LSVM. -e obtained results have shown that ML methods could be confidently used in the
automatic determination of the hypertension types.

1. Introduction

1.1. Background on Hypertension. In this paper, machine
learning methods have been used to determine the hyper-
tension types based on personal data. -e machine learning
is used increasingly in many fields, including medical di-
agnosis, image processing, signal processing, and finance.
Machine learning is a division of artificial intelligence (AI)
that uses algorithms and statistical models, using the data to
perform a specific task. As the machine learning algorithm,
four different classification algorithms have been used to
classify the types of hypertension in this paper.

Blood pressure is the force applied by circulating the
blood towards the walls of the arteries of the body. Hyper-
tension occurs when blood pressure is high. -ere are two

types of blood pressure: systolic blood pressure (SBP) and
diastolic blood pressure (DBP). SBP shows the pressure in the
blood vessels when the heart beats. DBP represents the
pressure in the vessels between beats. Hypertension is diag-
nosed when the SBP value is equal to or greater than
140mmHg for both days and the DBP value is greater than or
equal to 90mmHg for both days when measuring on two
different days. Hypertension is defined as a clinical syndrome
with an increase in systemic vascular pressure. Table 1 shows
the categorization of blood pressure for adults [1, 2].

Prehypertension is not a category of disease. Pre-
hypertension is a preliminary statement used to describe
people at high risk for hypertension disease [1]. Hyper-
tension is one of the many cardiovascular diseases which are
a group of diseases that affect the heart and blood vessels.
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Cardiovascular diseases include coronary heart disease,
cerebrovascular disease, peripheral arterial disease, and
rheumatic heart disease [2–4].

-e different blood pressure classes are presented in
Table 2, according to the hypertension guidelines in Europe
[4, 5].

1.2. RelatedWorks. -ere are several studies in the literature
on the detection and classification of hypertension. Among
them, Melin et al. used the neural network and fuzzy in-
ference system to classify the hypertension type based on the
age, risk factors, and behavior of the blood pressure in a
period of 24 h. -ey obtained the 98% classification per-
formance as themaximumwith their method [6]. Singh et al.
proposed a new method called rule extraction from the
support vectormachine to diagnose hypertension in diabetes
mellitus patients. And then, they achieved excellent results in
the classification of hypertension types in people having
diabetes mellitus [7]. In another work [8], Abdullah et al.
proposed a fuzzy expert system (FES) to diagnose hyper-
tension in male and female patients of age groups 10, 20, 30,
and 40. -ey modeled the hypertension cases for each age
group based on the FES model [8]. Das et al. used different
modeling techniques including Levenberg–Marquardt
(LM), gradient descent (GD), and bayesian resolution- (BR-)
based learning functions to model the hypertension types in
people of age groups 20 and 40 [9]. In Shinde’s work [10],
they proposed two different approaches for the classification
of hypertension types. -ese methods were the information
gain-based feature selection and genetic algorithm-based
feature selection for the classification of hypertension types,
and these methods obtained 97.58% and 99.19%, respectively
[10].

Apart from the above papers in the literature, not using
any medical signals, based on the personal data, we have
performed the automatic finding of the type of hypertension
firstly. In general, in the classification of hypertension types,
the ECG (electrocardiogram), PPG (photoplethysmo

graphy), HRV (heart rate variability), and other medical
signals have been used. However, in our study, we have not
used any medical signal to classify the hypertension types.
-e proposed method could be used in the hospital and
medical centers.

2. Materials and Methods

2.1. Hypertension Dataset. In this study, PPG-BP (photo-
plethysmography-blood pressure) database has been used to
test the proposed models in the classification of hyperten-
sion types [11]. In the dataset, 8 features define the hy-
pertension types: sex, age, height (cm), weight (kg), systolic
blood pressure (mmHg), diastolic blood pressure (mmHg),
heart rate (bpm), and BMI (kg/m2). Also, there are four
classes: normal (healthy), prehypertension, stage-1 hyper-
tension, and stage-2 hypertension in the dataset. -e PPG-
BP dataset has been collected from 219 adult subjects aged
21–86 years. Table 3 shows the statistical metrics of each
feature in the dataset. Figure 1 denotes the class distribution
of the PPG-BP dataset according to three features (age,
weight, and SBP). Figure 2 denotes the class distribution of
the PPG-BP dataset according to three different features
(SBP, DBP, and BMI) concerning the class types. Also, the
Pearson correlation coefficients of all the features in the
hypertension dataset have been calculated and then tabu-
lated in Table 4. According to Table 4, the most significant
feature is the systolic blood pressure having the r correlation
coefficient of 0.9342.

In the PPG-BP dataset, the PPG signals have been
recorded in the measurement of blood pressure. For each
group, including normal (healthy), prehypertension, stage-1
hypertension, and stage-2 hypertension, PPG signals have
been given as shown in Figure 3. However, these signals were
not used to classify the hypertension types in this study. Only
PPG signals were given as the information.

2.2. Method. In this study, we have proposed a machine
learning-based method for classification of the hypertension
types on the basis of personal data. As the input to the
machine learning algorithms, the eight parameters (features)
obtained from people were given to the classification al-
gorithm. As the classification algorithms, C4.5 decision tree
classifier, random forest, linear discriminant analysis (LDA),
and linear support vector machine (LSVM) have been used
to determine the type of hypertension. Since the dataset has
many classes, we have selected these classification algorithms
which are more suitable to these problems. -e block dia-
gram of the proposed method is given in Figure 4. -e used
classifier algorithms have been explained in the following
sections.

2.2.1. Random Forest Classifier. Random forests are a
combination of tree estimates where each tree depends on
the values of a randomly sampled random vector. Random
forests are an important modification of the bagging
method that makes up a large sum of unbound trees. It was
created in 2001 by Breiman. In many classification

Table 1: Blood pressure values for adults with respect to SBP and
DBP [1, 2].

Blood pressure classification SBP (mmHg) DBP (mmHg)
Normal <120 And <80
Prehypertension 120–139 Or 80–89
Stage-1 hypertension 140–159 Or 90–99
Stage-2 hypertension ≥160 Or ≥100

Table 2: SBP and DBP values and definitions of blood pressure
according to the hypertension guidelines in Europe [4].

Blood pressure type SBP DBP
Classification mmHg mmHg
Optimal <120 <80
Normal 120–129 80–84
High normal 130–139 85–89
Grade 1 hypertension 140–159 90–99
Grade 2 hypertension 160–179 100–109
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problems, the performance of random forests is very close
to the boosting method and the random forests algorithm is
simpler in training and tuning. Random forests are very
popular in ML algorithms and are shown in many packages
[12–15]. Figure 5 shows the working of the random forest
classifier [16].

2.2.2. C4.5 Decision Tree Classifier. It is an algorithm used to
produce a decision tree developed by Ross Quinlan.-e C4.5
algorithm is an extended version of Quinlan’s ID3 algo-
rithm. -e rules produced by C4.5 can be used for classi-
fication purposes [17]. -e C4.5 algorithm creates a decision
tree where each node separates classes on the basis of the

Table 3: Statistical metrics of each feature in the PPG-BP dataset.

Name of the feature in the dataset Minimum value Maximum value Average Variance Standard deviation
Sex (male: 0; female: 1) 0 1 0.474 0.250 0.5
Age (year) 21 86 57.168 251.994 15.87
Height (cm) 145 196 161.228 67.287 8.202
Weight (kg) 36 103 60.191 141.284 11.886
Systolic blood pressure (mmHg) 80 182 127.945 415.25 20.377
Diastolic blood pressure (mmHg) 42 107 71.849 123.458 11.111
Heart rate (bpm) 52 106 73.639 115.323 10.738
BMI (kg/m2) 14.69 37.46 23.107 16.034 4.0043
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Figure 1: Class distribution of the PPG-BP dataset according to three features (age, weight, and SBP).
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Figure 2: Class distribution of the PPG-BP dataset according to three features (SBP, DBP, and BMI).
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Table 4: Pearson correlation coefficients and p values belonging to the features in the hypertension dataset.

Name of the feature in the
dataset

p value between feature and class label
(it is significant below 0.05)

r correlation coefficient between feature and class
label [− 1 and 1]

Sex 0.48775 0.0471
Age (year) 1.894e − 07 0.343
Height (cm) 0.6522 − 0.0306
Weigh t(kg) 0.00810 0.1785
Systolic blood pressure (mmHg) 3.646e − 99 0.9342
Diastolic blood pressure (mmHg) 8.7091e − 30 0.669
Heart rate (bpm) 0.1550 0.0964
BMI (kg/m2) 0.00101 0.2205
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Figure 3: Recorded sample PPG signals for each group including normal (healthy), prehypertension, stage-1 hypertension, and stage-2
hypertension in the PPG-BP dataset.
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information gain. -e pruned tree structure is given below.
Pruned tree structure obtained with a C4.5 decision tree for
this dataset is as follows:

Systolic blood pressure≤ 119 : 0 (80.0)
Systolic blood pressure> 119

Systolic blood pressure≤ 139 :1 (85.0)
Systolic blood pressure> 139

Systolic blood pressure≤ 159 : 2 (34.0)
Systolic blood pressure> 159 : 3 (20.0)

Number of leaves: 4
Size of the tree: 7

For more information about the C4.5 decision tree al-
gorithm, refer to [18–21].

2.2.3. Linear Discriminant Analysis (LDA) Classifier.
LDA is a classification method developed by R. A. Fischer.
Although simple, it is a model that produces good results in
complex problems. -e LDA is based on looking for a linear
combination of variables, which best distinguishes between

the good classes. Fisher defines the score function given in
equation (1). According to the score function, the problem is
to estimate the linear coefficients that maximize the score
[22–25]:

Z � β1x1 + β2x2 + · · · + βnxn, (1)

S(β) �
βTμ1 + βTμ2

βTCβ
, (2)

S(β) �
Z1 − Z2

variance of Zwithin groups
, (3)

β � C
− 1 μ1 − μ2( , (4)

C �
1

n1 − n2
n1C1 − n2C2( , (5)

where β defines m the model’s parameter, C show the co-
variance matrixes, and μ1, μ2 gives mean the vector.

LDA is also often used in dimensionality reduction
processes as a preprocessing step for pattern classification
and machine learning applications. Figure 6 shows the
graphical representation of the LDA classifier [26]. For
more information about the LDA algorithm, refer to
[23–25].

2.2.4. Linear SVMClassifier. -e foundations of LSVMwere
laid by Vapnik and Chervonenkis in 1963, and its devel-
opment was realized in 1995 by Vapnik, Boser, and Guyon.
It is a consultative learning method based on statistical
learning [27–29]. -e starting point is the separation of two
classes of data. For this purpose, a separating plane is de-
termined. Linear SVM is a rapidly developing classification
algorithm designed to solve multiple classification problems.
Figure 7 denotes the schematic representation of the linear
SVM model [30]. For more information about the LSVM
algorithm, refer to [27–29].

-e features of the LSVM are briefly as follows [30, 31]:

(i) Efficiency in dealing with extralarge data sets
(ii) -e solution of multiclass classification problems

with any number of classes
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Figure 4: Proposed block diagram of the classification of hypertension types based on machine learning algorithms.

Random forest algorithm
Instance

Tree nTree 2Tree 1

Class AClass BClass A

Σ/n

Final class

Random
forest

Majority
voting

Figure 5: -e schematic representation of the random forest
classifier [16].
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(iii) No need for expensive computing resources
(iv) Working with high-dimensional data

3. Experimental Results

In this paper, a machine learning approach for the classifi-
cation of hypertension types based on the personal features
comprising sex, age, height (cm), weight (kg), systolic blood
pressure (mmHg), diastolic blood pressure (mmHg), heart
rate (bpm), and BMI (kg/m2) has been proposed. -ere are
four types of hypertension as follows: normal, pre-
hypertension, stage-1 hypertension, and stage-2 hypertension.

In the training and testing of the classifier algorithms, the
5-fold cross-validation method was used.-e working of the
5-fold CV (cross validation) is explained in Figure 8. All data
are divided into 5 equal parts. In each part, the first four parts
are used for training and the remaining last part is used for

testing in the classifier algorithms. For the next part, the
process is repeated for other folds.

As the performancemetric, we have used the classification
accuracy (%), confusion matrix, and ROC (receiver operating
characteristic) curves to evaluate the classifier algorithms in
the classification performance of finding the hypertension
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Figure 6: Demonstration of the LDA classifier in a two-dimen-
sional space [26].
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Figure 7: Schematic representation of the linear SVM model.
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Figure 8: Schematic working representation of the 5-fold cross
validation [32].

Table 5: Classification accuracies obtained for C4.5 decision tree
classifier, random forest, linear discriminant analysis (LDA), and
linear support vector machine (LSVM) in the classification of
hypertension types with 5-fold CV.

Classifier algorithm -e obtained classification accuracy (%)
C4.5 decision tree 99.50
Random forest 99.50
LDA 96.30
LSVM 92.70
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Figure 9: Confusion matrix obtained for random forest classifier
and C4.5 decision tree classifier in the classification of hypertension
types with 5-fold cross validation.

6 Mathematical Problems in Engineering



types. Table 5 gives the obtained classification accuracies for
four classifiers in the classification of hypertension types.

-e obtained confusion matrix has been given for the
random forest classifier and C4.5 decision tree classifier in
the classification of hypertension types with 5-cross vali-
dation in Figure 9. In Figure 10, the confusion matrix has

been shown for the linear support vector machine (LSVM).
In Figure 11, the confusion matrix has been given for LDA.

-e othermetric to evaluate the classifier performance is the
ROC curve. As the performance metric, the AUC (area under
the ROC curve) is used. -e higher the AUC value, the higher
the classification performance. -e AUC is varied within 0 and
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Figure 13: Continued.
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For class 2 (stage-1 hypertension), the obtained ROC curve: 
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For class 3 (stage-2 hypertension), the obtained ROC curve: 
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Figure 13: -e obtained ROC curves for each class using the random forest classifier and C4.5 decision tree classifier in the classification of
hypertension types with personal features.

AUC = 1.00

(0.01, 0.99)

For class 0 (normal), the obtained ROC curve:

Tr
ue

 p
os

iti
ve

 ra
te

1

0.8

0.6

0.4

0

0.2

False positive rate
0.2 0.4 0.6 0.8 10

ROC curve
Area under the curve (AUC)
Current classifier

(a)

AUC = 0.99

(0.03, 0.98)

For class 1 (prehypertension), the obtained ROC curve: 

Tr
ue

 p
os

iti
ve

 ra
te

1

0.8

0.6

0.4

0

0.2

False positive rate
0.2 0.4 0.6 0.8 10

ROC curve
Area under the curve (AUC)
Current classifier

(b)

Figure 14: Continued.
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Figure 14:-e obtained ROC curves for each class using the LDA classifier in the classification of hypertension types with personal features.
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1. An example of the ROC curve is shown in Figure 12. -e
obtained ROC curves for each class using the random forest
classifier andC4.5 decision tree classifier are shown in Figure 13.
-e obtained ROC curves for each class using the LDA classifier
are given in Figure 14. -e obtained ROC curves for each class
using the LSVM classifier are given in Figure 15.

4. Discussion

-e hypertension diagnosis is a long time-consuming process
for cardiologists. To decrease this time, we have proposed
machine learning-based methods for automatic classification
of hypertension types. As seen from the obtained results, the
best models in the classification of hypertension types based
on the personal features are C4.5 decision tree and random
forest classifier among the four classifiers.

Also, this paper is the first study in the classification of
hypertension types using machine learning algorithms based
on the personal data in the literature. Except for the used
classifier algorithms, we have tried some classification al-
gorithms including k-star instance-based learning, weighted
k-NN classifier, the k-NN classifier (for k� 1), artificial
neural network (ANN), naı̈ve Bayes classifier, and Ada-
BoostM1 classifier on this dataset. -e equations of classi-
fication accuracy and F-measure values are given in Table 6.
-e obtained classification accuracies and F-measure values
are shown in Table 7.

As can been seen from Table 5, once compared with
other classifier algorithms, the C4.5 decision tree and ran-
dom forest classifier obtained the best accuracy in the
classification of hypertension types.

5. Conclusions and Future Works

Hypertension is either high blood pressure (systolic) of
140mmHg (14) or higher or low blood pressure (diastolic) of
90mmHg (9) or higher. High blood pressure (hypertension)
does not cause any symptoms in many people because they
are unaware of the presence of high blood pressure which
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Figure 15: -e obtained ROC curves for each class using LSVM classifier in the classification of hypertension types with personal features.

Table 6: Performance measure equations used to denote the
performance of the classifier algorithms.

Performance
measure Equation

Accuracy (%) (TP + TN)/(TP + TN + FP + FN)

F-measure (2∗ precision∗ recall)/(precision + recall)

Table 7: Comparison with other classifier algorithms in the
classification of hypertension types.

-e used classifier
algorithm

-e obtained
classification
accuracy (%)

F-measure
value

k-star instance-based
learning 69.40 0.962

Weighted k-NN, (for k� 1) 68.90 0.69
k-NN, (for k� 1) 71.68 0.719
Artificial neural network
(ANN) 93.15 0.931

Naı̈ve Bayes 90.86 0.908
AdaBoostM1 75.34 0.75
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can damage the heart, the kidneys, and even the brain.
-erefore, the diagnosis of hypertension disease is so sig-
nificant with respect to human health.

In the diagnosis of the hypertension types, four classifier
algorithms including C4.5 decision tree classifier, random
forest, linear discriminant analysis (LDA), and linear sup-
port vector machine (LSVM) have been used and then
compared with each other with respect to the classification
performance using the classification accuracy, the confusion
matrix, and ROC curves. Also, the PPG signals have been
recorded for each hypertension type and then extracted
some information from these signals to evaluate the disease.

-e best methods for classifying the hypertension types
were C4.5 decision tree and random forest classifiers
according to the obtained results.

In the future, a new device could be developed which
uses PPG signals to evaluate the patient automatically. Also,
the PPG signals could be combined with ECG signals in the
evaluation of hypertension types.
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