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With the drastic change in the market, the assembly line is susceptible to some uncertainties. ,is study introduces the uncertain
cycle time to the assembly line balancing problem (ALBP) and explores its impact. Firstly, we improve the traditional precedence
graph to express the precedence, spatial, and incompatible constraints between assembly tasks, which makes ALBP more realistic.
Secondly, we establish the assembly line balancing model under an uncertain cycle time, which is defined as an interval whose size
can be adjusted according to the level of uncertainty. ,e objective of the model was to minimize the number of stations and the
cycle time. ,irdly, we integrate the operator’s skill level into the model, and a multipopulation genetic algorithm is used to solve
it. ,e method proposed in this study is verified by several test problems of different sizes. ,e results show that when the cycle
time is uncertain, the proposed method can be used to obtain more reasonable results.

1. Introduction

Assembly lines are widely used in mass production, and they
determine a number of indicators, such as production ef-
ficiency, production cost, and enterprise efficiency. To en-
sure the performance and productivity of assembly plants,
there exists a well-known decision problem called the as-
sembly line balancing problem (ALBP). ,e scientific so-
lution to this problem has been a concern of researchers
since 1965. ALBP allocates all assembly tasks to a certain
number of stations while optimizing one or more objectives
(e.g., number of workstations or cycle time) without vio-
lating certain technological, operational, and spatial con-
straints [1, 2]. Because of the wide usage of assembly lines,
many survey papers appear in the literature [2–6]. ALBP can
generally be divided into two classes: the simple assembly
line balancing problem (SALBP) and the generalized as-
sembly line balancing problem (GALBP) [1]. SALBP as-
sumes that stations are arranged in a straight line, each
assembly task has a defined time, and the assembly line
produces just one product. ,ere are four types of SALBP.
SALBP-I aims tominimize the number of stations for a given

cycle time of the assembly line. SALBP-II aims to minimize
the cycle time for a given number of stations. SALBP-E aims
to maximize the efficiency of the assembly line, where
neither the number of stations nor the cycle time is given. In
SALBP-F, the number of stations and the cycle time are
given, and the problem is to evaluate whether the assembly
line is feasible. GALBP includes all of the other problems,
such as multiproduct hybrid assembly lines, U-shaped as-
sembly lines, parallel workstations, and stochastic task du-
rations. GALBP covers a wider area than SALBP. We focus
on SALBP-I because it has been widely used in practice to
minimize the number of stations for a given cycle time. A
guide for the class of SALBP-1 can be seen in the literature
[7].

With the diversification, differentiation, and intensifi-
cation of the market, assembly lines face many uncertainties,
such as task time, demand, and machine failure [8–10].
,ese will easily disrupt the normal operation of an assembly
line, cause failure of a production plan, and reduce customer
satisfaction. To this end, the study of ALBP in an uncertain
environment is of great significance to manufacturing
companies. Assembly lines can have deterministic or
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stochastic cycle times [11]. ,e cycle time is deterministic in
traditional SALBP-I [1, 12], and there is a significant gap
between research and real-world applications. Researchers
and industrial practitioners are working to solve SALBP-I as
more realistic assembly line settings and features are con-
sidered. ,is study deals with SALBP-I by considering an
uncertain cycle time as an important characteristic of
production systems.

Variation in demand has a significant impact on as-
sembly performance. Demand for a new product can be
uncertain; hence, the quantity to be produced is unknown,
and the cycle time of assembly lines will be uncertain. In
real-life assembly, it is easy to establish a relationship be-
tween the quantity to be produced and the cycle time of the
assembly line.,erefore, to cope with uncertain demand, we
must integrate an uncertain cycle time into traditional
ALBP. Uncertainty in an assembly line can be represented
using either a probability or a fuzzy set theory [13–15].
Probability theory enables the calculation of the chance of an
event’s occurrence, and it requires information from ob-
servations associated with the event. Fuzzy set theory focuses
on imprecise phenomena based on fuzzy mathematics. To
encode the uncertainty, it must choose reasonable mem-
bership functions according to the knowledge of the event.
Observations or knowledge of an event may be rare in
practice, especially in the initial stages of product devel-
opment. For example, the cycle time may be just an interval
in the early design phase, and only its bounds can be pre-
dicted. An optimization model for ALBP with an interval
cycle time can cope with this situation.

,is study proposes two mathematical models. SALBP-I
with certain cycle time aims to minimize the number of
stations. SALBP-I with interval cycle time adds an additional
objective to traditional SALBP-I. After that, SALBP-I with
interval cycle time may be a variant of SALBP-E, which aims
to optimize both the number of stations and the cycle time.
,e two models are implemented with a multipopulation
genetic algorithm. ,e remainder of this study is organized
as follows: Section 2 reviews the literature of ALBP with
uncertainties. Section 3 analyzes and represents the con-
straints in SALBP. Mathematical models under certain and
uncertain cycle times are presented in Section 4. Section 5
discusses implementation of the models. Section 6 presents
computational results and their analysis. Concluding re-
marks and future work directions are given in Section 7.

2. Literature Review

Uncertainties affect the evaluation of a company’s pro-
duction capacity, which will influence its decisions. Hence,
to consider the uncertainty of the production environment is
of great significance to establish a reliable assembly line.
Researchers have studied the influence of uncertainties on
ALBP.

Mirzaei et al. [15] studied objective functions to mini-
mize the number of stations, total tool purchasing cost, and
cycle time. ,e cost of each tool and the task times are
assumed to be trapezoidal fuzzy numbers to reflect their
uncertainty. Hazr and Dolgui [16] integrated the interval

uncertainty of operation times into ALBP and proposed a
decomposition-based exact algorithm with enhancement
strategies to solve large-scale ALBP. ,e objective is to
minimize the cycle time. Gurevsky et al. [17] tackled the
balancing problem for straight assembly lines where task
times are not known exactly or are given by intervals. ,e
objective is to assign tasks so as to minimize the number of
workstations. A breadth-first search procedure finds the best
and worst solution. Liu et al. [18] introduced the fuzzy
knowledge method to ALBP to address the problem that the
distribution of task time is unknown in advance. An ap-
proximate mixed-integer second-order cone programming
(MI-SOCP) model was proposed to solve the problem. Li
et al. [19] proposed a multiobjective optimization model and
neighborhood search algorithm for ALBP considering the
uncertainty of task time. ,e objectives are to maximize
assembly line reliability and minimize cycle time. ,is
method is suitable for situations of uncertain task times or
small data. Li et al. [20] used uncertainty theory and in-
troduced the uncertain task time as a constraint in ALBP-I.
,e problem was solved using a newly developed restart
neighborhood search method. Dong et al. [21] established
the assembly line balancing model considering interval task
time and spatial constraints. ,e study compromised be-
tween line efficiency and equipment cost. A biobjective
chance-constrained mixed 0-1 programming model was
developed to simultaneously minimize the cycle time and
equipment cost. Li et al. [22] proposed an assembly line
balancing model considering uncertain production capacity,
aiming to make the cycle time as close as possible to the
normal value. ,e objective was to satisfy the demand in
each possible scenario with the minimum labor cost for both
normal shifts and overtime work. A heuristic algorithm was
developed to quickly find a feasible solution. Chica et al. [23]
proposed an approach to evaluate the robustness of a hybrid
assembly line in terms of uncertainty of demand. Samouei
et al. [24] explored ALBP considering uncertain require-
ments for semiautomated assembly lines, aiming to find the
task allocation with the lowest configuration cost. Pereira
et al. [25] proposed a robust formulation to handle uncertain
operation times. A branch-and-bound algorithm was pro-
posed to solve the model.,e objective included minimizing
the number of stations and the cost. It was found that an
assembly line can be protected from moderate levels of
uncertainty at the expense of small quantities of additional
resources. Fathi et al. [26] considered stochastic task times
and zoning constraints and integrated the minimization of
the maximum of stations’ mean time and variance into
ALBP. A mixed-integer programming (MIP) model solved
ALBP. Zhang et al. [27] considered uncertain task times in
type-II mixed-model ALBP. A robust optimization model
was formulated to hedge against uncertainty, and a hybrid
genetic algorithm was proposed to solve the problem. Fisel
et al. [28] considered the potential need for adaptation in
ALBP and used mixed-integer linear optimization to solve
the problem. ,e study focused on production cost, as well
as flexibility and changeability of the system. Babazadeh et al.
[29, 30] proposed a biobjective fuzzy mixed-integer linear
programming model to represent uncertainty in task-
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processing times, considering the minimization of the
number of stations and the cycle time. ,ey proposed an
enhanced NSGA-II algorithm with a new repairing mech-
anism to solve the model [31, 32].

Analysis of the literature indicates that while uncer-
tainties in the production environment have been consid-
ered, problems remain to be solved. Research has focused
primarily on the uncertainty of task times, and uncertainty
of cycle times must still be discussed. ,is uncertainty can
occur in all phases of the design, use, and evaluation of an
assembly line. ,e cycle time may be an interval predicted in
the design phase, or it may vary with orders and delivery
dates. We introduce an interval of the cycle time to ALBP.
An efficient algorithm to solve ALBP is of broad concern in
industrial and academic circles. ,e scale of ALBP is gen-
erally large; hence, an efficient solution is required. We
introduce a multipopulation genetic algorithm to the as-
sembly line balancing problem.

3. Preprocessing of Assembly Tasks

3.1. Representation of Constraints between Assembly Tasks.
,e assembly processes of a product are decomposed into
several assembly tasks, each comprising a series of actions
that cannot or need not be divided further. ,e essence of
ALBP is to assign a series of assembly tasks to a certain
number of stations, while satisfying precedence constraints
and specified cycle times. Precedence constraints are the
most basic and important type of constraints in ALBP,
reflecting the order of assembly tasks. Intuitively, assembly
tasks and precedence constraints can be represented by a
directed graph, called a precedence graph [33, 34]. In Fig-
ure 1, the circle represents the assembly task, and the straight
line with an arrow indicates the precedence constraints. For
products with complex structures (such as airplanes and
cars), precedence constraints cannot fully express the rela-
tionships between assembly tasks. Spatial constraints and
incompatible constraints between assembly tasks also must
be considered. We introduce spatial constraints and in-
compatible constraints on the basis of the traditional pre-
cedence graph as follows.

,ere are two meanings of spatial constraints. Multiple
associated assembly tasks must be completed on the same
station, and there is a maximum number of assembly tasks
that can be allocated to one station. In actual production,
assembly tasks that have cooperative relationships or are of
the same kind are usually assigned to the same station to
improve efficiency. At the same time, the number of as-
sembly tasks that can be assigned to one station is limited to
ensure that each operator has sufficient space. In Figure 1,
the ellipse represents the spatial constraint, and the assembly
tasks within it must be assigned to the same station. ,e
figure does not show the maximum number of tasks that can
be allocated to a station; this will be quantified in the as-
sembly line balancing model.

Incompatible constraints mean that some assembly tasks
cannot be assigned to the same station. For example, some
tasks to measure quality usually cannot be placed in the same
location as other tasks. In Figure 1, assembly tasks within

dashed circles of the same color cannot be assigned to the
same station.

3.2.Topological Sorting forPrecedenceGraph. Assembly tasks
are arranged in a linear sequence on an actual assembly line,
and ALBP-I is a reasonable division of assembly tasks. To
guarantee the precedence constraints between assembly
tasks, a topological sorting algorithm preprocesses them in
the precedence graph to form a topological order.

,e precedence graph is a directed acyclic graph. Nodes
represent assembly tasks, and directed edges represent the
sequences between them. ,e precedence graph is repre-
sented as follows:

PG � V, E, fspatial, fincompatible , (1)

where V and E represent the sets of vertices and edges,
respectively. If there is a directed edge e � 〈a, b〉, then task a

is the immediate predecessor of task b. If there is a directed
path 〈a, · · · , b〉 ∈ V, then task a is the indirect predecessor of
task b. fspatial represents spatial constraints. If
fspatial(Vs) � 1, then there is a spatial constraint for the
assembly tasks in the vertex set Vs; otherwise, there is not.
fincompatible represents incompatible constraints. If
fincompatible(Vc) � 1, then the assembly task in vertex set Vc

satisfies the incompatible constraint; otherwise, there is no
such constraint; Vs, Vc ∈ V.

,rough the topological sorting algorithm, a linear se-
quence v1, v2, · · · , vn can be obtained, where n is the number
of vertices in the precedence graph. ,is sequence is called
the topological order (TO), and it reflects the sequence of
assembly tasks. For example, if task v1 is the immediate or
indirect predecessor of task v2, then task v1 will be in front of
task v2 in the TO; that is, task v1 will be assigned to the
station before v2. It should be noted that if the vertices in the
vertex set Vs satisfy the spatial constraint, then Vs will be
considered as a whole in topological sorting. ,e topological
sorting algorithm constantly searches for vertices without
predecessors. A vertex with no predecessor will be inserted
in the TO and removed from the precedence graph. ,e
algorithm is completed when all of the vertices are in the TO.
If the TO of all of the vertices is not available, then the
assembly processes represented by the precedence graph are
infeasible. According to [35], the procedure of the topo-
logical sorting algorithm is presented in Algorithm 1.

,e advantage of the topological sorting algorithm is to
maximize the efficiency of task assignment. It can generate
multiple topological orders. Ten topological orders of Fig-
ure 1, in which the precedence constraints between tasks can
always be satisfied, are presented in Table 1 . ,erefore, the
use of these topological orders may improve the efficiency of
ALBP.

4. Mathematical Modeling

Traditional ALBP-I aims to minimize the number of stations
and corresponding task assignments andmeet the fixed cycle
time. It must be changed when the cycle time is uncertain. In
the assembly line design phase, a company’s forecast order
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quantity may be in an interval; hence, it is not fixed, and the
cycle time of the assembly line is also in an interval. In this
case, ALBP-I must be expanded to what we call EALBP-I.
,e mathematical models of ALBP-I and EALBP-I are
established below, and their differences and similarities are
discussed.

4.1. Notations. ,e symbols used in ALBP-I and EALBP-I
are defined in Table 2.

4.2. Modeling under Certain Cycle Time. ALBP-I assumes
that the cycle time is determined to minimize the number of
stations; that is, minimal resources, such as equipment and
operators, are required. ,e operator’s skill level is an im-
portant factor affecting the cycle time of an assembly line,
and it can be dynamically adjusted and configured during
operation. ,erefore, in assembly line design, there is a need
to combine the task assignment with the operator’s skill level
to obtain the optimal solution [36].,e mathematical model
of ALBP-I is as follows:
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Figure 1: Precedence graph.

Procedure: Topological Sorting
Input: Precedence graph; Let n be the number of vertices; Let T � ∅ be the TO of the precedence graph.
Output: A nonempty TO (T).

For i � 1 to n do
Begin
If every vertex has a predecessor
�en the precedence graph is infeasible stop;

Else pick a vertex vi which has no predecessors;
T � T∪ vi;
Delete vi and all edges leading out of vi from precedence graph

End
End

ALGORITHM 1: Pseudocode of topological sorting.

Table 1: Ten topological orders of Figure 1.

No. Topological orders
1 7, 2, 26, 6, 27, 1, 9, 10, 14, 3, 25, 4, 12, 15, 19, 5, 21, 13, 8, 11, 16, 30, 18, 17, 20, 22, 23, 28, 31, 24, 29
2 2, 26, 7, 12, 6, 9, 10, 15, 1, 27, 25, 19, 14, 21, 3, 4, 5, 13, 8, 30, 11, 16, 18, 17, 22, 20, 31, 23, 28, 24, 29
3 1, 7, 3, 25, 12, 9, 10, 4, 2, 5, 14, 13, 15, 6, 30, 19, 8, 16, 11, 26, 17, 27, 18, 20, 31, 21, 22, 23, 28, 24, 29
4 7, 9, 12, 1, 25, 2, 10, 6, 26, 15, 14, 19, 27, 21, 3, 4, 5, 13, 8, 16, 11, 18, 30, 17, 22, 20, 23, 31, 24, 28, 29
5 2, 26, 27, 7, 12, 1, 25, 9, 3, 10, 6, 14, 15, 19, 21, 4, 5, 13, 30, 8, 16, 18, 11, 17, 20, 31, 22, 23, 28, 24, 29
6 1, 7, 9, 3, 2, 4, 5, 26, 12, 10, 15, 27, 14, 19, 6, 8, 11, 21, 13, 25, 17, 16, 18, 22, 20, 30, 23, 28, 24, 29, 31
7 7, 12, 1, 3, 4, 2, 9, 5, 6, 10, 25, 15, 26, 19, 27, 14, 13, 30, 21, 8, 11, 17, 20, 31, 16, 18, 22, 23, 24, 28, 29
8 1, 3, 4, 5, 2, 6, 26, 8, 11, 27, 7, 9, 10, 14, 12, 15, 25, 13, 17, 16, 19, 20, 18, 21, 30, 31, 22, 23, 24, 28, 29
9 1, 2, 6, 26, 27, 3, 7, 25, 4, 9, 5, 10, 13, 14, 30, 12, 8, 15, 11, 17, 20, 31, 16, 19, 18, 21, 22, 23, 28, 24, 29
10 2, 1, 3, 7, 25, 9, 10, 26, 12, 15, 27, 4, 14, 5, 19, 13, 6, 21, 30, 8, 16, 11, 17, 20, 31, 18, 22, 23, 24, 28, 29
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min 
m

k�1
yk, (2)

subject to



n

i�1
xikriptip ≤Cyk, ∀k � 1, 2, · · · , m, ∀p � 1, 2, 3, (3)



m

k�1
xik � 1, ∀i � 1, 2, · · · , n, (4)



m

k�1
k × xik ≤ 

m

k�1
k × xjk, ∀Pij � 1, ∀i � 1, 2, · · · , n,

∀j � 1, 2, · · · , n,

(5)

yk+1 ≤yk, ∀k � 1, 2, · · · , m, (6)

xik � xjk, ∀(i, j) ∈ SC
+
ij, ∀k � 1, 2, · · · , m, (7)

xik + xjk ≤ 1, ∀(i, j) ∈ SC
−
ij, ∀k � 1, 2, · · · , m, (8)



n

i�1
xik ≤Omax, ∀k � 1, 2, · · · , m, (9)



n

i�1
rip ≤Rp, ∀p � 1, 2, (10)

xik ∈ 0, 1{ }, ∀i � 1, 2, · · · , n, ∀k � 1, 2, · · · , m, (11)

rip ∈ 0, 1{ }, ∀i � 1, 2, · · · , n, ∀p � 1, 2, 3, (12)

yk ∈ 0, 1{ }, ∀k � 1, 2, · · · , m. (13)

Constraint (3) indicates that the total task time of each
station does not exceed the cycle time C. Constraint (4)
indicates that each task can only be assigned to one station.
Constraint (5) represents the precedence constraints be-
tween tasks. Constraint (6) indicates that each station must
be continuously enabled; that is, if station k is enabled, then
station k− 1 must be enabled; otherwise, there will be a
discontinuity in the station index. Constraint (7) indicates
that a set of tasks need to be assigned to the same station.
Constraint (8) indicates that there are incompatible con-
straints between tasks. Constraint (9) indicates the maxi-
mum number of tasks that can be assigned to each station.
Constraint (10) indicates that the number of operators
assigned to a station should be less than the total number of
available operators. Constraints (11)–(13) indicate that xik,
rkp, and yk are binary variables.

4.3. Modeling under Uncertain Cycle Time. A dynamic
market shows dynamic changes in the demand for products;
that is, order quantities and delivery dates may be adjusted as
the market changes. ,ese differences require assembly lines
to have different cycle times. To gain a competitive ad-
vantage, a company must respond promptly to these
changes. To build a new assembly line to meet a new cycle
time is costly. ,erefore, such changes must be considered
when designing an assembly line.

Companies usually evaluate order quantities and forecast
maxima and minima when they construct an assembly line.
In this paper, the order quantity interval is converted to a
cycle time interval, which is introduced in ALBP-I. Assume
that C0 is the nominal cycle time and D is the maximum
change in the cycle time. ,e cycle time interval can be
obtained as follows:

C ∈ C
0

− D, C
0

+ D . (14)

,e level of uncertainty α is introduced, and the fol-
lowing two constraints are obtained:

C≤C
0

+ αD, (15)

C≥C
0

− αD, (16)

where α ∈ (0, 1]. In the design phase of an assembly line,
decision makers can choose a reasonable value of α to cope
with uncertainty in the cycle time.

Our goal is to find the most scientific number of stations
and task assignments during the design phase of an assembly
line, so that a company can best cope with the uncertainty of

Table 2: Notation used in mathematical models.

Symbol Definition
Index

i, j Task index
k Station index
n Number of tasks

p
Operator’s skill level; 1, 2, and 3, respectively, indicate

low, medium, and high skill
Parameter

C Cycle time
m Number of stations
Cmax Maximum cycle time
Cmin Minimum cycle time

tip

Time required to complete task i when operator’s skill
level is p

Pij

Precedence constraints between tasks i and j. Pij � 1
indicates precedence constraints; otherwise, there is no

precedence constraint.

SC+
ij

Spatial constraint between tasks i and j. SC+
ij � 1

indicates tasks must be assigned to the same station;
otherwise, this is not required.

SC−
ij

Incompatible constraint between tasks i and j. SC−
ij � 1

indicates the tasks cannot be assigned to the same
station; otherwise, they can.

Rp Number of operators with skill level p

Omax
Maximum number of tasks that can be accommodated

on a station
Variable

xik

Binary variable. xik � 1 indicates that task i is assigned to
station k.

rip

Binary variable. rip � 1 indicates that operators with skill
level p are assigned to task i.

yk Binary variable. yk � 1 indicates that station k is enabled.
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the cycle time. Let Cmax � C0 − αD and Cmin � C0 + αD.
We add the following constraints to the mathematical model
of ALBP-I:

Cmin − C≤ 0, (17)

C − Cmax ≤ 0. (18)

,e objective must then be adjusted accordingly. If (2) is
used as the objective, then the calculation will always satisfy
the maximum cycle time. ,erefore, a new objective is
proposed:

min 
m

k�1
yk andmin

C

Cmin
. (19)

Aweighted summation method is used to convert (19) to
a single objective:

min w1 × 
m

k�1
yk + w2 ×

C

Cmin

⎛⎝ ⎞⎠, (20)

where w1 and w2 are weight coefficients. According to (19),
w2 should be greater than w1, which reflects the influence of
the cycle time interval on the objective.

5. Implementation of Multipopulation
Genetic Algorithm

Individual properties in the population tend to be consistent
after several iterations of the genetic algorithm, which causes
convergence to a local solution. We propose a multi-
population genetic algorithm (MGA) for ALBP to improve
the genetic algorithm.

Figure 2 shows the flowchart of the two-population
genetic algorithm, whose basic idea is to replace the single
population of the genetic algorithmwith two subpopulations
which evolve independently and then make an individual
exchange according to rules until the optimal solution is
found. ,e multipopulation genetic algorithm is charac-
terized by faster convergence while maintaining population
diversity.,rough the extension of Figure 2, the flowchart of
multipopulation genetic algorithm can be easily obtained.
We introduce the main steps to solve EALBP-I using the
multipopulation genetic algorithm:

Step 1: Set up parameters. SubP is the number of
subpopulations, PS is the number of individuals in each
subpopulation, PM is the probability of mutation, PC is
the probability of crossover, and MR is the migration
rate.
Step 2: Generate initial population. ,e chromosome
structure has three layers. ,e first is the assembly
task, with length n. ,e second is the cycle time, with
code length 1. ,e third is the operator’s skill level for
each assembly task, with length n. To ensure that the
generated initial population always satisfies the pre-
cedence constraint, the topological sorting algorithm
proposed in Section 3.2 is used to generate the initial
population.

Step 3: Calculate fitness values. ,e calculation of fit-
ness for MGA is performed according to (19), with
fitness function:

Fi �
1
fi

, (21)

where Fi is the fitness value of the i
th individual and fi is

the value of the objective function calculated by the ith
individual.
Step 4: Selection operation. We use roulette to select
individuals; i.e., an individual’s probability of selection
is determined by the ratio of the individual’s fitness to
the total fitness of all individuals.
Step 5: Crossover operation. A two-point crossover
method is adopted. Using the Buxey example [12], as
illustrated in Figure 3(a), two crossover points are
randomly generated, as defined by Cross_Point_1 and
Cross_Point_2. ,e two parent chromosomes are di-
vided into three parts: head, body, and tail. ,e gene
segment, Body_1, in parent chromosome 1 can be
found in parent chromosome 2. ,ese genes are sorted
by the gene sequence in parent chromosome 2. A new
gene segment, Body_1_new, is generated, as illustrated
in Figure 3(b), to replace Body_1 in parent chromo-
some 1. A new chromosome, child 1, is formed, as
shown in Figure 3(c). By the same method, we can
obtain another new chromosome, child 2, as illustrated
in Figure 3(c). ,is crossover operation has the ad-
vantage that all of the tasks meet the sequence con-
straints. ,e child chromosomes are evaluated after
crossover. If the fitness of a child is improved, then it is
retained, and otherwise it is abandoned.
Step 6: Mutation operation. We use a single-point
mutation method; that is, a code in the chromosome is
randomly selected, and the mutation of the selected
code is performed according to a certain probability.
Step 7: Population migration. ,is is performed
according to a randomly generated migration rate.
When the generated migration rate exceeds a given
value, population migration is performed.

6. Results and Analysis

We used basic data from https://assembly-line-balancing.de/
to verify the validity of the proposed methods.,e basic data
were adapted according to the needs of this paper. Cases
with task numbers 11, 21, 29, 35, 83, and 111 were selected to
verify the adaptability of the proposed methods. For each
problem, the operator’s skill levels (low, medium, high) were
considered. ,e higher the skill level, the shorter the task
time. ,e task time in the basic data was set to that of
operators with high skill. ,is was multiplied by a factor of
1.2 or 1.1 to obtain the task time of operators with low and
medium skill, respectively. At the same time, the number of
operators with low skill, medium skill, and high skill was set
to be 50% of the number of tasks, respectively. Omax � 15.
Referring to [37–39], MGA had the following initial
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configuration: SubP� 5, PS� 50, PM� 0.1, PC� 0.8, and
MR� 0.1.

,e level of uncertainty α was assumed to vary within a
certain range. ,e α level determined the cycle time interval.
,e cycle time was assumed to change within C0(1 ± α). ,e
number of stations at different α levels was calculated, as
displayed in Table 3. Table 2 provides four types of results,
namely, robust, regular, best, and worst. It should be noted
that the robust results considered the uncertainty in cycle

time, expressed as an interval. ,e regular results considered
the normal cycle time. ,e best results were calculated when
the cycle time reached C0 + C0α. ,e worst result was cal-
culated when the cycle time reached C0 − C0α. As can be
seen in Table 3, when the number of tasks was 11, 21, or 29,
the number of stations in a robust situation was consistent
with that in a regular situation for different α levels. When
the number of tasks was 35, the number of stations in a
robust situation was slightly larger than that in a regular

Start

Set up parameters

Generate initial
population

Initialize the first sub-
population

Calculate fitness values

Termination condition

Selection operation

Mutation operation

Crossover operation

Update the first sub-
population

Initialize the second sub-
population

Calculate fitness values

Termination condition

Selection operation

Mutation operation

Crossover operation

Update the second sub-
population

Population migration

Update the first sub-
population

Update the second sub-
population

End

Output the results

N

Y

N

Y

Figure 2: Flowchart of multipopulation genetic algorithm.
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situation for different α levels. When the number of tasks
was 83 or 111, as α increased, the number of stations in a
robust situation was equal to or larger than that in a regular
situation. ,at is, the lower bound of the cycle time interval
had an increasing influence on the number of stations as the
number of tasks and α increased. As is easily seen from
Table 3, as α increased, the number of stations in the best
situation gradually decreased, which was due to the gradual
increase of Cmax. With the increase of α, the number of
stations in the worst situation increased, which was due to
the gradual decrease of Cmin. However, when α≥ 0.4, the
number of stations in the worst situation may be
unsolvable.

After introducing the level of uncertainty α, the cycle
time becomes a variable that can be changed. Different

numbers of stations, as well as different task and operator
assignments, will output different cycle times.,e cycle time
at different α levels is calculated for each situation in Table 3.
As shown in Table 4, the cycle time in the regular situation is
basically consistent with C0, because the influence of un-
certainty is not considered. For the six examples in Table 4,
the cycle time of the robust situation mostly decreases as α
increases. Hence, as α increases, the cycle time calculated by
EALBP-I is closer to C0 − C0α, as shown in Figures 4−7. For
the best situation, the cycle time will increase with α, which is
caused by the increase of C0 + C0α. For the worst situation,
the cycle time will decrease as α increases, because of the
decrease of C0 − C0α. However, when α≥ 0.4, the cycle time
in the worst situation may be unsolvable, which is consistent
with the results in Table 3.
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Figure 3: Example of crossover: (a) selection of crossover point, (b) crossover operation and (c) results.
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In EALBP-I, the number of stations and the cycle time
are both variables.,erefore, EALBP-I is actually a variant of
SALBP-E. To compare the robust situation with the other
three situations, production efficiency E is introduced. ,is
is the reciprocal of the product of the number of stations and
the cycle time; i.e., E � 1/(mC) [40]. An important goal of
assembly line design is to maximize productivity. According
to Tables 3 and 4, the production efficiency is obtained for
the six cases, as shown in Figures 8–13.

,e efficiency in the robust situation is generally the
highest. As shown in Figures 9 and 13, when the number of
tasks is 21 and 111, the efficiency of the robust situation is the
highest. In Figures 8, 10, and 12, only when α � 0.3, the
efficiency of the robust situation is less than that in one of the
other situations. In Figure 11, when α≥ 0.3, the efficiency of
the robust situation is higher than that in the other three
situations.

We take the cases with 21 tasks to validate the effec-
tiveness of MGA. It is assumed that α � 0.1. ,e maximum
number of iterations is set to 400. ,e weight coefficients in
expression (20) are w1 � 0.2 and w2 � 1. ,e general GA
[41] and MGA in this study are used to solve EALBP-I. ,e
results are presented in Table 5.,e number of stations is the
same. However, the maximum assembly time calculated by

MGA is 18.6 s, which is less than 19.0 s, as calculated by GA.
,e convergence curves of MGA and GA are presented in
Figure 14. ,ese indicate that MGA converges faster than
GA.

Table 3: Number of stations for different problems and α levels.

Number of tasks α C0 Number of stations
Robust Regular Best Worst

11

0.1 10 6 6 5 6
0.2 10 6 6 5 8
0.3 10 6 6 4 8
0.4 10 6 6 4 —
0.5 10 6 6 4 —

21

0.1 20 6 6 6 7
0.2 20 6 6 5 8
0.3 20 6 6 5 9
0.4 20 6 6 4 —
0.5 20 7 6 4 —

29

0.1 40 10 10 9 11
0.2 40 10 10 8 12
0.3 40 10 10 8 13
0.4 40 10 10 7 —
0.5 40 10 10 7 —

35

0.1 50 12 11 10 13
0.2 50 12 11 9 —
0.3 50 12 11 9 —
0.4 50 12 11 8 —
0.5 50 12 11 8 —

83

0.1 8000 11 11 10 13
0.2 8000 12 11 9 14
0.3 8000 13 11 9 15
0.4 8000 14 11 8 —
0.5 8000 14 11 8 —

111

0.1 25000 7 7 7 8
0.2 25000 7 7 6 9
0.3 25000 8 7 6 10
0.4 25000 9 7 5 12
0.5 25000 9 7 5 14

Table 4: Cycle times for different problems and α levels.

Number of tasks α
Cycle times

Robust Regular Best Worst

11

0.1 9 9.8 11 9
0.2 9 9.8 11.5 7.7
0.3 9 9.8 12.8 7
0.4 9 9.8 13.9 —
0.5 9.3 9.8 14.4 —

21

0.1 18.6 19.9 22 18
0.2 19.3 19.9 24 16
0.3 19 19.9 25.8 14
0.4 18.5 19.9 27.9 —
0.5 16.1 19.9 30 —

29

0.1 37 40 44 36
0.2 36.8 40 47.4 32
0.3 36.8 40 52 27.9
0.4 36.3 40 55.2 —
0.5 36.4 40 59.6 —

35

0.1 47.4 50 54.7 45
0.2 46.2 50 59.9 —
0.3 45 50 65 —
0.4 45.7 50 70 —
0.5 45.4 50 74.8 —

83

0.1 7456.2 7991.6 8774.7 7184.1
0.2 7091 7991.6 9566 6362
0.3 6632.1 7991.6 10291.7 5571
0.4 6146.9 7991.6 11116.6 —
0.5 6219.3 7991.6 11762.8 —

111

0.1 23462.7 24894.6 26791.1 22125
0.2 23813.5 24894.6 29963.5 19954.6
0.3 20398.4 24894.6 32481.0 17428.3
0.4 19043.3 24894.6 34676.8 14975.8
0.5 18572.7 24894.6 37297.8 12320.7
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Figure 4: Cycle times for problem with 21 tasks.
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Figure 6: Cycle times for problem with 83 tasks.
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Figure 5: Cycle times for problem with 29 tasks.
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Figure 7: Cycle times for problem with 111 tasks.
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Figure 8: Efficiency for problem with 11 tasks.

0.1 0.2 0.3 0.4 0.5

Ef
fic

ie
nc

y

0.0074

0.0076

0.0078

0.0080

0.0082

0.0084

0.0086

0.0088

0.0090

0.0092

Robust 
Regular 

Best 
Worst 

α

Figure 9: Efficiency for problem with 21 tasks.
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Figure 10: Efficiency for problem with 29 tasks.
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7. Conclusions

With fierce market competition, the assembly line is sus-
ceptible to some uncertainties, the influence of which on
assembly line balancing is of concern to manufacturers. In
this study, an uncertain cycle time is introduced to ALBP.
Spatial and incompatible constraints are added based on the
traditional precedence graph. Spatial constraints are suitable
to situations where multiple assembly tasks must be assigned
to the same station. Incompatible constraints are suitable to
situations where two assembly tasks must be assigned to
different stations. ,e introduction of these constraints
makes ALBP more suitable to engineering practice. Two
mathematical models of ALBP are established. In the first,
the cycle time is fixed, and the objective is to minimize the
number of stations. In the second, the cycle time is in a
changeable interval, and the objective is to minimize both
the number of stations and the cycle time. ,e level of
uncertainty α is introduced to adjust the range of the cycle
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Figure 12: Efficiency for problem with 83 tasks.
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Figure 11: Efficiency for problem with 35 tasks.
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Figure 13: Efficiency for problem with 111 tasks.

Table 5: Assembly balancing result of MGA versus general GA.

Station
no.

MGA
Station
no.

GA

Set of
tasks

Total
assembly
time (s)

Set of
tasks

Total
assembly
time (s)

1 1, 3, 4 18.5 1 1, 2, 3 18.2
2 5, 7 17.8 2 4, 5, 6 18.9

3 14, 2,
6, 21 18.1 3 21, 7,
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Figure 14: Convergence curves of MGA versus general GA.
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time interval. In addition, operator skill is defined by three
levels, and the selection of skill level is integrated into ALBP.
Finally, a multipopulation genetic algorithm is used to solve
our model. Six cases are analyzed in the study, each con-
sidering robust situation, regular situation, best situation,
and worst situation. ,e research results show that the cycle
time interval has a significant influence on the assembly line
balancing problem. ,e current model is suitable to the
situation of a new assembly line for a new product, in which
case observations or knowledge of the cycle time may be
limited. Designers can use an interval to represent the cycle
time. In the future, uncertain cycle and task times will be
considered in ALBP.
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