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With the increasing number of metros, the comfort and safety of crew and passengers in metro stations have been paid great
attention. +e environment forecasting has become very important for decision-making. +e outputs of the traditional point
prediction methods are some exact values in the future. However, it might be closer to the real conditions that the predicted
variables are given a probability range with a different confidence rather than exact values. +is paper proposes a probabilistic
forecasting method of metro station environment based on autoregressive Long Short Term Memory (LSTM) network. It has a
good performance to quantify the uncertainty of environment trend in a metro station. Seven-day field tests were carried out to
obtain the measured data of 7 internal environmental parameters in a metro station and 8 external environment parameters. In
order to ensure the prediction performance, the random forest algorithm is used to select the input variables for the proposed
probabilistic forecasting method. +e selected input variables and the previous predicted values are as the input variables to build
the probabilistic forecasting model. +e proposed method can realize to predict the probabilistic distribution of internal en-
vironmental parameters in a metro station. +is work may contribute to prevent emergency events and regulate environment
control system reasonably.

1. Introduction

+emetro is one of the most efficient public transport modes
to solve the problem of traffic congestion in urban areas [1].
However, the continuous increase of passengers brings some
negative environmental problems [2, 3]. +erefore, it is
necessary to analyze the environment trend in a subway
station and develop a relative accurate model to predict the
internal environmental parameters of the subway station [4].

In recent years, a data-based empirical modeling is a
widely used alternative to mechanistic modeling since it
requires less specific knowledge of the studied process [5–8].
In previous studies, the goal of environmental prediction is
to obtain exact future values. Xiao-Ping et al. made the
research progress of air pollution prediction based on ar-
tificial neural network [9]. Chen and Shao improved the
traditional Back Propagation (BP) [10] neural network al-
gorithm by adding momentum factor and changing learning

rate. +e established new model was applied to the urban air
quality prediction [11]. Wang et al. used genetic algorithm to
optimize the initial weights and threshold of the BP neural
network in simulation [12]. Lu and Viljanen developed a
network by nonlinear autoregressive with external input
(NNARX) model and genetic algorithm, and it showed the
suitability of neural networks to perform predictions [13].
However, the actual future results are affected by many
uncertain factors, and it is very difficult to give accurate
prediction values. Kamal et al. investigated the effectiveness
of Artificial Neural Network (ANN)model for predicting the
ambient air quality. +is study illustrates that ANN can
simplify and speed up the computation of the ambient air
quality and provides an interesting alternative to air quality
monitoring [14]. Bodri and Čermák developed an artificial
time-delay feed-forward neural networks to predict Surface
Air Temperatures (SAT) for six hours up to one day, and the
model provided a good fit with the measured data [15].
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Ramedani et al. proposed a newmethodology based on ANN
for generating daily GSR data [16]. Huibing put forward BP
neural network prediction method to solve the problem that
the environment temperature measurement accuracy is not
high and it has large time delay. Simulation results show that
the accuracy of temperature measurement has been sig-
nificantly improved, especially on measurement delay [17].
Qu et al. developed amodelingmethod based on sliding time
window Random Vector Functional Link Neural Network
(RVFLNN) and solved the problem of slow computing speed
with big data [18]. +eir study improved the prediction
speed while ensuring the prediction accuracy. All these
research studies have good ability to model the nonlinear
and dynamic system and can realize the accurately
prediction.

+e goals of these methods are to get exact values in
every time steps. However, the real results in practice can be
affected by many factors. It may be more reasonable to
predict their probability distributions with different confi-
dences rather than exact values. A good forecasting is to
make predictions for an uncertain future, and its forecasting
results should be shown in a form of probability distribu-
tions [19–21]. Probabilistic forecasts serve to quantify the
uncertainty in the future, and they are an essential method to
make an optimal decision [22]. Compared with exact pre-
diction, probabilistic forecasts give more information. It can
reveal the possible variation range of predicted parameters
and determine whether the parameters exceed themaximum
allowable values and its probability of occurrence. +us, it
can help an environment control system to adjust its op-
eration for extreme and rare events [23, 24].+is will prevent
some emergency accidents [25]. +ere are many studies of
probabilistic forecasts in some fields. Aznarte investigated
the convenience of quantile regression to predict extreme
concentrations of NO2, and they improved the probabilistic
forecasting and allowed for the prediction of the full
probability distribution, which in turn allowed to build
models for the tails of this distribution [26]. Wan et al.
proposed an Extreme Learning Machine (ELM) based on
probabilistic forecasting method for wind power generation
using the historical wind power time series as the inputs
alone [27].

2. Field Test and Influence Analysis

2.1. Testing Instrument. An environmental monitor, named
CPR-KA, as shown in Figure 1, is used to investigate the
environmental conditions. Its pump suction rate is 300mL/
min and data sampling period is 2 minutes. +is equipment
uses highly sensitive electrochemical sensors to monitor the
concentrations of environmental pollutants, SO2 and NO2,
uses Photoionization Detector (PID) and infrared sensors to
monitor concentrations of VOC and CO2, respectively, uses
light scattering sensors to monitor concentration of PM10,
and uses integrated temperature and humidity sensor to
monitor temperature and RH. It can measure a variety of
internal environmental parameters and pollutant concen-
trations. Its measurement range and accuracy are listed in
Table 1.

2.2.MeasuredMetro Station. +emeasured metro station is a
transfer station with full-height platform screen doors. It is an
underground station, which adopts a separated island platform
design pattern. +e design parameters of Heating Ventilation
and Air Conditioning (HVAC) system are as follows:

(1) Rated conditions of HVAC system: the dry-bulb
temperature is 28°C and the range of relative hu-
midity is 40%–70% in the station platform for
summer rated conditions

(2) Ventilation rate: the ventilation air volume in the
platform is 5.78×104m3/h and the fresh air is
1.08×104m3/h

+e environmental monitor is located in the middle of
the platform and 1.2m above the platform ground, as shown
in Figure 2. +e 8 external parameters that may affect the
internal environmental parameters in the metro station are
also collected at the same time. +e passenger flow and the
arrival frequency of metro vehicle are automatically recor-
ded. Typical external atmospheric parameters, including
outdoor temperature and RH, are collected from http://data.
cma.cn/. Typical outdoor air quality data, including PM10,
CO, NO2, and SO2, are obtained from http://beijingair.
sinaapp.com/. During the 7-day investigations, a total
number of 2800 observed environmental data are collected
from the metro station.

CPR-KA

Figure 1: Real-time air quality monitor.
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In this paper, we define some terminologies. Passenger
flow, arrival frequency of metro vehicle, outdoor tempera-
ture, outdoor RH, outdoor PM10, outdoor CO, and outdoor
NO2 and SO2 are defined as the external environmental
parameters. Eight external environmental parameters are the
input variables of the forecasting model. Seven parameters
collected in the metro station, including CO2, VOC, SO2,
NO2, PM10, temperature, and RH, are defined as the internal
environmental parameters. +ey are the output variables of
forecasting models.

2.3. Influence Analysis for Input Variable Selection. In order
to eliminate the influence of irrelevant variables on the
model performance, this paper uses the random forest al-
gorithm to obtain the influence of external environmental
variables on the predicted internal variables in training and
prediction [28–30]. According to the results of influence
analysis, the key variables can be selected as the input
variables of the network.

Figure 3 shows the procedure of external variables’ in-
fluence analysis.+e random forest algorithm is used to analysis
the degree of influence, W, of external environmental variables,
V, on the prediction parameter,Y.+e threshold value, g, is set.
When wi >g, the corresponding external variable will be
retained into the input variables, X, of autoregressive LSTM
network. Note that Y and X are time series; therefore, they can
also be denoted as Yt and Xt, respectively.

Random forest algorithm is based on the ensemble
learning method [31] and uses the decision tree as a basic
learner [32]. First, the influences of V on X is calculated in
one decision tree; then, the average of all decision trees is
calculated to get final influence W. For a specific prediction
variable, Y, the above process is as follows [33]:

(1) Denote original dataset as D � [V∘Y], where [·∘·]
represents concatenation. Extract K bootstrap
datasets [34], Dk 

K

k�1, from D, and in the meanwhile
remains K Out-Of-Bag (OOB) datasets, D

k
 

K

k�1
.

(2) Initialization, k� 1.
(3) Train the kth decision tree regression model Ck with

dataset Dk, and calculate its prediction accuracy, Ek,
using the corresponding OOB dataset, D

k.
(4) Add noise to external parameter, vi, in the OOB

dataset, and calculate the prediction accuracy of
model Ck again, and the changed accuracy after
adding noise is denoted as E

k

i .
(5) Repeat step (3)∼step (4) until k�K.

When all the decision trees are processed using the above
steps, the degree of influences can be calculated with
equation (1) for a given external variable, vi:

wi �
1
K



K

k�1
E

k
− E

k

i , (1)

where Ek is the prediction accuracy without any distur-
bance to the external parameters when training the kth
decision tree; E

k

i is the prediction accuracy after adding
noise to external variable; and K is the number of decision
trees.

+e degree of influences, W, of V on Y can be obtained
using the above steps. +e larger the wi, the greater the
variable’s contribution to the predictor. +erefore, we
extract input variables by setting a threshold value, g. +e
external variable will be retained as an input variable
when wi >g. Denote these input variables as X � xi 

Z

i�1,
as shown in Figure 3. Because g is a learnable parameter,
we determine the optimal g after comparing different
values.

3. PrincipleofProbabilisticForecastingMethod

3.1. Procedure of Probabilistic Forecasting Method. +e
probabilistic forecasting method proposed in this paper can
obtain the Gaussian distributions of the predicted envi-
ronmental parameters in the future time points based on
past observations. +e overall procedure is summarized in
Figure 4 and it contains the following four steps:

Step 1: environmental data preprocessing.
+e internal environmental parameters in station
platform were measured every 2 minutes for 7 days
starting from 21 October 2019. +e Butterworth low-
pass filter algorithm is used to deal with the raw data
[35, 36]. +e useful signal and noise are separated and
the high-frequency interference signals are filtered out
[37]. +e transfer function of Butterworth low-pass
filter is given by

|H(ω)|
2

�
1

1 + ω/ωc( 
2N

, (2)

Device position

North

Guloudajie station

Lama temple station

A B

Figure 2: Measured position in the platform.

Table 1: Measurement range and accuracy of CPR-KA.

Parameters Measurement range Accuracy
SO2 0∼2000 ppb 1 ppb
NO2 0∼2000 ppb 1 ppb
VOC 0∼10 ppm 1 ppb
CO2 0∼5% vol 0.01% vol
PM10 0∼0.5mg/m3 0.001mg/m3

Temperature − 50∼80°C 0.1°C
Relative humidity (RH) 0∼100% RH 0.8% RH
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where N is the order of filter; w is the frequency, rad/s;
and wc is cut-off frequency.
+e frequency-amplitude curve of a filter includes
passband and stopband and transition band. For
passband and stopband, its two rules are shown in
equations (3) and (4), respectively:

1 − δp ≤ |H(ω)|≤ 1 + δp, |ω|≤ωp, (3)

|H(ω)|≤ δs, ωs ≤ |ω|≤∞, (4)

where wp and ws are edge frequencies of passband and
stopband, respectively; δs is the deviation of amplitude

between filter and ideal filter in stopband; and δp is the
deviation of amplitude between the filter and ideal filter
in passband.
Step 2: degree of influence of external variable and
input variable selection.
Although eight types of external variables are
measured, they have different influences on the in-
ternal environmental parameters in the metro
platform.
If all the external variables are taken as the input
variables of the forecasting model, it might lead to
worse prediction results. +e presented probabilistic
forecasting method based on the autoregressive LSTM
neural network is a machine learning algorithm. Its
input variables have a great impact on the perfor-
mance of machine learning algorithm [38–40]. In
general, the collected data are not entirely suitable as
input variables of neural network. It is significant to
reduce the number of input parameters in order to
avoid overfitting and accelerate the training speed of
the model. It has been used in some research studies
and has obtained good results, and these research
results showed the important role of input variable
selection [41, 42].
Seven internal environmental variables are collected
in the metro station, including CO2, CO, CH2O,
VOC, SO2, NH3, NO2, PM10, temperature, and RH.
In this paper, the probabilistic forecasting method
will predict these parameters. +e predicted pa-
rameters are denoted as Y. Correspondingly, external
environmental variables are denoted as V � vi 

M
i�1,

where M � 8. +e influence of external variables V on
prediction parameter Y will be analyzed using the
random forest algorithm. Denoting the degree of
influence of external environmental parameters by
W � wi 

M

i�1.
+e greater the wi of the external environmental pa-
rameter, the greater its influence on the internal en-
vironmental parameter, and vice versa. We denote a

v1,t

External variable influence analysis
 and input variable selection 
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Figure 3: External variable influence analysis and input variable selection.

Step 1: environmental data preprocessing

Step 2: degree of influence of external 
variable sand key variable selection

Step 3: training autoregressive LSTM 
network models in a metro station

Step 4: predicting environmental 
parameters

Figure 4: Procedure of probabilistic forecasting method of envi-
ronmental parameters.
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manually threshold value, g, to select external envi-
ronmental parameters. +erefore, variables whose
weights are less than g are eliminated in order to ex-
clude their negative influences on model performance.
Step 3: training autoregressive LSTM network
models.
After Step 2, the external environmental parameters
with high degree of influence are selected as the inputs
of the autoregressive LSTM network together with
historical data at the previous time step [43]. Denote
the input variables for each prediction parameter by
X � xi 

Z
i�1, where Z is the number of input variables.

+e prediction parameters are the internal environ-
mental parameters in the metro station. Because dif-
ferent prediction parameters have different input
variables, it is necessary to adjust the structure of LSTM
network in order to better predict the changes of
different environment parameters. +e number of in-
put layer nodes in the network structure is Z, and it is
equal to the number of input variables. +e training
dataset and the test dataset are divided by 7 : 3; the first
70 percent of observations are used to develop the
prediction models and the remaining 30 percent of
observations are used as a test dataset.
Step 4: predicting the environmental parameters in a
metro station.

In this prediction process, we use the same network
structures and parameters in the training process. However,
in this process, there is a slight difference from the training
process. +e prediction variables are known in the training
process, but they are unknown in the prediction process. In
order to continue the prediction process, we use the rolling
window prediction that can feed the last outputs back as the
input until the end of the prediction range.

3.2. Model of Autoregressive LSTM Network. For internal
environmental parameter prediction, it is important to build
a conditional distribution. +us, the proposed model can be
denoted as

P Yt0+1: t0+τ Y1: t0
, X1: t0+τ;Φ

 , (5)

where t0 is the time point which splits the past and the
future; τ is the length of prediction range; Yt0+1: t0+τ and Y1: t0
are the target values in time range [t0 + 1: t0 + τ] and [1: t0],
respectively; X1: t0+τ is the value of external variable in time
range [1: t0 + τ]; andΦ denotes the parameters of the model.

In equation (5), the whole time series, [1: t0 + τ], is split
into two parts, [1: t0] and [t0 + 1: t0 + τ], by time point t0.
+e first half part named the condition range contains the
past information, and the remaining part is called the
prediction range. +e model utilizes the past values of
prediction variable, Y1: t0

, and the external variables, X1: t0+τ,
to predict the future values, Yt0+1: t0+τ. Yt0+1: t0+τ is assumed to
be unknown at prediction time, and X1: t0+τ is known ex-
ternal variables.

For each time point, the problem can be parametrized by
the output ht of an autoregressive LSTM network:

P Yt0+1: t0+τ Y1: t0
, X1: t0+τ;Φ

  � 

t0+τ

t�t0+1
P Yt Yt− 1, Xt

 ;Φ 

� 

t0+τ

t�t0+1
ℓ Yt θ ht,Φ( 

 ,

ht � h ht− 1, Yt− 1, Xt,Φ( ,

(6)

where h is a function implemented by LSTM cells; Yt is
internal environmental parameter Y at time t; ℓ(·) is the
likelihood to fit the distribution of predictive variables; and
θ(·) is a function that computes the parameters of the
likelihood.

+e autoregressive model means that the observation at
last time step, Yt− 1, and the previous output of the network,
ht− 1, are fed back as inputs for the next time step. +e
likelihood, ℓ(Yt | θ(ht,Φ)), is a fixed distribution whose
parameters are given by a function θ(ht,Φ) of the network
output ht.

It is significant to choose a good distribution for the
proposed model. +e environmental parameters are as-
sumed following the Gaussian distribution according to
the research results by some researchers [44, 45]. It is
greatly convenient to construct the LSTM network because
the Gaussian distribution has mean and variance. +us, for
the study in this paper, the distribution of Y is determined
as Gaussian distribution, so the likelihood can be denoted
by equation (7), and its parameters, the mean μ and
standard deviation σ, are given by equations (8) and (9).
+e mean is given by an activation function of the network
output, and the standard deviation is obtained by applying
an activation function followed by a softplus activation
function:

ℓG(Y | θ(h,Φ)) � ℓG(Y | μ, σ) � 2πσ2 
− (1/2)

exp −
(Y − μ)2

2σ2( )
 ,

(7)

μ ht(  � w
T
μht + bμ, (8)

σ ht(  � log 1 + exp w
T
σ ht + bσ  , (9)

where μ and σ are the mean and standard deviation, re-
spectively; ht is the network output; and w and b are weights
and bias of nonlinear transformation, respectively.

For the training and forecasting processes, their network
structures are the same, but there is a slightly difference to
calculate Y, as shown in Figure 5. For the training process,
the values of Y are assumed to be known, but they are
unknown in prediction process. +e value of Y at the last
time step can be the input of model. In order to continue the
prediction, a sampled value should be obtained from the
distribution of the last time step. +ey will be described and
discussed in Sections 3.3 and 3.4, separately.

Mathematical Problems in Engineering 5



3.3. Training Process. Figure 5(a) illustrates the training
process. +e inputs of network are Xt and Yt− 1. All time
steps are in a conditional range, [1: t0]. +e autoregressive
LSTM network in Figure 5(a) can be expanded some

continuous training process according to the time steps.
+eir inputs are (Yt− 1, Xt) and the previous network output
ht− 1 at each time step t. Here, t ∈ [1: t0]. +e network output,
ht � h(ht− 1, Yt− 1, Xt,Φ), is then used to compute the
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=

...

Yt Y1 Y2 Yt0
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LSTM
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Yt-1, Xt Y0, X1 Y1, X2 Yt0–1, Xt0
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|θt0
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(b)

Figure 5: Models of autoregressive LSTM network. (a) Training and (b) prediction.
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parameters of the likelihood, θt � θ(ht,Θ), using equations
(8) and (9). Finally, the model parameters are optimized
using

L � 

t0+τ

t�t0+1
log ℓ Yt θ ht( 

 , (10)

where ht is the output of the network and Yt is the actual
value of prediction variable.

In equation (10), our goal is to maximize the probability
of Yt in the predicted Gaussian distribution. μ and σ can be
optimized directly via stochastic gradient descent by com-
puting gradients.

3.4. Prediction Process. Figure 5(b) illustrates the prediction
process. +e network structure and the parameters in the
training process are same as the prediction process. How-
ever, the inputs of prediction network are different from
training network, and the actual values of prediction variable
are unknown in the time range of [t0 + 1: t0 + τ]. +erefore,
Yt0+1: t0+τ ∼ PΦ(Yt0+1: t0+τ | Y1: t0

, X1: t0+τ) can be obtained
from the prediction distribution and used as the one of the
input values for the next time steps, and the inputs of the
prediction network are (Yt− 1, Xt), ht and Yt at each time step
t. Here, t ∈ [t0 + 1: t0 + τ].

By rolling window prediction, the distributions at all
prediction time steps could be given.+e whole prediction is
as follows. First, ht0

is obtained from the end of training
process. +en, ht0+1 is calculated with the inputs of Xt0+1, Yt0,
and ht0

. After getting the network output, ht0+1, the Gaussian
likelihood, ℓ(Yt0+1 | θt0+1), can be built. Finally,
Yt0+1 ∼ ℓ(Yt0+1 | θt0+1) is drawn and fed back for the next
point t0 + 2. +is prediction process is repeated until
[t0 + 1: t0 + τ].

4. Results and Discussion

4.1. Results of Data Preprocessing. +e collected environ-
mental data are processed by these steps: removal and re-
placement of outliers, missing data imputation, and noise
smoothing. Figure 6 shows a part of data after preprocessing.

4.2. Time Series Processing for LSTM Network. Probability
forecasting method is based on autoregressive LSTM net-
work, so the input variables need to be processed, as shown
in Figure 7. Set t0 � 8 as the boundary of [1: t0] and
[t0 + 1: t0 + τ]. Whole dataset can be built through selecting
different start points from the entire time series.

4.3.Determination of Parameterg. For the prediction of Y, 8
external environmental parameters are input to get their
degrees of influence, W � [w1, w2, ..., wM]. Figure 8 shows
the results of the influence of external environmental pa-
rameters on the internal environmental parameters.

From Figure 8, the results can be observed:

(1) Passenger volume is the main influence factor for
carbon dioxide concentration and temperature in the
metro station

(2) RH, PM10, and NO2 in the outside atmosphere have
obvious contributions for RH, PM10, and NO2 in the
metro station, respectively

For the proposed method, an external environmental
parameter will be retained as an input variable when its
influence degree, wi, is larger than g. So, g is regarded as a
hyperparameter to determine the input variables of the
network. In general, a grid search and a manual search are
the most widely used strategies for hyperparameter opti-
mization [46–48]. Because most of the influence degrees are
less than 0.3 according to Figure 8, all available values of g

are set as 0.1, 0.2, and 0.3, respectively. +e grid search
method is used to select the optimal value of g. Each value of
g is applied to the model to calculate its RMSE. +e value of
g with smallest RMSE is selected as the final g. +e RMSE is
calculated with

RMSE �

�������������
1
T


t

Yt − Yt( 
2



, (11)

where T is the length of prediction values and Yt and Yt are
predicted and actual data, respectively.

Table 2 shows the results of different values of g. +ere
are 4 kinds of g values. We use every value of them to select
the input variables and train different models. +e RMSE of
these models are shown in Table 2. +e value of g corre-
sponding to the minimum RMSE value is considered to be
an optimal one, which is a bold font in Table 2.

Finally, every internal environmental parameter has
optimal g value according to Figure 8 and Table 2. For
example, the minimum RMSE of CO2 is 0.227, and its
corresponding g value is 0.1. +e influences exceeding 0.1
are PF and NO2. +us, the two external parameters, PF and
NO2, are used to predict CO2 concentration in a metro
station.

From Table 2 and Figure 8, we can draw the following
conclusions:

(1) Different internal environmental parameters have
different optimum g values.

(2) +e smaller the RMSE value, the better the perfor-
mance of the model, so the models of CO2, VOC,
PM10, and RH have the best performance with g �

0.1 For these parameters, g is determined as 0.1.
(3) For SO2, NO2, and TEM, g is determined as 0.2.

4.4. Results of Environmental Prediction. +e collected 2800
data from the metro station are adopted for predictions. We
built different prediction models to predict the corre-
sponding internal environmental parameters. +e proposed
model based in LSTM network has input layers, hidden
layers, and output layers. Because the input variables de-
termine its input layer nodes, different models have different
input layer nodes. +e number of input layers is decided by
its degree of influence. Each model has 2 hidden layers with
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Figure 6: Data preprocessing of (a) CO2 and (b) Temperature.
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Figure 8: Continued.
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nodes number of 64 and 16, respectively. It has 1 output layer
with node number of 2, which represent the mean and
variance of normal distribution.+e training and test datasets
are divided according to a ratio of 7 : 3. +e time step is set to
120 s, and the number of training iterations is set to 1000.

4.4.1. Results Based on the =ree-Sigma Rule of Distribution.
+e evaluation of the proposed model is based on the three-
sigma rule of distribution. +ree-sigma rule is an empirical
rule stating that, for many reasonably symmetric unimodal
distributions, almost all of the population lies within three
standard deviations of the mean [49]. +erefore, we define
three ranges of predicted normal distribution in different
intervals, [μ − σ, μ + σ], [μ − 2σ, μ + 2σ], and
[μ − 3σ, μ + 3σ]. For a normal distribution, 68.3% of the
observations are within [μ − σ, μ + σ], 95.4% are within
[μ − 2σ, μ + 2σ], and 99.7% are within [μ − 3σ, μ + 3σ].
Figure 9 shows that the prediction results of probabilistic

forecasting method in three ranges. Table 3 shows that the
propagation of the actual values falling in different ranges.
+e traditional ANN results are also calculated and shown in
Figure 9, in which “Actual,” “ANN prediction,” and
“Probabilistic mean” represent the measured data, the re-
sults of ANN prediction, and the results of the proposed
method, respectively.

As shown in Table 3, we calculate the proportion of the
actual values falling in three-sigma limits for seven internal
environmental parameters in metro station. +e higher the
proportion, the more accurate the probabilistic distribution
and the higher the prediction accuracy. +e model accuracy
can be verified by analyzing and comparing the proportion.
In the range of [μ+ σ, μ − σ], the proportion will be 68.3% if
it obeys the standard normal distribution. So, our goal is to
make the propagation of predicted results in this range
exceed 68.3%. Similarly, in the ranges of [μ+ 2σ, μ − 2σ] and
[μ+ 3σ, μ − 3σ], our goals are 95.4% and 99.7%, respectively.
+e mean proportion of these ranges is calculated and listed
in the last row in Table 3. Some conclusions can be obtained
from Table 3:

(1) +e results show that the mean proportion in three
intervals is 76.75%, 93.00%, and 98.12%, respectively.
+is means that the normal distribution predicted by
our model can effectively cover the change range of
predicted variables and give different probability
intervals according to three-sigma limits.

(2) +e proportions of CO2, VOC, SO2, PM10, and TEM
in the range of [μ+ σ, μ − σ] are greater than 68.3%.
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Figure 8: Influence analysis of external environmental parameters. (a) CO2, (b) RH, (c) temperature, (d) NO2, (e) PM10, (f ) SO2, and (g)
VOC.

Table 2: RMSE of the prediction model with different g.

g � 0 g � 0.1 g � 0.2 g � 0.3
CO2 0.405 0.227 0.481 0.263
VOC 0.137 0.064 0.073 0.069
SO2 0.236 0.303 0.164 0.203
NO2 0.179 0.165 0.088 0.196
PM10 0.419 0.154 0.209 0.237
TEM 0.401 0.168 0.115 0.212
RH 0.215 0.150 0.198 0.156
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Figure 9: Predicting result comparisons. (a) CO2, (b) RH, (c) temperature, (d) NO2, (e) PM10, (f ) SO2, and (g) VOC.
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On the contrary, the proportions of NO2 and RH are
lower than 68.3%. In the range of [μ+ 2σ, μ − 2σ], the
proportions of CO2, VOC, SO2, and PM10 are greater
than 95.4%, and they are higher than ones of NO2,
TEM, and RH. Finally, in the range of [μ+ 3σ,
μ − 3σ], only the proportions of VOC and PM10 are
greater than 99.7% and the proportions of other
variables are lower than 99.7%. In particular, the
proportions of NO2 and RH are smaller than other
variables in the range of [μ+ 2σ, μ − 2σ] and [μ+ 3σ,
μ − 3σ]. +erefore, we draw a conclusion that the
prediction accuracy values of NO2 and RH are lower
than other variables, but those of VOC and PM10 are
higher than other variables.

(3) Most of the ANN prediction results fall into these
three intervals, as shown in Figure 9. It means that
most of the ANN prediction results are included in
the range of normal distribution predicted by the
probabilistic forecasting model.

4.4.2. Result Comparison with the ANN Model. In order to
further reveal the prediction performance of the presented
probability forecasting method, it is compared with the
traditional ANN. As shown in Table 4, we calculated the
proportions of the ANN results falling in three-sigma limits
for seven internal environmental parameters in metro station.

Some conclusions can be obtained from Table 4:

(1) +ere are 96.50% of ANN prediction results falling in
the range [μ+ 3σ, μ − 3σ] on average, which means
that the results of probabilistic prediction include the
most of ANN prediction results. +e results of
probabilistic prediction can replace ANN prediction
results to some extent.

(2) +ere are 69.13%, 90.61%, and 96.50% of ANN re-
sults falling in three-sigma limits on average, re-
spectively. +e average proportions of actual values
falling in three-sigma limits are 76.75%, 93.00%, and
98.12%, respectively.+ey are higher than the ones of
ANN prediction.

+e outputs of the probabilistic forecasting model are a
series of normal distributions, and the outputs of the ANN
model are a series of exact values. We use the mean, μ, of the
probabilistic forecasting model to calculate RMSE and
compare it with the ANN model. In addition, the im-
provement performance of the probabilistic forecasting
method compared with the ANN method is calculated with
equation (12) and listed in Table 5:

PI �
YANN − Yprob

YANN
, (12)

where PI is the relative percentage of performance im-
provement and YANN and Yprob are the prediction result
RMSE of traditional ANN and the proposed methods,
respectively.

+e results show that the RMSE values of the presented
model are lower than the ones of ANN.+emean of all PIs is
0.58, which means 58% improvement over ANN on average.
+ese data illustrate that if only using the mean value to
evaluate, the probabilistic forecasting model is closer to the
actual values, and its accuracy is better than that of the ANN.

5. Conclusion

A probabilistic forecasting method for the internal envi-
ronment in metro station is proposed on the basis of the
autoregressive LSTM network. +is method can predict the
probabilistic distribution of internal environmental pa-
rameters in a metro station. +e 2800 observations from the
measured metro station are used to illustrate the proposed
model and its performance is well compared with ANN.
Some results can be obtained from our study:

(1) +e random forest algorithm is used to analyze the
degree of influence of external environmental pa-
rameters on the predicted variables. For CO2 and
temperature, the results show that the passenger flow
is the most important influence parameter. Other

Table 3: Proportion of actual values falling in three-sigma limits.

CO2 (%) VOC (%) SO2 (%) NO2 (%) PM10 (%) TEM (%) RH (%) Mean (%)
μ ± σ 86.07 91.20 71.67 59.75 96.55 70.87 61.13 76.75
μ ± 2σ 96.44 100.00 96.80 85.53 100.00 88.44 83.82 93.00
μ ± 3σ 98.55 100.00 99.38 92.29 100.00 96.62 100.00 98.12

Table 4: Propagation of ANN results located in three-sigma limits.

CO2 (%) VOC (%) SO2 (%) NO2 (%) PM10 (%) TEM (%) RH (%) Mean
μ ± σ 71.93 82.00 85.53 63.96 65.93 51.42 63.16 69.13
μ ± 2σ 93.42 98.07 96.69 85.38 89.09 77.75 93.86 90.61
μ ± 3σ 98.29 100.00 100.00 93.16 96.66 91.24 96.15 96.50

Table 5: RMSEs and PIs of ANN and probabilistic forecasting
methods.

CO2 VOC SO2 NO2 PM10 T RH
RMSE of ANN
method 0.57 0.08 0.35 0.33 0.43 0.48 0.30

RMSE of proposed
method 0.22 0.06 0.16 0.08 0.15 0.12 0.15

PI 0.60 0.28 0.53 0.73 0.64 0.76 0.50
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internal environmental parameters, such as RH,
PM10, SO2, and NO2, are mainly influenced by their
corresponding parameters in the outside atmo-
sphere, respectively.

(2) +e proposed model can build a conditional dis-
tribution between past data and future data, and its
results are a series of distributions of mean and
standard deviation. +e proportions of the actual
values falling in three-sigma limits are 76.75%,
93.00%, and 98.12%, respectively, which shows the
reliability of the proposed model.

(3) Compared with the ANN model, the proposed
model can predict the internal environmental pa-
rameters in the metro station platform. +e results
show that there are 69.13%, 90.61%, and 96.50% of
ANN prediction results falling in three-sigma limits
on average, respectively, which is lower than the
proportions of probabilistic forecasting. In addition,
the proposed model has 58% improvement over the
ANN on average if using its mean of predicted
distribution to compare.

+e above results show that probabilistic forecasting
model is more suitable for predicting internal environmental
parameter in a metro station than the ANN. +e most
important contribution of the proposed method is that it can
provide extreme prediction values in future time, such as the
upper and lower boundaries with corresponding probability.
+erefore, it can support the decision-making and give more
information to adjust the operation of HVAC system in a
metro station.

+ere are many factors affecting the internal environ-
mental parameters in the metro station. In this paper, only 8
external variables are selected as the input variables of the
prediction, and this may miss some useful variables, such as
outdoor weather. +is may reduce the accuracy of the
prediction to a certain extent. In the future research, more
factors may be considered to increase the reliability of the
model. Multiple metro stations will be considered to collect
their experimental data in the future in order to improve the
performance of the model.
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