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The main objective of this article is to establish some new fractional refinements of Hermite-Hadamard-type inequalities es-
sentially using new v, -Riemann-Liouville fractional integrals, where k > 0. Using this new fractional integral, we also derive two

new fractional integral identities. Applications of the obtained results are also discussed.

1. Introduction and Preliminaries

Let f: I = [a,b] ¢ R — R be a convex function; then,

4
f(“ ! ”) i [ raxsL @O g

The above inequality is known as Hermite-Hadamard’s
inequality [1-5]. This inequality provides us a necessary and
sufficient condition for a function to be convex. It can be
considered as one of the most extensively studied results
pertaining to convexity. Since the appearance of this result in
the literature, it gained popularity, and many new gener-
alizations for this classical result have been obtained. This
can be attributed to its applications in various other fields
such as in numerical analysis and in mathematical statistics.
For more details on generalizations of convexity, Hermi-
te-Hadamard-like inequalities, and its applications, see
[6-14].

Fractional calculus is a calculus in which we study about
the integrals and derivatives of any arbitrary real or complex
order. The history of fractional calculus is not very much old,

but in the short span of time, it experienced a rapid de-
velopment. Recently, the generalizations [15-25], extensions
[26-32], and applications [33-46] for fractional calculus
have been made by many researchers. The Rie-
mann-Liouville fractional integrals are defined as follows.

Definition 1 (see [47]). Let f € L,[a,b]. Then, Rie-
mann-Liouville integrals J%, f and Ji_ f of order & >0 with
a>0 are defined by

o _ 1 * _ -1
)= s | -0 pwan xsa @
o 1 b a—1
Iﬂ(xhﬁj (-0 f(Od x<b ()
where
[(a) = ro e *x* ldx, (4)
0

is the well-known gamma function.
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Sarikaya et al. [10] elegantly utilized this concept in
establishing fractional analogue of Hermite-Hadamard’s
inequality. This idea motivated other researchers, and
consequently, many new generalizations of Hermi-
te-Hadamard’s inequality have been obtained using the
concept of Riemann-Liouville fractional integrals.

Sarikaya and Karaca [12] introduced k-analogue of
Riemann-Liouville fractional integrals and discussed some
of its basic properties. They defined this concept in the
following way: to be more precise, let f be piecewise con-
tinuous on I* = (0,00) and integrable on any finite sub-
interval of I=[0,00]. Then, for t>0, we consider
k-Riemann-Liouville fractional integral of f of order « as

WJaf (x) = — 1)@t £ (1),

x>a,k>0.

(5)

If k — 1, then k-Riemann-Liouville fractional integrals
reduce to classical the Riemann-Liouville fractional integral.
It is worth to mention here that the concept of the k-Rie-
mann-Liouville fractional integral is a significant general-
ization of Riemann-Liouville fractional integrals; as for
k # 1, the properties of k-Riemann-Liouville fractional in-
tegrals are quite different from the classical Rie-
mann-Liouville fractional integrals.

Another important generalization of Riemann-Liouville
fractional integrals is 1, -Riemann-Liouville fractional
integrals.

(x
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Definition 2 (see [6]). Let (a,b) be a finite interval of the real
line R and a > 0. Also, let y (x) be an increasing and positive
monotone function on (g, b], having a continuous derivative
v'(x) on (a,b). Then, the left- and right-sided y-Rie-
mann-Liouville fractional integrals of a function f with
respect to another function y on [a,b] are defined as

a-1
W = [V O@@ -y o

(6)

IV () = j v (O () -y ()™ f(1)dt,

T (a)
respectively; I'(-) is the gamma function.

For some recent research works, see [48].

Recently, Liu et al. [14] obtained some interesting results
pertaining to Hermite-Hadamard’s inequality involving
¥-Riemann-Liouville fractional integrals. Motivated by the
research work of Liu et al. [14], we obtain some new re-
finements of fractional Hermite-Hadamard’s inequality
essentially using . -Riemann-Liouville fractional integrals.
We also discuss applications of the obtained results to
means. We show that our results represent significant
generalization of some previous results.

2. Hermite—-Hadamard’s Inequality

In this section, we derive a new refinement of Hermi-
te-Hadamard’s inequality via the y;-Riemann-Liouville
fractional integral.
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Definition 3. Let k>0, (a,b) be a finite interval of the real
line R, and & > 0. Also, let y (x) be an increasing and positive
monotone function on (a, b], having a continuous derivative
v' (x) on (a,b). Then, the left- and right-sided w,-Rie-
mann-Liouville fractional integrals of a function f with
respect to another function y on [a,b] are defined as

I 0 = s [ 0w @ -y o
ay 1 b I (alk)—1
TV = (a)j V(0w (D) - v () “P T F (o),
k x
%
respectively;
rk(x)=r°t"*1e*(fk”<)dt, R (x) >0, (8)
0

is the k-analogue of gamma function.
The k-analogues of beta function and incomplete beta
function are, respectively, defined as

1 o
Beby) = [ (a0 e )
1| .
Bi(z%,y) =1 jt(’"" (1-6) gt (10)
0

We now derive the main result of this section.

Theorem 1. Let 0<e< f and g: [e, f{] — R be a positive
function and g € L, [e, f]. Also, suppose that g is a convex
function on [e, f], w(x) is an increasing and positive
monotone function on (e, f1, having a continuous derivative
V' (x) on (e, f), and & € (0, 1). Then, for k > 0, the following
k-fractional integral inequalities hold:

r k o B
9(e+2f> 2(]’?(‘” a)/k [IW‘”W@J vy ()

Iy (gop)(v @) <2910

(11)

Proof. Using the convexity of g, we have
29(#) <gtc+(1-0f) +g((1-De+td). (12)

Multiplying both sides by ¢(alk)-1
with respect to t on [0, 1], we have

—g(e;f) JO @1 g (tc + (1 - 1) f)dt

and then integrating

«
(13)

1
+J (@010 (1 Z pe + td)dr,
0

Now, making the substitution = (y(v)— fle— f),
s= (y(v)—elf —e), we have
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I (a+k)
Z(f— e)(tx/k)

~1

k V()
rk(OC+ ) 1 )|:J l )(f_V/(V))(a/k)(gow)(v)wr(v)dv

= 2(f B e)(zx/k) krk (06

(3% o Gon(y (D) +

I Gy (gew)(v! (e))]

1(f)
+ jw (y(») —e)“P(goy) My’ (v)dv] (14)

v l(e)

%“ @0 1g(tc+(1—t)f)dt+J O g (1 - t)e + td)dt

A3)

Also, using the convexity property of g, we have
gltc+(1-t)f)+g((1-t)e+td)<g(e)+g(f). (15)

Multiplying both sides by ¢ (“¥~1 and then integrating it
with respect to t on [0, 1], we obtain

1 1
J t(a/k)*lg(tc_l_(l —t)f)dt + J t(a/k)flg((l —t)e +td)dt
0 0

X lg@+g(l

(16)
This implies
T e[ 9 )
(17)
I gy (gon (v ©)] 997 9U)
The proof is completed. O

3. Some More Fractional Inequalities of
Hermite-Hadamard Type

We now derive two new fractional integral identities in-
volving y;-Riemann-Liouville fractional integrals. These

v (f)

L= |
P2k(f -0 M e

-1

1
2k (f - €)™ Jw— ©

v (f)
-2 : J s YOG ) 0y ()

+
2 z(f_e)(oc/k)

Similarly,

results will serve as auxiliary results for obtaining our next
results.

Lemma 1. Let e< f and g: [e, f] — R be a differentiable
mapping on (e, f). Also, suppose that g' € Lle, f], y(x) is an
increasing and positive monotone function on (e, f], having a
continuous derivative y' (x) on (e, f), and a € (0,1). Then,
for k>0, the following identity holds:

g +g(f) I (a+k)
2 _2(;_ e)(zx/k)[ I, lP‘e)*(g l//)(1// (f))

w3 gy oy )]
y

1 v () .
z(f )(a/k) J‘ ( [(VJ(V) _e)( /k)
~(f =y P (g o v) Y (.
(18)

Proof. Consider Jo = (T (a+ k)2(f —e) a/k))k o
(gev) (' () and J, = (T (a+k)2(f =) )™
(gey) (v~ (e)).

Now,

(f = w ) O (goy) (MY (vdv

P (alk)
(gey) (MA(f -y () (19)
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1

)
- J,l (gey)(v)d
0

Tk ”
C(y(v) —e)

_9(f) 1 Jw-’m
S 2 -9 v

)P (g' o y) (Y (ndv.

(y(v) -

It follows that
9@ +g(f)_ IR SR A
2 (]1+]2)_2(f_e)(¢x/k) Jw*‘(e)

(e -0 = (f -y () @]
(9" w) )y (.
(21)
m

Example 1. Let c=2d=3a=(12),k=2,g(x) =
x2, ¥ (x) = x. Then, all the assumptions in Lemma 1 are
satisfied. Observe that (g(c) + g(d)/2) = (13/2).

Te(a+k) [ i
W [kfﬂ o (@en(y (@)

+ klﬂ @ (g° 1//)(1/’_1 (C))]
(22)

_ F(z)(l/Z)[ 1

3
20 \—(3/4)
2 T2 L”“ v) Tdv

1 ’ . 577
+ J v (v=2) G, | = 222
[, (172) )2 90

This implies

g +g(d)  To(a+k) [ . )
2 2 (; - ¢)@® ["IW’W‘ o @en(v ()

a; - 4
+k1w7-‘//‘(d>- (9”!/)(1// 1(C))] =

(23)
Also,

Mathematical Problems in Engineering

~1

1 (d) @l o
WJW—IU[(V/M_C) —(d-y )]
(g ev) WY (vdv

3 3
:J v(v—2)(1/4)dv—J vG— )y = 2
2 2 45
(24)

Example 2. Let c¢=2,d=3a=(1/2),k= (1/2),g(x) =
x%, ¥ (x) = x. Then, all the assumptions in Lemma 1 are
satisfied. Observe that (g(c) + g(d)/2) = (13/2).

r k o - - -
ﬁ [klw‘*w‘ o @y @)+ L% o (gew (v (c))]

T 1/2 3 3
:(w(”[ ! ij+__L_¢v%4:2
2 Ly (172) 12 Ty (1/2) )2 3
(25)

This implies

glo+g(d) Tr(a+k) " )
2 ) (2 T [klw-"f o (g° (v (@)

il (g”l’)(l/fl(C))] = é.
(26)

Also,

v (d)
1 J [(w(y)—c)(a/k)_(d_v/(v))(a/k)]
y(o)

2o

(g ew) Y (ndv

= Jz v(v=2)dv - Jj v(3-v)dv= é
(27)

Lemma 2. Lete< f and g: [e, f] — R be a differentiable
mapping on (e, f). Also, suppose that g' € Lle, f], v (x) isan
increasing and positive monotone function on (e, f1, having a
continuous derivative y' (x) on (e, f), and a € (0,1). Then,
for k>0, the following identity holds:
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T (o + k) where

2(](7”‘[ Yo @en(v ()

> forllf‘l(ﬁf)smw‘l(f),
2 2
+ kI:,;,u:(f)— (gOW)(w’I(e))] - g(e—;f) h= (29)

-5 fOYW“(e)Svst(ﬂ)-
v (f) . ’ (28) 5 5
= Jw ) h(g'ey) Wy (v)dv

! v (alk) Proof. Suppose
2(f 2(f —e)@P J,l( [(W(V) e)

~(f =y (g o v) WY (dv,

1 v (et f12) cr £\ gt
= Jw,l(e) (g'o¥) My (Wdv = _g(z) T’
L(mY ' ’ _ L ferf) g(f)
Iz - 5 J -1 (e +f/2) (g OW)(V)V/ (V)dV = _zg( 5 >+T’
1 ) . |
ST )‘“”OJ o SO (g e y) Y (v o

g(e) ‘ 0 — (alk)-1 ,
2 +2k(f_e)(lx/k) JW_I(e) (f l//(V)) (g w)(v)v/ (V)dV

90, L@tk uy

2 2(f-e uc/k)ku/ o (g0 1//)(1!/ (f))

o
o 2<f1 “/’dj o YW= (g v 0y (v
v
- 2k(f S J s YO = g Y (31)

() Tila+k) . )
B ng +2(;_ o) @0 Ly ey (@)

Summing I;,1,,I;, and I,, we get the required  Example 3. Let c¢=2,d=3a=(1/2),k=2,g9(x)=
result. O  x%y(x)=x. Then, all the assumptions in Lemma 2 are
satisfied. Note that g(c +d/2) = (25/4).

L@tk [
ﬁ[k ‘/’wl(f (ge l!/)( (d))+ 1(d (g° 1/’)( (C))]

12 (1/2) 1 )
(112) o
3- d
8 |:r(1/2 (1/2) J v (3-v) v (32)

1 ’ - 577
+—J vz(v—z) (3/4)dv] =7
Ly (1/2) )2 90



This implies
rk (OC + k)

2(d - o) @R [klﬁ @ @y @)

(33)
«; - d 29
+kwaV1(d)f (gow)(v/ 1((;))] _g(C-lz— ) :@,
Also,
v (d) , , 1
J h(g ey)(Wy' (v)dv =-, (34)
) 4

where h is defined in Lemma 2.

v (d)
m JW’]( : [(d - V/(V))(“/k) _ (v/(v) _ C)(a/k)]

(g ew) Wy (v)dv

’ 1/4 ’ 1/4 4
:J V(V—Z)( )dv—J v(3—v)( Jdy = —.
2 2 45
(35)
This implies
~(d) , , 1
J e ey an e
‘ J'W’ (d) [ (- 1l/(v))(oc/k) (36)
v (o)
« : ' 29
~ M= ")(g ) )y dv =

Example 4. Let c¢=2,d=3,a=(1/2),k= (1/2),g(x) =
x*,y(x) = x. Then, all the assumptions in Lemma 2 are
satisfied. Note that g(c +d/2) = (25/4).

L@+ k) [ i . )
— [klw'-wwcr ey (D) +iIy" ) (gon(y 1(c))]

2(d- P

- r(“2>2(1/2) [r(m)l(l/z) jj Vdv +m E vzdv] -3
(37)

This implies

m 5" o (g (v (@)
(38)

+ eIy o ey (C))] - g(c ; d) = %
Also,
J::ﬁ h(g'oy) My (v)dv = i, (39)

where h is defined in Lemma 2.
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1 vi@ (alk)
2(d - ) J1//"(c) [ @-y)

(W) =9"“P)(g ev) Wy (V)dv (40)

= E y(v—-2)dv - E v(3-v)dv = —%.

This implies
-1

d) , V()
J 1()h(glol//)(v)w (v)dv +
v (c

5 )
2(d - o) @0 )10

[d=y ) =y () - )] (41)

, _ b
“(grey)(v)y (v)dv = T

Before proceeding to next results, let us recall the def-
inition of s-convex function of Breckner type.

Definition 4 (see [49]). A function g: [0, 00) — [0, 00) is
said to be s-convex function of Breckner type if

g(1-tx+ty)<(1-1)°glx) +t°g(y),

(42)
Vx, y € [0,00),t € [0,1],5s € (0,1].

Theorem 2. Lete< f and g: [e, f] — R be a differentiable
mapping on (e, f). Also, suppose that |g'| is Breckner type of
s-convex on [e, f], w(x) is an increasing and positive
monotone function on (e, f1, having a continuous derivative
V' (x) on (e, f), and a € (0, 1). Then, for k > 0, the following
inequality holds:

lg(e) +g(f) Tpla+k)
2 z(f_e)(oc/k)

(3% o ()

g aen(y @)

f-e

<
2

[Li|g' ()] + L,|g" (f)]],
(43)

where

L= 2kB (L1 s
1= k 27 S5 k

+k(1—2'(’“+"‘/k)) s (1 k+a
k+ks+a k STk )

(44)

1- 2—(ks+a/k) 1
L, ,:u_szk( IHTa,1+s>—Bk<k+a,l+s>,

k+ks+a 2 K
(45)

respectively.

Proof. Using Lemma 1 and the fact that |g'| is Breckner type
of s-convex function, we have
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@+g(f)  Tilath) [ - o
|g Zg f 2(; (i) [ Vi(e)*(g%//)( 1(f))+k1 v f) (g 1//)(1// (e)):”
1 wjl f 42 &) !
ST j |(w(v> ) — (f =y () “Pl(gr o y) WY (v)|dv
-e (! (« (a
=f2 j0|(1— W0 — @\ |g' (tc + (1 - ) f)|dt
e (! N
S LI(1 D [ @]+ (-]’ (1] (4o
(112)
1
+lg (e)|J E[E - (11— 1)@ de +|g' (f)|J (1= 0 [£ = (1= )]t
(/2)
—€ ’ /
:fT[Llig @] +Lo|g' (O]
where
(172) 1
L, =H,+H,= J el -0 W dr + J e[ - (1 -0 0] ar
0 (112)
(47)
N T PUNLA) PRkl I PN
I V™ k+ks+a g Tk )
(1/2) 1
Ly=H,+H,= J 1= [(1-0 0 -t O]de + j 1=t [t - (1 - “P]de
0 (112)
48
k(o) (1 kea (ke )
T k+ks+a N2y ' ' Nk )
This completes the proof. O  Proof. Using Lemma 2, the property of modulus, and the

Theorem 3. Let g: [e, f] — R be a differentiable function
on (e, f) withe< f. Also, suppose that |g'| is Breckner type of
s-convex function. If y(x) is an increasing and positive
monotone function on (e, f], having a continuous derivative
v' (x) on (e, f) and a € (0,1), then for k>0, the following
inequality holds:
I (o + k) « 1

S g [ ey ()

Y gy (v! (e))] - g(#)‘ (49)

< 'g(f)z_g(e” + fz_ “[Llg' @]+ Llg (D),

where L, and L, are given by (44) and (45), respectively.

given hypothesis of the theorem, we have

I (ax+k) e . i
e L i )

i3y @] o0

~1

w f) ! !
J h(g o v) WY (Vv
yl(e)

= (50)

! a
I )WJ USRS

~(y (1) =) O] (gr o p) My’ (N

=1, +1,.



Using substitution t = (y(v) — e/ f — e) and the fact that
|g'| is Breckner type of s-convex function, we have

fz_e [Ly|g' ()] + Lo|g" (f)]], (51)

I, <

where L, and L, are given by (44) and (45), respectively. And

_ lg(f) —g(e)I. (52)

I
2 2

This completes the proof. O

4. Applications

In this section, we discuss some applications of Theorem 2 to
means by considering a particular example of s-convexity.
First of all, we recall some previously known concepts related
to means [50].

For arbitrary real numbers «, 8, a# f, we define the
following:

(1) Arithmetic mean:

Ao, B) = “%ﬁ ap e R; (53)

(2) Logarithmic mean:
L(a,p) = foa R\{0}; 54
OB = g Iy P € RMOK (54)

(3) Generalized log-mean:

/3”+1 _ (xn+1

(1/n)
TS — , neNyn>1l,a,feR,a<p.
(n+1)([3—¢x)] B p

L,(a,p) =[
(55)

We now give the main results of this section.

Proposition 1. Let e, f € R* with e< f; then,
s s s S( _e) s— s—
|A(e,f)—LS(e,f)|£fT[W1|e| LWLl
(56)
where

1 _2—1—5

1
W, = 23(5;1+s,2)+ -B(l1+s,2), (57)

1- 2—1—5

1
W, = —2B<5; 2,1+s> -B(2,1+s), (58)

2+s

respectively.

Proof. Applying Theorem 2 for g(x) = x°, y(x) = x, and
a =1 =k, we obtain the required result. O

Proposition 2. Let e, f € R* with e< f; then,
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|A(e ) - Li(e, f)] <

|/ . gl S(fz— ) [ el

+ W2|f|s_1];
(59)

where W, and W, are given by (57) and (58), respectively.

Proof. Applying Theorem 3 for g(x) = x°, y(x) = x, and
a =1 =k, we obtain the required result. O

5. Conclusion

In this article, we obtain some new fractional estimates of
Hermite-Hadamard’s inequality essentially using a new
k-analogue of y,-fractional integrals. We derive two new
fractional integral identities in the setting of k-fractional
calculus. In order to check the validity of these identities, we
discuss some particular examples. In the final section, we
have discussed applications of Theorems 2 and 3 to means.
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