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As one of the critical test equipment, hydraulic servo shaking table is widely used in shaking environment simulation of structural
components and systems. However, inherent nonlinear factors of a hydraulic servo shaking table can cause amplitude attenuation
and phase lag when corresponding to a sinusoidal acceleration signal, which leads to serious harmonic distortion. In order to
improve waveform reproduction performance of sinusoidal signals, the amplitude and phase of harmonic should be estimated
accurately. In this paper, the multi-innovation stochastic gradient (MISG) algorithm is presented for dynamically estimating the
harmonic information. Simulation and experiment results demonstrate that the proposed algorithm has high estimation precision
and good convergence performance.

1. Introduction

Hydraulic servo system plays an indispensable role in industry
fields because of its excellent power density, high precision, and
fast response, which has attracted the attention from both
industry and academic [1–3]. As the most important appli-
cation of the hydraulic servo system, hydraulic servo shaking
table is widely used to simulate real-world motion and force
within the laboratory. Compared with the field test, laboratory-
based structural test is an integral part of the product devel-
opment process in many fields, such as architecture engi-
neering [4], automobile industry [5], and aircraft [6]. However,
the inherent nonlinearities of a hydraulic servo shaking table
[7–9], such as nonlinear pressure-flow characteristic of servo
valve, nonlinear friction of hydraulic actuators, and backlash
nonlinearity of mechanical connection, result in serious har-
monic distortion when the shaking table is excited by sinu-
soidal acceleration signals. /erefore, it is of great importance
to estimate the harmonic information of the hydraulic servo
shaking table in a quick and accuracy way.

Various methods were presented to estimate the pa-
rameters of harmonic [10], e.g., well-known fast Fourier

transform (FFT), least mean square algorithm (LMS), re-
cursive least square (RLS), and Kalman filter algorithm. FFT
is widely used in harmonic estimation for its efficiency and
simplicity among these methods. However, the nonsyn-
chronous sampling may result in aliasing, spectrum leakage,
and picket fence effort [11]. To overcome the above draw-
backs, windowed interpolation FFT is employed to improve
the harmonic estimation precision, but it cannot provide a
satisfactory estimation when suffered from spectrum leakage
and harmonic interference [12]. As recursive algorithms,
LMS and RLS have several limitations in terms of accuracy
and convergence for solving the harmonic estimation
problem. /e LMS algorithm suffers from poor convergence
and being failure in the case of signal drifting and changing
conditions [13]. /e initialization parameter for the RLS
algorithm has a great impact on time varying dynamic signals
[14]. /e Kalman filter algorithm is capable enough to es-
timate harmonic parameter in presence of noise and other
nonlinearities presented in the response signal [15]. However,
the requirement of prior information about the harmonic
signal’s statistics characteristic and the state matrix’s ini-
tialization restricts its broader practicable applications [16].

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 3063469, 13 pages
https://doi.org/10.1155/2020/3063469

mailto:travisyao@126.com
https://orcid.org/0000-0003-0433-9004
https://orcid.org/0000-0003-1640-3923
https://orcid.org/0000-0002-7802-2547
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3063469


Besides, many hybridized algorithm-basedmetaheuristic
technique and classical optimization method have been
reported to estimate the parameters of harmonics [14].
Because the harmonic is linear in amplitude and nonlinear
in phase, the hybridized algorithm using the metaheuristic
technique estimates the phase, whereas the classical opti-
mization method estimates the amplitude [17]. Liu et al.
developed real-time particle swarm optimization (RT-PSO)
estimation technique to simultaneously identify all param-
eters of fundamental signals from measurement data, and
then the estimated fundamental signal was used as the
reference for harmonics cancellation [18]. Mishra presented
a hybrid least square-fuzzy bacterial foraging strategy har-
monic estimation algorithm, whereas Takagi-Sugeno fuzzy
scheme was adopted to improve the adaptation of the basic
foraging strategy [19]. Biswas et al. proposed the combined
artificial bee colony-least square algorithm to solve the
harmonic estimation problem. Simulation results demon-
strated that the proposed algorithm was effective in esti-
mating the magnitude and phase of each harmonic even if
the number of harmonics presented in the signal was not
known [20]. However, the convergence speed of above
proposed algorithms is affected by the initial parameters,
and the computational complexity is relatively large, so the
estimation accuracy and convergence speed cannot be
guaranteed.

Since the gradient estimation method only needs to
compute the first-order derivation, the computation load is
relatively small. Aiming at the problem of low estimation
precision, many improved gradient algorithms have been
proposed. Andrei developed an adaptive conjugate gradi-
ent algorithm to compute the optimization value of ob-
jective function based on the current point [21]. Deng and
Wan devised a conjugate gradient algorithm to solve un-
constrained optimization problems, and the search di-
rection at each iteration is determined by rectifying the
steepest descent direction with the difference between the
current iterative points and that between the gradients [22].
Patrinos and Bemporad proposed a dual fast gradient-
projection method for solving the embedded linear model
predictive control problem subjected to general polyhedral
constraints on inputs and states [23]. Although above-
modified algorithms can improve the convergence rate and
the estimation accuracy, the computation load is still heavy.
For improving the performance of the stochastic gradient
algorithm for system identification, the multi-innovation
theory has been proposed, whose basic idea is extending the
scalar innovation into an innovation vector [24]. Li et al.
illustrated the modified MISG algorithm for the identifi-
cation of Wiener Hammerstein systems with unknown
orders linear subsystems and backlash [25]. Ding succes-
sively put forward the MISG algorithm, multi-innovation
projection algorithm, and interval-varying MISG identi-
fication algorithm to solve the parameter estimation
problem [26].

/e rest of this paper is organized as follows. Section 2
introduces the hydraulic servo shanking table system.
Section 3 deduces the MISG algorithm and gives the
harmonic estimation scheme based on the MISG

algorithm. Simulation results and experiments are depicted
in Section 4. Section 5 draws the main points and
contributions.

2. The Hydraulic Servo Shaking Table

Figure 1 shows the experimental setup of the hydraulic
servo shake table, which consists of a shaking table and
real-time control system. /e control system is controlled
by a host-target type, where a commercial PC based on the
Windows XP system is provided as the host computer, and
the target computer is an industrial computer. /e control
procedure is programmed by Matlab/Simulink and
compiled by Microsoft Visual Studio. NET on the host
computer and then downloaded to the target computer
through the Ethernet adapter using the TCP/IP protocol
for real-time execution [27, 28]. /e signal conditioner
compares the control signal and feedback signal and drives
the shaking table to generate the desired movement.

2.1. /e Dynamic Model of Hydraulic Actuator. /e sche-
matic diagram of a hydraulic actuator is shown in Figure 2,
which can be simplified as a symmetrical hydraulic cylinder
controlled by the servo valve./e dynamicmodel is based on
some fundamental assumptions that the servo valve dy-
namics are sufficiently fast to be neglected, oil temperature
and bulk modulus are constants, and leakage as well as
pressure losses of pipeline are negligible.

/e load flow of the servo valve is a function of spool
displacement and load pressure. Linearized load flow
equation can be expressed as

qL � Kqxv − KcpL, (1)

where qL is the load flow, pL � p1 − p2 is the load pressure,
and Kq and Kc are the flow gain and flow pressure coeffi-
cient, which can be described as

Kq �
zqL

zxv

� Cdw

�������������
ps − sgn xv( pL

ρ



,

Kc � −
zqL

zpL

� Cdw xv




����������������
1

4ρ ps − sgn xv(  pL



,

(2)

where C d is the coefficient of a valve port, w is the area
gradient of valve orifices, ρ is the density of hydraulic oil, and
sgn(·) is the sign function.

/e load flow in a hydraulic cylinder is related to leakage
chamber volume variance and compressibility. /e flow
continuity equation of an actuator can be deduced as

qL � A
dxp

dt
_xv +

Vt

4βe

dpL

dt
+ CtpL, (3)

where Vt � V1 + V2 is the total volume, βe is the effective oil
bulk modulus, and Ct � Ci + 0.5Ce is the total leakage.

Taking inertia force and vicious damping force into
consideration, the force balance equation at the piston and
specimen is established as follows:
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ApL � m
d2xp

dt2
+ B

dxp

dt
. (4)

Employing Laplace transform to equations (1), (3), and
(4), the transfer function from the input xv to output xp can
be derived as

G(s) �
Kq/A 

Vtm/4βeA
2( s3 + Kcem/A2(  + VtB/4βeA

2( ( s2 + KceB/A2(  + 1( s
, (5)

where Kce � Kc + Ct is the total flow pressure coefficient and
Kh � 4βeA

2/Vt is the hydraulic spring stiffness.
Generally speaking, the A2/Kce in a characteristic

equation is bigger than B, so KceB/A2 is far less than 1./en,
equation (5) can be simplified as

G(s) �
Kq/A 

s Vt/4βeA
2( s2 + mKce/A2(  + BVt/4βeA

2( ( s2 + 1 
�

Kv

s s2/ω2
h) + 2ξh/ωh)s + 1( ,

(6)
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Figure 1: Experimental setup of the hydraulic servo shaking table.
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Figure 2: Schematic diagram of hydraulic actuator controlled by servo valve.
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where ωh and ξh are angular frequency and damping ratio of
the electrohydraulic servo system and Kv � (Kq/A) is the
open-loop gain of electrohydraulic servo system.

/e three-variable controller (TVC) is important to a
hydraulic servo shaking table, where the three variables
correspond to displacement, velocity, and acceleration. As
shown in Figure 3, TVC includes input filter, TVC feed-
forward controller, and TVC feedback controller. /e input
filter is utilized to convert the reference acceleration signal to
the desired displacement and generate TVC feedforward
variable. /e TVC feedforward controller is used to extend
the frequency bandwidth of the closed loop by adjusting
three feedforward parameters Kar, Kvr, and Kdr. /e dis-
placement and acceleration signal are directly obtained by
sensors, while the velocity feedback signal is synthesized
using a low pass filter with the displacement and a high pass
filter with the acceleration. /e TVC feedback controller
aims at increasing the damping ratio and original frequency
hydraulic by adjusting three feedback parameters Kaf , Kvf ,
and Kdf .

/e TVC was designed based on the position of closed
loop of the hydraulic servo system, but the motion of the
hydraulic servo shaking table is given by acceleration data.
So, the input filter was used to synthesize the desired po-
sition drive signal. /e transfer function of an input filter is
written as follows:

Gin(s) �
Ku

s2 + v0s + d0
�

Ku

d0 s2/ω2
0(  + 2ξ0/ω0( s + 1( 

, (7)

where ω0 � 6.28 and ξ0 � 0.5 are the initial frequency and
damping of acceleration control.

According to the zero-poles placement principle, the
detail parameters of the TVC controller are determined as
follows [29]:

Kdf �
ωrω2

nc

Kvω2
h

,

Kvf �
2Kdfξnc
ωnc

+
Kdf

ωr

−
1

Kv

,

Kaf �
2Kdfξnc
ωrωnc

+
Kdf

ω2
nc

−
2ξh

Kvωh

Kdr �
2Kdfξnc
ωnc

,

Kvr � Kdf ,

Kar �
2Kdf

ω2
nc

.

(8)

2.2. /e Sinusoidal Shaking Test. For a hydraulic servo
shaking table, it is quite difficult to replicate the input exci-
tation signal because of the nonlinearities in the system. As a
result of nonlinear phenomena, harmonic distortion occurs in
the system acceleration response when the hydraulic servo
shaking table corresponds to a sine vibration signal.

/e acceleration response of the hydraulic servo shaking
table excited by (4 sin(2π × 5t)m/s2) is shown in Figure 4.
/e time-domain results demonstrate that the actual response
is seriously distorted owing to the nonlinearities. It is easy to
see from the frequency domain that the frequencies of har-
monics are integer multiples of the fundamental frequency.
/at is to say, the second harmonic is located in 10Hz, the
third harmonic in 10Hz, and so on. As a critical indicator,
total harmonic distortion (THD) is used to measure the
waveform reproduction performance of sinusoidal signals
[30]. /e THD analysis result is shown in Table 1. It can be
seen that the THD value is 23.4%, which means serious
harmonic distortion./e fundamental response is close to the
input excitation amplitude. Among the seventh harmonics,
the fifth harmonic is the largest harmonic, and the seventh
harmonic is the smallest harmonic:

THD �

����������������
A2
1 + A2

2 + · · · + A2
N



A1
× 100%, (9)

where A1 is the amplitude of fundamental response, A2 is the
amplitude of second harmonic, and AN is the amplitude of
nth harmonic.

3. The Harmonic Estimation Scheme Based on
MISG Algorithm

3.1. /e MISG Algorithm. Supposing that the harmonic
identification problem can be expressed as the celebrated
controlled autoregressive model

A z
− 1

 y(k) � z
− d

B z
− 1

 u(k) + v(k), (10)

where y (k) represents the system output, u (k) represents the
system input, v (k) represents the stochastic noise with zero
mean, d represents the pure delay, and A(z− 1) and B(z− 1)

are polynomials defined in the following form:

A z− 1( na
� 1 + a1z

− 1 + · · · + anz− na ,

B z− 1( nb
� b0 + +b1z

− 1 + · · · + bnz− nbnb0 ≠ 0, nb ≤ na.

⎧⎨

⎩

(11)

Define the information vector φ(k) and the parameter
vector θ as follows:

φ(k) � −y(k − 1), . . . , −y k − na( , u(k − d), . . . , u k − d − nb(  
T
,

θ � a1, a2, . . . , ana
, b0, b1, . . . , bnb

 .

⎧⎨

⎩

(12)

Combining equations (9)–(11), the linear regression
model for harmonic estimation of a hydraulic servo shaking
table can be deduced as follows:

y(k) � φT
(k)θ + v(k). (13)

For convenience, supposing that k is the current time, y
(k) and φ(k) are the current data, and y(k − i) and φ(k − i)

are the past data. /e cost function can be expressed as

J(θ) � E ‖y(k) − φ(k)θ‖
2

 . (14)
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According to the stochastic gradient search principle, the
recursive stochastic gradient identification algorithm can be
expressed as

θ(k) � θ(k − 1) +
φ(k)

r(k)
e(k), (15)

e(k) � y(k) − φT
(k)θ(k − 1), (16)

r(k) � r(k − 1) +‖φ(k)‖
2
, (17)

where θ(k) represents the estimation of θ(k), (1/r(k))

represents the convergence factor, and e(k) represents the
innovation.

/e stochastic gradient algorithm does not involve the
calculation of the covariance matrix, which greatly reduces
the calculation load. However, the stochastic gradient al-
gorithm only uses the current data, so the convergence speed
and precision cannot be guaranteed. In order to overcome
the above drawbacks, it is necessary to increase the data
utilization on each calculation. From the view of innovation
modification, the scalar innovation can be extended into the
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Figure 3: TVC control schematic of a hydraulic servo shake table.
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Figure 4: Acceleration response of the sinusoidal shaking test: (a) time-domain response; (b) frequency spectrum response.

Table 1: THD analysis results of the sinusoidal shaking test.

THD Harmonica amplitude (m/s2)

23.4% Fundamental Second /ird Fourth Fifth Sixth Seventh Eighth
3.873 0.365 0.279 0.222 0.640 0.367 0.085 0.102
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innovation vector, which is called the multi-innovation
identification algorithm. /e proposed identification algo-
rithm uses not only the current data but also the past data
[31].

/e information vector Φ(p, k), output vector Y(p, k),
and innovative vector with the innovation length p can be
expressed as

Φ(p, k) � [φ(k),φ(k − 1), . . . ,φ(k − p + 1)],

Y(p, k) � [y(k), y(k − 1), . . . , y(k − p + 1)]
T
,

E(p, k) � Y(p, k) − ΦT
(p, k)θ(k − 1).

(18)

In practical applications, the convergence speed and
accuracy of the stochastic gradient algorithm are not very
ideal. /erefore, the forgetting factor (FF) is added to the
stochastic gradient algorithm to improve the convergence
speed and accuracy. From equations (14)–(16), the FFMISG
algorithm with innovation length p can be derived as
follows:

θ(k) � θ(k − 1) +
Φ(p, k)

r(k)
E(p, k),

E(p, k) � Y(p, k) − ΦT
(p, k)θ(k − 1),

r(k) � λr(k − 1) +‖Φ(p, k)‖
2
,

(19)

where λ represents the forgetting factor.
For the MISG algorithm, the cost function can be

expressed as

J(θ) � E Y(p, k) − ΦT
(p, k)θ

����
����
2

 . (20)

Compared with the stochastic algorithm only using the
current data, the MISG uses not only the current data but also
the past data, which improves the convergence performance
for the parameter estimation./eMISG algorithm repeatedly
utilizes the available data in the neighboring iteration to
enhance the estimation accuracy, which is the essential
characteristic of the MISG algorithm. /e more the length of
multi-innovation, the more higher the parameter estimation
precision for the same measurement data. In other words, a
large multi-innovation length results in a better model ac-
curacy, but the price is a larger computation load [32–35].

3.2. /e Harmonic Estimation Model. Various nonlinear
factors, such as friction, dead zone, and backlash in the hy-
draulic servo shaking table, can lead to sinusoidal acceleration
response distortion when the shaking table is excited by si-
nusoidal signals, which seriously affects the waveform re-
production performance. In order to suppress harmonic
distortion, it is necessary to estimate the amplitude and phase
of each harmonic quickly and accurately. In general, the
frequency of higher harmonic generated in the sinusoidal
vibration test is an integral multiple of the fundamental
frequency. /us, the sinusoidal acceleration response of the
hydraulic servo shaking table can be expressed as

a(t) � 
N

n�1
An(t)sin 2πnft + φn(t)( , (21)

where N is the number of harmonics, f is the frequency, and
An(t) and φn(t) are the amplitude and phase of each
harmonic.

/e discrete time version of sinusoidal acceleration re-
sponse can be written as

a(k) � 
N

n�1
An(k)sin 2πnfk + φn(k)( . (22)

/e estimated model is constructed as follows:

a(k) � 
N

n�1

An(k)sin 2πnfk + φn(k)( , (23)

where An(k) and φn(k) are the estimated amplitude and
phase of An(k) and φn(k). Equation (23) can be rewritten as

a(k) � 
N

n�1
An(k)cos φn(k)sin(2πnfk)

+ An(k)sinφn(k)cos(2πnfk).

(24)

Define xn1(k) � sin(2πfk), xn2(k) � cos(2πfk),
wn1(k) � An(k)cosφn(k), and wn2(k) � An(k)sinφn(k); the
information vector x(k) and parameter vector w(k) are
given as follows:

x(k) � x11(k), x12(k), . . . , xN1(k), xN2(k) 
T
,

w(k) � w11(k), w12(k), . . . , wN1(k), wN2(k) 
T
.

(25)

/e difference between the actual value and the esti-
mation value is

e(k) � a(k) − a(k). (26)

/en, the cost function can be expressed as

J(w) �
1
2
e
2
(k). (27)

Taking the first-order derivation of J(w) with respect to
w gives

grad[J(w)] �
zJ(w)

zw
�

zJ(w)

zw11
,
zJ(w)

zw12
, . . . ,

zJ(w)

zwN1
,
zJ(w)

zwN2
 .

(28)

/e FFMISG algorithm-based acceleration harmonic
estimation scheme can be illustrated in Figure 5. /e ref-
erence signal is, respectively, fed to the shaking table and
information vector. /e desired and estimated acceleration
response are compared, and the weight vector is updated
through the FFMISG algorithm. /e acceleration response
will be accurately estimated when the cost function con-
verges to zero.

According to the gradient searching, the MISG pa-
rameter estimation algorithm is listed as follows:
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w(k) � w(k − 1) +
Φ(p, k)

r(k)
E(p, k),

E(p, k) � [e(k), e(k − 1), . . . , e(k − p + 1)]
T
,

e(k − i) � y(k − i) − 
n

j�1
x

T
j (k)wj(k), i � 0, 1, . . . , p

− 1
,

Φ(p, k) � [x(k), x(k − 1), . . . , x(k − p + 1)],

r(k) � λr(k − 1) +‖Φ(p, k)‖
2
.

(29)

In this way, amplitude and phase of each harmonic as
well as the estimated harmonic are derived as follows:

An(k) �

��������������

w2
n1(k) + w2

n2(k)



,

φn(k) � tan− 1 wn2(k)

wn1(k)
 ,

an(k) � xn1(k)wn1(k) + xn2 wn2(k).

(30)

4. Simulation and Experiment Results

4.1. SimulationResults. In order to verify the effectiveness of
the proposed estimation algorithm, the distorted waveform
containing the eighth sine waveform is considered as a test
signal. /e fundamental frequency is 3Hz, and the fre-
quency of second to eighth harmonics is integral of the
fundamental frequency. /e amplitude and phase infor-
mation of the test signal are given in Table 2.

In the simulation, the sampling period is 1 ms, the
forgetting factor is 0.98, and the innovation length is 2.
/e amplitude and phase estimation results of the test
signal using the FFMISG algorithm are shown in Fig-
ures 6 and 7, respectively. It can be seen that the

estimated values for both amplitude and phase are closer
with the actual value in Table 1. In addition, the esti-
mated values of amplitude and phase all converge to the
nominal values within 0.5 s. /is shows that the accel-
eration harmonic estimation scheme is very accurate and
efficient.

/e reconstructed signal-based estimated results and the
original test signal are shown in Figure 8(a). Except less
deviation in the case of initial stage, both estimated and
actual signal matches in the plot. Figure 8(b) shows that the
estimation error only exists at the initial stage and quickly
converges to zero after 1 s.

4.2. Experiment Results. During the experiment, the pro-
posed estimation algorithm is embedded in the real-time
controller in Figure 1. /e estimation algorithm and the
basic controller run in the target computer. /e acceleration
response waveform and the estimation results can be directly
achieved from a host computer. In addition, the parameters
of FFMISG are kept as same as the simulation. From Figure 4
and Table 3, it can be known that there are seven higher
harmonics besides the fundamental when the excitation is
(4 sin(2π × 5t)m/s2). Figures 9 and 10 show a comparative
estimation of amplitudes and phase of experimental signal
using SG and FFMISG algorithms, respectively. From these
figures, it is verified that FFMISG estimates more accurately

FFMISG algorithm

â(k)

a(k)

e(k)

∑

Hydraulic servo shaking table

w11

w12

wN1

wN2

x11

x12

xN1

xN2

+
–

Reference

... ...

Figure 5: Structure of harmonic estimation based on the FFMISG algorithm.

Table 2: Harmonic information of the test signal.

Harmonic order Frequency (Hz) Amplitude
(m/s2) Phase (rad)

Fundamental 3 8 −0.1
Second harmonic 6 7 −0.7
/ird harmonic 9 6 0.5
Fourth harmonic 12 5 −0.6
Fifth harmonic 15 4 1.2
Sixth harmonic 18 3 −0.4
Seventh harmonic 21 2 0.7
Eighth harmonic 24 1 −0.8
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Figure 6: Estimated amplitude of the test signal.
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Figure 7: Continued.
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as compared to SG. Moreover, the estimated amplitude
results in Figure 9 are consistent well with the values ob-
tained by FFT in Table 3, which further validates the ef-
fectiveness of the proposed algorithm.

Figure 11 shows the waveform of each harmonic
reconstructed from the estimated weight vector. It is easy to
see that each harmonic is well estimated after a large fluc-
tuation, which is critical for harmonic suppression. /e
estimated error is shown in Figure 12. It can be seen from the
time domain that residual error stays around zero after a
period of time. It can be seen from the frequency-domain
response that each harmonic of acceleration response is well
counteracted. /is means that the estimated signals not only
have the right amplitudes but also have the right phases.
/us, the proposed estimation algorithm based on FFMISG
can dynamically track the harmonics.

Simulation signal
Estimated signal

A
m

pl
itu

de
 (m

/s
2 )

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.0
Time (sec)

–24
–20
–16
–12

–8
–4

0
4
8

12
16
20

(a)

Es
tim

at
ed

 er
ro

r (
m

/s
2 )

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.00.0
Time (sec)

–15

–10

–5

0

5

10

15

(b)

Figure 8: Simulation results: (a) estimated signal; (b) estimated error.
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Figure 7: Estimated phase of the test signal.

Table 3: Main parameters of a hydraulic servo shaking table.

Parameter Value
Kq 1.45×10−3 (m3·s−1)/V
Kc 2×10−12 (m3/s·Pa)
A 1.88×10−3m2

B 2.5×104N/(m·s−1)
βe 6.9×108 Pa
Vt 9.6×10−4m3

m 100 kg
Kaf 1.6×10−4

Kvf 8×10−6

Kdf 6×10−2

Kar 5.6×10−5

Kvr 6×10−8

Kar 7.2×10−2

Ku 1.2
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Figure 9: Estimated amplitude of harmonics.

Fundamental
SG

MISG

35 36 37 38 39 4034
Time (sec)

–0.8
–0.4

0.0
0.4
0.8

Ph
as

e (
ra

d)

(a)

Second harmonic
SG

MISG

35 36 37 38 39 4034
Time (sec)

–1.5
–1.0
–0.5

0.0
0.5
1.0
1.5

Ph
as

e (
ra

d)

(b)

�ird harmonic
SG

MISG

35 36 37 38 39 4034
Time (sec)

–1.6
–0.8

0.0
0.8
1.6

Ph
as

e (
ra

d)

(c)

Fourth harmonic

SG
MISG

35 36 37 38 39 4034
Time (sec)

–1.6
–0.8

0.0
0.8
1.6

Ph
as

e (
ra

d)

(d)

Figure 10: Continued.
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Figure 11: Estimated waveform of harmonics.
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Figure 10: Estimated phases of harmonics.
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5. Conclusions

Sinusoidal shaking test of equipment using hydraulic
shaking tables is a common experimental practice. How-
ever, the nonlinear factor of a hydraulic servo shaking table
can lead to a higher harmonic appeared in the acceleration
response, which causes harmonic response and reduces the
waveform reproduction performance. In order to cancel
the harmonic distortion, fast and accurate harmonic es-
timation algorithm is required. To this end, harmonic
estimation algorithm based onMISG is developed herein to
estimate the amplitude and phase information of higher
harmonic.

In order to improve the estimation accuracy and the
convergence rate of the SG parameter estimation algorithm,
the MISG algorithm is presented by means of expanding the
scalar innovation into the innovation vector. In contrast to
the SG algorithm, the MISG algorithm can improve the
parameter estimation accuracy and promote the conver-
gence during the recursive process. In particular, the pro-
posed harmonic estimation algorithm can be easily
combined with the original control scheme and run in the
target computer. /is ensures the real-time performance,
which is very important for the practical application on a
shaking table.

Compared with the FFT result calculated offline, the
harmonic information can be calculated online by the
proposed MISG algorithm. Since higher harmonics are in
less dominance in all harmonics, the harmonic estima-
tion here only considers up to the eighth harmonic in-
cluding fundamental. Simulation and experimental
results revealed that the estimation scheme can not only
estimate the amplitude and phase of each harmonic but
also reconstruct individual harmonic at the same time.
/e obtained identification results can be used as the
basis for harmonic cancellation of a hydraulic servo
shaking table, which is helpful for the sinusoidal vi-
bration test.
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