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)is paper investigates the optimal portfolio choice problem for a large insurer with negative exponential utility over terminal
wealth under the constant elasticity of variance (CEV) model. )e surplus process is assumed to follow a diffusion approximation
model with the Brownian motion in which is correlated with that driving the price of the risky asset. We first derive the
corresponding Hamilton–Jacobi–Bellman (HJB) equation and then obtain explicit solutions to the value function as well as the
optimal control by applying a variable change technique and the Feynman–Kac formula. Finally, we discuss the economic
implications of the optimal policy.

1. Introduction

Since the seminal work of Browne [1], there is a growing
literature investigating the dynamic portfolio choice problems
for insurers under the stochastic optimal control framework.
However, Browne [1] assumes that the risky asset’s price is
driven by geometric Brownian motions (GBMs), which
implies that the expected instantaneous return and volatility
of the risky asset are constant and deterministic. To be more
empirical, nowadays, there has been a series of works ana-
lyzing the insurer’s portfolio optimization problems with
different variants of stochastic market settings, such as the
stochastic interest rate model (e.g., Guan and Liang [2]),
stochastic return model (e.g., Li et al. [3]), and stochastic
volatility model (e.g., Li et al. [4] and Gu et al. [5]).

As a special stochastic volatility model, the constant
elasticity of variance (CEV) model is widely used in finance
theory and practice. )e CEV model is a generalization of
the GBM of which the variance elasticity parameter equals to
zero and has been successfully employed in the option
pricing literature to model the empirical observed pattern of
stock prices with heavy tail (e.g., Schroder [6], Boyle and

Tian [7], Davydov and Linetsky [8], and Park and Kim [9]).
Moreover, the CEV model helps explain volatility smiles
(Cox and Ross [10] and Cox [11]). Jones [12] further sug-
gested that compared to Heston’s stochastic volatility model,
the equity index return data are better represented by a
stochastic variance model in the CEV class.

Recently, due to the empirical advantage and mathe-
matical tractability, considerable research efforts have been
devoted to considering optimal investment problems under
the CEV model. )e most commonly selected objectives
include maximizing expected utility and mean-variance
criterion. For the objective of maximizing expected utility,
the traditional portfolio selection problems (e.g., Zhao and
Rong [13], Bakkaloglu et al. [14], and Josa-Fombellida et al.
[15]), the optimal investment problem for pension plans
with different classes of hyperbolic absolute risk aversion
(HARA) utility functions (e.g., Xiao et al. [16], Gao [17, 18],
and Jung and Kim [19]), and the optimal investment and
reinsurance problem (e.g., Gu et al. [5], Gu et al. [20], Lin
and Li [21], Li et al. [22], Zheng et al. [23], K.Wu andW.Wu
[24], Chunxiang et al. [25], and Wang et al. [26]) are ex-
tensively investigated under the CEV model. For the
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objective of mean-variance criterion, Basak and Chabakauri
[27] derived the closed-form optimal time-consistent in-
vestment policy for a self-financing portfolio, and lately,
Shen et al. [28] discussed the corresponding precommitment
solution; Li et al. [29] and Zhao et al. [30] studied the time-
consistent reinsurance-investment strategy for an insurance
portfolio. Li et al. [31] investigated the time-consistent in-
vestment strategy for a defined contribution (DC) pension
plan. Zhang and Chen [32] also explored the asset-liability
management (ALM) problem.

Even though the optimal investment problem for an
insurer is more fundamental than the optimal investment-
reinsurance problem, it is still worthy to be considered under
the CEVmodel. In practice, because the reinsurance service is
not cheap, large insurers with adequate risk tolerance may
prefer an investment-only policy to an investment-reinsur-
ance policy. Moreover, most of the aforementioned works
specialize the assumptions to that the uncertainty source in
the insurer’s surplus process is perfectly uncorrelated with
that in the risky asset’s price process described by the CEV
model, which implies that the insurance market is inde-
pendent of the financial market. As a result, the optimal
investment strategy derived is independent of the insurer’s
surplus model (see Gu et al. [20], Lin and Li [21], Gu et al. [5],
and Chunxiang et al. [25]). But, some literature goes to
another extreme case by assuming that the two processes are
perfectly correlated and obtain the explicit solution only in
the case of special variance elasticity parameters (see Wang
et al. [26]); meanwhile, they show that the diffusion part of the
surplus has an effect on the optimal investment policy. Yuan
and Lai [33] also adopted similar assumptions in Wang et al.
[26] to study the optimal investment strategy of a family with
a random household expenditure, and they only derive the
approximate numerical solutions.

However, in reality, besides the idiosyncratic risk, the
insurer’s surplus process and the risky asset’s price process
are affected by the systematic risk, which leads to a de-
pendence between the two uncertainty sources. To the best
of our knowledge, Browne [1] considered the correlation
between the risk of the insurer’s surplus process and that of
the risky asset’s price process under the GBMs in the in-
vestment problem of an insurer, while there has been no
literature focusing on the similar problems under the CEV
or other stochastic market models so far.

In this paper, we focus on the correlation that occurs
between Brownian motions in the insurer’s surplus process
and those in the risky asset’s price process, which represents
the common uncertainty between the insurance and financial
markets. By extending the price model of the risky asset to the
CEV model, we reconsider the negative exponential utility
maximizing problem of Browne [1]. )e surplus process is
described by the diffusion approximation model, and par-
ticularly, the Brownian motion driving price process of the
risky asset is correlated with that driving the surplus process.
By the stochastic optimal control theory, we first establish a
three-dimensional Hamilton–Jacobi–Bellman (HJB) equa-
tion for the optimization problem and then simplify it into
two parabolic partial differential equations (pdes) via a var-
iable change technique. By the Feynman–Kac formula, we

solve the two pdes and obtain the explicit expressions of value
function as well as the optimal investment strategy. Finally,
we compare the result with that of Browne [1] and Gu et al.
[5], respectively, which are special cases of our model.

Due to the consideration of the correlation, the corre-
sponding HJB equation becomes more difficult to solve. Spe-
cifically, the Legendre dual transformation technique introduced
by Xiao et al. [16] and then heavily used in many of the
aforementioned works (see Gao [17, 18] and Jung and Kim [19])
to reduce the HJB equation into a linear pde cannot be directly
adapted to models with general correlation. For example, fol-
lowing the way,Wang et al. [26] and Yuan and Lai [33] assumed
that the correlation equals to ±1 to remove the nonlinear parts
of the HJB equation. In this paper, instead of that method, we
directly conjecture the functional form of the value function and
by which the HJB equation can be directly simplified into two
parabolic pdes. Moreover, we relax the perfect correlation re-
strictions. So, obtaining the explicit solution of the investment
strategy in the case of imperfectly correlated uncertainty sources
is a technique contribution of our paper.

Moreover, another contribution of our paper is that
many interesting implications are obtained after introducing
the correlation.We find that the optimal investment strategy
can be separated into four independent components: the
myopic, dynamic, static, and delta hedging demands. )e
myopic demands, also known as the Kelly criterion, are to
optimize over the next instant; the dynamical hedging de-
mands are to hedge against the fluctuations of the instan-
taneous volatility; the static hedging demands are to hedge
against the hedgeable risk of the surplus; and the delta
hedging demands are to hedge the fluctuations risk of the
static hedged portfolio. In particular, both static and delta
demands vanish, and our results reduce to that of Gu et al.
[5] if the correlation vanishes. Asymptotic analysis further
shows that, as the variance elasticity parameters approach to
zero, the dynamic and delta hedging demands both vanish,
and the results are equivalent to those of Browne [1].

)e remainder of the article is organized as follows. In
Section 2, the insurer’s optimal investment problem is
formulated. In Section 3, the explicit solution of the value
function as well as the optimal investment policy are derived.
In Section 4, the economic interpretation of the optimal
investment policy is provided. Section 5 concludes this
paper. )e details to derive the optimal investment strategy
are postponed to Appendix.

2. Problem Formulation

In this section, we will give some basic assumptions and then
formulate the insurer’s portfolio choice problem.

We consider a continuous-timeMarkovian economywith
a fixed and finite time horizon [t, T]. Uncertainty is repre-
sented by a filtered probability space (Ω,F, Fs􏼈 􏼉t≤s≤T,P)

satisfying the usual conditions, where Fs � σ((Z1(s)×

Z2(s)); t≤s≤T) is the information available until time s and
Z1(s),Z2(s) are two independent standard winner processes
under measure P. In that follows, we also assume that all
stochastic processes and random variables are adapted to
Fs􏼈 􏼉t≤s≤T, and their moments introduced are well defined,
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without explicitly stating the regular conditions. Meanwhile,
we also assume that trading takes place continuously over time,
no transaction costs or taxes are involved in the trading, and
there is no difference between lending and borrowing rate.

Without loss of generality, we assume the insurer can
invest in a risk-free asset (the bank account) and a risky asset
(stock). )e price of the bond is given by

dB(s)

B(s)
� rds, B(t) � 1, (1)

where r> 0 is the risk-free rate.)e stock price, S, follows the
CEV model:

dS(s)

S(s)
� μds + σS(s)

αdZ1(s), S(t) � S> 0, (2)

where μ> r is the stock mean return; σ is a positive constant;
2α is the variance elasticity parameter; and σS(s)α is the
instantaneous volatility. We also assume that α≥ 0 as in Gu
et al. [5], Li et al. [31], and Emanuel and Macbeth [34] for
that the price may reach 0 for some negative α, which is also
supported by the empirical estimations in Jones [12]. Since
S(s) is stochastic, the instantaneous volatility is also sto-
chastic so that the insurer faces time-varying investment
opportunities.

As in Browne [1], without investment, the wealth of the
insurer follows a Brownian motion with drift, i.e., the dif-
fusion limit of the classic Cramer-Lundberg risk model

dR(s) � μmds + σm ρdZ1(s) +

�����

1 − ρ2
􏽱

dZ2(s)􏼒 􏼓, R(t) � 0,

(3)

where μm, σm, and ρ are all constants. As pointed out in
Promislow and Young [35], when the parameters satisfy that
(μm/σm) is big enough (at least 3), one will want to use this
model in actuarial practice. We note that, under this setup,
the market is incomplete as trading in the risky assets and
bond cannot perfectly hedge against the surplus risk.
However, in the special cases of perfect correlation between
the stock return and risk process, ρ � ±1, dynamic market
completeness is obtained.

A large insurer with adequate risk tolerance in this
economy is endowed at time t with an initial wealth of W.
)e insurer chooses an investment policy ws, where wsW(s)

denotes the total money amount invested in the stock at time
s and the remaining 1 − ws portion of the wealth is invested
in the risk-free asset. )us, under policy ws and with the
initial wealth W, the wealth process W(s) becomes

dW(s) �
dB(s) 1 − ws( 􏼁W(s)( 􏼁

B(s)
+

wsW(s)dS(s)

S(s)
+ dR(s)

� μm − rwsW(s) + rW(s) + μwsW(s)( 􏼁ds

+ ρσm + σwsW(s)S(s)
α

( 􏼁dZ1(s)

+

�����

1 − ρ2
􏽱

σmdZ2(s).

(4)

A control policy is said to be admissible if ∀s ∈ [t, T], ws

is Fs progressively measurable, (4) has a unique strong
solution, and Et[􏽒

T

t
(wsW(s)S(s)α)2ds]<∞. Denote by A

the collection of all admissible policies. Given the initial
wealth W(t) � W and spot price S(t) � S, the insurer aims
to maximize the expected utility over terminal wealth W(T),
i.e.,

max
ws∈A

E U WT( 􏼁
􏼌􏼌􏼌􏼌 W(t) � W, S(t) � S􏽨 􏽩, (5)

where U(·) is utility function satisfying
U′(W)> 0, U″(W)< 0. In this paper, we specialize our
setting that the insurer is guided by a constant absolute risk
aversion (CARA) preference

U(W) �
− e− cW

c
, (6)

where c � − (U″(W)/U′(W))> 0 is the absolute risk aver-
sion coefficient. Note that this function plays a vital role in
actuarial mathematics and insurance practice for that it is
the unique utility function under the principle of “zero
utility” giving a fair premium that is independent of the level
of reserves of insurers.

Remark 1. If α � 0, the CEV model turns into the geometric
Brownianmotion process; then, our problem is equivalent to
the utility maximizing problem in Browne [1].

Remark 2. If ρ � 0, our problem degenerates into the op-
timal investment-only problem in Gu et al. [5].

3. Problem Solution

In this section, we first provide the general framework for
optimization problems (4) and (5) by using the classical tools
of stochastic optimal control and then try to simplify the
corresponding Hamilton–Jacobi–Bellman (HJB) equation
into two parabolic pdes via a variable change technique.
Finally, we solve the two parabolic pdes by the Feyn-
man–Kac formula and obtain the value function as well as
the optimal investment policy.

3.1. General Framework. For portfolio choice problem (5)
with dynamic budget constrain (4), since the wealth process
W(s) contains two state variables S(s), W(s), we can write
the value function as

J(t, W, S) � max
w∈A

E U WT( 􏼁
􏼌􏼌􏼌􏼌 W(t) � W, S(t) � S􏽨 􏽩. (7)

According to the classical dynamic programming
principle, J(t, W, S) satisfies the following HJB equation:
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0 � max
w∈A

A
w

J(t, W, S), (8a)

A
w

f(t, W, S) � fW μm − r(w − 1)W + μwW( 􏼁

+ fWS ρσσmS
α+1

+ σ2wWS
2α+1

􏼐 􏼑

+ fWW

σ2m
2

+ ρσwWσmS
α

+
1
2
σ2w2

W
2
S
2α

􏼠 􏼡

+
1
2
σ2fSSS

2α+2
+ μSfS + ft,

(8b)

J(T, W, S) � U(W), ∀S, (8c)

where Awf(t, W, S) is the infinitesimal generator for w

controlled stochastic process (4). Assuming there exists a
sufficiently smooth solution J(t, W, S) to the HJB equation,
differentiating (8a)–(8c) with respect to w gives the first-
order condition:

w
∗

�
JW(r − μ)S− 2α

σ2WJWW

−
SJWS

WJWW

−
ρσmS− α

σW
, (9)

while the second-order condition is σ2W2S2αJSS ≤ 0, which,
in other words, says that J(t, W, S) must be concave as a
function of W. Inserting first-order condition (9) into
(8a)–(8c) yields after some routine manipulations the fol-
lowing two-dimensional nonlinear parabolic pde:

0 � JW

SJWS(r − μ)

JWW

+ μm +
ρσm(r − μ)S− α

σ
+ rW􏼠 􏼡

−
1
2

ρ2 − 1􏼐 􏼑JWWσ2m

−
J2W(r − μ)2S− 2α

2σ2JWW

+
1
2
σ2JSSS

2α+2
−
σ2J2WSS2α+2

2JWW

+ μSJS + Jt,

(10)

with boundary condition (8c).
Here, we notice that the optimal portfolio choice

problem has been transformed into a nonlinear pde. )e
goal now is to construct an explicit solution to (10) and then
incorporate the solution in (9) and obtain the optimal in-
vestment policy. However, as it stands, it is difficult to solve
(10). )erefore, we shall first reduce the dimension and
remove the nonlinearity of HJB equation (10).

3.2. Simplifying the Nonlinear PDE. Inspired by Browne [1],
Gu et al. [5], and Gao [18], we try to conjecture a solution to
(10) taking the following functional form:

J(t, W, S) � −
exp(g(t, S))exp(− c exp(r(T − t))(h(t, S) + W))

c
.

(11)

)en, we have

JS

J
􏼠 􏼡 � gS − chSe

r(T− t)
, (12a)

JSS

J
􏼠 􏼡 � − ce

r(T− t) 2gShS + hSS( 􏼁 + g
2
S + gSS + c

2
h
2
Se

2r(T− t)
,

(12b)

JW

J
􏼠 􏼡 � c − e

r(T− t)
􏼐 􏼑, (12c)

JWS

J
􏼠 􏼡 � ce

r(T− t)
chSe

r(T− t)
− gS􏼐 􏼑, (12d)

JWW

J
􏼠 􏼡 � c

2
e
2r(T− t)

, (12e)

Jt

J
􏼠 􏼡 � gt + ce

r(T− t)
r(h + W) − ht( 􏼁. (12f)

Incorporating these partial derivatives in (10) and after
some simplifications, we obtain

0 � rSgS +
1
2
σ2gSSS

2α+2
+ gt −

(r − μ)2S− 2α

2σ2

− ce
r(T− t)

rShS − hr +
1
2
σ2hSSS

2α+2
+ ht􏼒

+ μm +
ρσm(r − μ)S− α

σ
+
1
2

c ρ2 − 1􏼐 􏼑σ2me
r(T− t)

􏼡.

(13)

We can decompose (13) into two independent linear
parabolic pdes (14) and (16), and also by (6), we have
boundary conditions (15) and (17):

0 � rSgS +
1
2
σ2gSSS

2α+2
+ gt −

(r − μ)2S− 2α

2σ2
, (14)

0 � g(T, S), ∀S, (15)

0 � rShS − hr +
1
2
σ2hSSS

2α+2
+ ht + μm

+
ρσm(r − μ)S− α

σ
+
1
2

c ρ2 − 1􏼐 􏼑σ2me
r(T− t)

,

(16)

0 � h(T, S), ∀S. (17)

Here, we have simplified the nonlinear pde to two linear
parabolic pdes; the problem now is to solve (14) and (16) and
replace the solutions in (11) and (9) so as to find the optimal
investment policy.

3.3. Explicit Solution for the Insurer’s Optimal Investment
Problem. Since the problem for α � 0 has been investigated
in Browne [1], we, here, mainly focus on the solutions for
α> 0. By the techniques of stochastic analysis, we can obtain
explicit solutions to (14) and (16), and we have the following
theorem.
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Theorem 1. For portfolio choice problem (5), a solution to
HJB equation (8a)–(8c) with terminal condition (10) is given

by J(t, W, S), and the corresponding optimal investment
policy is given by w∗ in feedback form if α> 0, where

J(t, W, S) � −
exp(g(t, S))exp(− c exp(r(T − t))(h(t, S) + W))

c
, (18)

w
∗

�
S− 2αer(t− T) μ − r − 2ασ2f1(t)( 􏼁

cσ2W
−
ρσmS− α

σW
−

ShS

W

�
S− 2αer(t− T) μ − r − 2ασ2f1(t)( 􏼁

cσ2W
−
ρσmS− α

σW

−
ρσmS(r − μ) 􏽒

T

t
e− r(s− t)Dl(s, S)ds􏼒 􏼓

σW
,

(19)

g(t, S) � f1(t)S
− 2α

+ f0(t),

f1(t) �
(r − μ)2 e− 2αr(T− t) − 1( 􏼁

4αrσ2
,

f0(t) �
(2α + 1)(r − μ)2 (2αr(t − T) + 1) − e− 2αr(t− T)( 􏼁

8αr2
,

h(t, S) �
ρσm(r − μ)

σ
􏽚

T

t
e

− r(s− t)
l(s, S)ds +

μm 1 − e− r(t− T)( 􏼁

r
−

c ρ2 − 1( 􏼁σ2msinh(r(t − T))

2r
,

l(s, S) �
Γ((3/2) +(1/2α))eα(− r)(s− t)

1F1 − (1/2); (2α + 1/2α); − S− 2αM(s)( 􏼁

Γ(1 +(1/2α))
�����
M(s)

􏽰 ,

Dl(s, S) � −
αΓ((3/2) +(1/2α))

�����
M(s)

􏽰
S− 2α− 1eαr(t− s)

1F1 (1/2); 2 +(1/2α); − S− 2αM(s)( 􏼁

Γ(2 +(1/2α))
,

M(s) �
r

ασ2 e2αr(s− t) − 1( 􏼁
.

(20)

Here, Γ(·) is the gamma function and 1F1(a; b; z) denotes
the confluent hypergeometric function, which is defined as
follows:

1F1(a; b; z) �
Γ(b)

Γ(a)Γ(b − a)
􏽚
1

0
t
a− 1

(1 − t)
b− a− 1 exp(zt)dt.

(21)

Proof. )e solution for g(t, S), h(t, S) can be seen from
Appendix. Inserting (18) into (9) yields (19). □

Remark 3. Obviously, )eorem 3 of Gu et al. [5] is the
special case of our results as ρ � 0. Furthermore, let σm � 0,
and the optimal investment policy also reduces to the results
of Gao [17, 18].

Remark 4. According to )eorem 1, we find that the dollar
amount invested in the risky asset, w∗W, is independent of
the insurer’s current wealth W, which results from the
property of CARA utility function and is consistent with the
results of Gu et al. [5], Gao [17, 18], and Gu et al. [20].

Remark 5. h(t, S) is the indifference pricing of the surplus,
which is an analog of equation (80) in Browne [1]. In general,
indifference pricing depends on the instantaneous volatility
of the risky assets. Consequently, the indifference pricing
under the CEV model must be function of S unless α � 0.
However, as α⟶ 0+, h(t, S) would reduce to equation (80)
in Browne [1], which will be shown later in (34).

4. Discussion

In this section, we discuss the economic interpretation of the
optimal investment policy by decomposing it in different
parts.

4.1. Economic Interpretation of theOptimal Investment Policy.
It is easy to write the optimal investment policy w∗ as the
following structure:

w
∗

� wmyopic(t) + wdhedge(t) + wshedge(t) + wdeltahedge(t),

(22)

where
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wmyopic(t) �
(μ − r)S− 2αe− r(T− t)

cσ2W
,

wdhedge(t) � −
2αf1(t)S− 2αer(t− T)

cW
,

wshedge(t) � −
ρσmS− α

σW
,

wdeltahedge(t) � −
ρσmS− α

σW
.

(23)

To gain a detailed insight on the optimal investment policy,
we first consider the results for special model parameters.

Corollary 1. If μm � 0 and σm � 0, then h(t, S) � 0,

wshedge(t) � 0, andwdeltahedge(t) � 0, and the value function
J(t, W, S) is given by

J(t, W, S) � −
exp(g(t, S))exp(− c exp(r(T − t))W)

c
,

(24)

and the corresponding investment policy reduces to

w
∗

� wmyopic(t) + wdhedge(t). (25)

Note that if μm � 0 and σm � 0, the surplus process of the
insurer vanishes, and the portfolio is self-financing. If the
insurer invests all the wealth in the risk-free asset, the ex-
pected utility at time T would be J(t, W, S) � − (e− cWer(T− t) /c).
However, by taking an optimal investment policy on both
risk-free asset and risky asset, the value function is modified
by a factor eg(t,S). Since g(t, S)< 0,∀t<T, S> 0, the insurer’s
welfare is always improved by investment in the risky asset.

)e optimal investment policy given by (25) consists of
the myopic demands and the dynamic hedging demands. )e
myopic demands, wmyopic(t), also known as the Kelly crite-
rion, would be the investment policy for an insurer who
optimizes over the next instant, not accounting for her future
investment. )e dynamical hedging demands, wdhedge(t),
arise due to the need to hedge against the fluctuations in the
investment opportunities because of the stochastic volatility.

Different from the strategy in Gu et al. [5], besides the
myopic and dynamic hedging parts, there exist another two
terms in the optimal investment strategy in our model. We
denote wshedge(t) and − (ShS/W) as static hedging demands
and delta hedging demands, respectively. To investigate the
role of static hedging demands, suppose that the insurer
adopts a policy by investing wshedgeW � − (ρσmS(s)− α/σ)

dollar amount of money in the risky asset at time s; then, the
dynamics of the wealth, Wc(s), would be

dWc(s) � −
ρσmS(s)− α

σ
(dS(s)/S(s)) +dR(s) + r

ρσmS(s)− α

σ
ds

� μm −
(μ − r)ρσmS(s)− α

σ
􏼠 􏼡ds +

�����

1 − ρ2
􏽱

σmdZ2(s).

(26)

Note that (26) contains only dZ2(s), the unhedgeable part of
risk of the surplus, while the hedgeable risk dZ1(s) vanishes,
which implies that static hedging demandswshedge perfectly hedge
the hedgeable risk of the surplus. For special case of complete
market, i.e., ρ � ±1, the unhedgeable risk also vanishes.

However, unless α � 0, the wealth of the insurer in (26) is
still stochastic as the drift term contains S(s), which results
in the delta hedging demands. )e delta hedge demands can
also be understood in the viewpoint of derivative pricing.
Recall h(t, S) is the indifference pricing of the surplus; by
Ito’s lemma, the dynamics for the portfolio
(h(t, S), − ShS(t, S)) become

dh(s, S(s)) − S(s)hSS(s, S(s))(dS(s) − r)

� ds rS(s)hSS +
1
2
σ2S(s)

2α+2
hSS(s, S(s)) + ht(s, S(s))􏼒 􏼓,

(27)

which implies that the portfolio is free of risk. )erefore, we
call − (ShS/W) the delta hedge demands.

Corollary 2. If ρσm � 0, investment policy is given by

w
∗

� wmyopic(t) + wdhedge(t). (28)

On the one hand, if ρ � 0, i.e., the risk of the financial
market is perfectly uncorrelated with that of the surplus,
taking positions in the risky asset does not help to reduce the
surplus risk so that the static hedging demands vanish.
Moreover, the surplus is independent of risk asset states,
which leads to the delta hedge demands vanishing as well.
On the other hand, if σm � 0, the surplus is equivalent to an
annuity contract with continuous-time payoff μm, and
h(t, S) � (μm(1 − e− r(T− t))/r) is exactly its present value.
Both static and delta hedge demands vanish for that the
surplus and its indifference pricing are deterministic, and
there is no need to hedging.

In addition to the parameters of the surplus, the variance
elasticity parameter, α, is also worthy of discussing. Obviously,
the optimal investment policy given by )eorem 1 is not well
defined at α � 0; instead, we are interested in its asymptotic
behavior as α⟶ 0+ and obtain the following corollary.

Corollary 3.

lim
α⟶0+

w
∗

�
(μ − r)er(t− T)

cσ2W
−
ρσm

σW
. (29)

Proof. As α⟶ 0+, we have

lim
α⟶0+

f1(t) �
(r − μ)2(t − T)

2σ2
,

lim
α⟶0+

f0(t) � 0.

(30)

Henceforth,
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lim
α⟶0+

g(t, S) �
(r − μ)2(t − T)

2σ2
. (31)

As

−
r(coth(αrτ) − 1)

2ασ2
� −

1
2α2 σ2τ( )

+
r

2ασ2
−

r2τ
6σ2

+
α2r4τ3

90σ2
+ O α4􏼐 􏼑,

1F1(a; b; z) �
Γ(b)

Γ(b − a)
(− z)

− a
(1 + O(1/z))

+
Γ(b)

Γ(a)
e

z
z

a− b
(1 + O(1/z)),

if(|z|⟶∞),

(32)

we have

lim
α⟶0+

l(s, S) � 1,

lim
α⟶0+

Dl(s, S) � 0.
(33)

)us,

lim
α⟶0+

h(t, S) � −
c ρ2 − 1( 􏼁σ2msinh(r(t − T))

2r

−
ρσm(r − μ) er(t− T) − 1( 􏼁

rσ

−
μm er(t− T) − 1( 􏼁

r
,

(34)

and the corresponding investment policy is (29). □

Remark 6. )e CEVmodel with α � 0 reduces to the GMBs,
and our results in (29) is the same as those in )eorem 5 of
Browne [1], which implies that the optimal investment
policy is right continuous at α � 0.

Note that if α � 0, the investment opportunities are
constant so that the dynamical hedging demands disap-
pear. Meanwhile, the dynamics of Wc(s) given by (29)
become to

dWc(s) � μm −
(μ − r)ρσm

σ
􏼠 􏼡ds +

�����

1 − ρ2
􏽱

σmdZ2(s),

(35)

which implies that the static hedged portfolio is independent
of the market states S. As a result, the delta hedge demands
also vanish.

In total, we summarize the results of the above corol-
laries in Table 1.

5. Conclusion

We had investigated the optimal portfolio choice problem
for a large insurer with negative exponential utility over
terminal wealth. In particular, we applied the constant
elasticity of variance (CEV) model to describe the price
dynamics of the risky asset and allowed the Brownian
motion driving the price process which was correlated with
the Brownian motion driving the surplus process. By
adopting a stochastic control approach, variable change
technique, and the Feynman–Kac formula, we had obtained
the explicit form expressions for the value function as well as
the optimal investment policy. We had decomposed the
optimal investment policy into four independent parts and
discussed the effects of each component.

In future research concerning the optimal portfolio
choice under the CEVmodel, it would be very interesting to
extend our analysis to the case of more sophisticated
surplus model, such as the classic Cramér–Lundberg risk
models, jump-diffusion models, perturbed compound
Poisson risk model (e.g., Peng et al. [36] and Yu et al. [37]),
absolute ruin insurance risk model (e.g., Yu et al. [38]), and
Lévy process (e.g., Huang et al. [39] and Zhang et al. [40]).
Besides the negative exponential utility, optimal investment
problems in terms of other utilities or even other objectives
such as minimizing the ruin probability and the mean-
variance criterion are also worthy of being investigated.
Moreover, other stochastic optimal control or actuarial
problems with the geometric Brownian motion settings
(e.g., Yu et al. [41, 42]) can also be extended to the CEV
model.

Appendix

We give some technical lemmas that are used in the proof of
the main results in the paper.

Lemma 1. If S(s) follows the constant elasticity of variance
process

dS(s)

S(s)
� rds + σS(s)

αdZ1(s), S(t) � S> 0, (A.1)

with α≥ 0, then S(s)− 2α follows the Cox–Ingersoll–Ross (CIR)
model and admits a unique strong solution.

Proof. By Ito’s lemma, we have

Table 1: Four parts of the optimal investment policy versus the parameters of the surplus and elasticity variance.

Myopic Dynamic Static Delta Related works
α � 0, ρσm � 0 √ Special cases of Browne [1]
α≠ 0, ρσm � 0 √ √ Gu et al. [5] and Gao [17, 18]
α � 0, ρσm ≠ 0 √ √ Browne [1]
α≠ 0, ρσm ≠ 0 √ √ √ √ )is paper
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dS(s)
− 2α

� α (2α+1)σ2 − 2rS(s)
− 2α

􏼐 􏼑ds − 2ασS(s)
− αdZ1(s)

� κ λ − S(s)
− 2α

􏼐 􏼑ds +θ
������

S(s)− 2α
􏽱

dZ1(s),

(A.2)

where κ � 2αr, λ � ((2α + 1)σ2/2r), θ � − 2ασ. Feller’s
square root condition 2κλ − θ2 � 2ασ2 ≥ 0 is satisfied for all
α≥ 0; henceforth, S(s)− 2α admits a unique strong solution
and is positive for all s ∈ [t, T]. □

Lemma 2. If X(s) is described by the Cox–Ingersoll–Ross
(CIR) process

dX(s) � κ(λ − X(s))ds + θ
����
X(s)

􏽰
dZ1(s), X(t) � X,

(A.3)

then

E X(s)
p

| X(t) � X􏼂 􏼃 �
eκ(− p)τ 2κ/θ2 eκτ − 1( )􏼐 􏼑

− p
Γ p + 2κλ/θ2􏼐 􏼑􏼐 􏼑1F1 − p; 2κλ/θ2􏼐 􏼑; − 2κ/θ2􏼐 􏼑 X/ eκτ − 1( )( )􏼐 􏼑

Γ 2κλ/θ2􏼐 􏼑
, (A.4)

for all p> 0, where τ � s − t> 0, Γ(·) is the gamma function
and 1F1(a; b; z) denotes the confluent hypergeometric function.

Proof. See Section 3 of Dereich et al. [43]. □

Proof of Eeorem 1. □

Proof. We will first solve g(t, S). By the Feynman–Kac
formula (cf.)eorem 1 of Appendix E in Duffie [44]), g(t, S)

can be expressed as a conditional expectation:

g(t, S) � − 􏽥E 􏽚
T

t

(r − μ)2􏽥S(s)− 2α

2σ2
􏼠 􏼡ds|􏽥S(t) � S􏼢 􏼣, ∀t<T,

(A.5)

where 􏽥E[􏽥S(t) � S] denotes the expectation under a new
probability measure 􏽥P, and 􏽥S(s) follows dynamics:

d􏽥S(s)

􏽥S(s)
� rds + σ􏽥S(s)

αd􏽥Z(s), 􏽥S(t) � S. (A.6)

Here, 􏽥Z(s) is a 􏽥P-measure standard Brownian motion.
By Lemma 1, 􏽥S(s)− 2α follows the Cox–Ingersoll–Ross model,
and by Lemma 2, the conditional expectation is given by
􏽥Et

􏽥S(s)
− 2α

􏽨 􏽩 � 􏽥E[ 􏽥X(s) | 􏽥X(t) � S]

�
(2α + 1)σ2

2r
+ e

− 2αr(s− t)
S

− 2α
−

(2α + 1)σ2

2r
􏼠 􏼡.

(A.7)

Inserting (A.7) into (A.5) and after some manipulation
yield

g(t, S) � f1(t)S
− 2α

+ f0(t), (A.8)

where

f1(t) �
(r − μ)2 e− 2αr(T− t) − 1( 􏼁

4αrσ2
,

f0(t) �
(2α + 1)(r − μ)2 (2αr(t − T) + 1) − e− 2αr(T− t)( 􏼁

8αr2
.

(A.9)

Note that since α> 0, we havef1(t)< 0, f0(t)< 0,∀t<T.
Henceforth, g(t, S)< 0,∀S> 0, t<T.

For (18), by the Feynman–Kac theorem, h(t, S) can also
be expressed as a conditional expectation:

h(t, S) � 􏽥E 􏽚
T

t
e

− r(s− t) ρσm(r − μ)􏽥S(s)− α

σ
􏼠􏼢

+ μm −
1
2

c 1 − ρ2􏼐 􏼑σ2me
r(T− s)

􏼓ds | 􏽥S(t) � S􏼕

� 􏽚
T

t
e

− r(s− t) 􏽥E
ρσm(r − μ)􏽥S(s)− α

σ
􏼠 􏼡 | 􏽥S(t) � S􏼢 􏼣ds + A(t)

�
ρσm(r − μ)

σ
􏽚

T

t
e

− r(s− t)
l(s, S)ds + A(t),

(A.10)

where

A(t) �
μm 1 − e− r(T− t)( 􏼁

r
−

c ρ2 − 1( 􏼁σ2msinh(r(t − T))

2r
,

l(s, S) � 􏽥E 􏽥S(s)
− α 􏼌􏼌􏼌􏼌 􏽥S(t) � S􏽨 􏽩.

(A.11)

Also, together by Lemmas 1 and 2, we have

l(s,S) � 􏽥E 􏽥X(s)
(1/2)

􏼌􏼌􏼌􏼌􏼌 􏽥X(t) � S
− 2α

􏼔 􏼕

�
Γ((3/2) +(1/2α))eα(− r)τ

1F1 − (1/2);(2α+1/2α); − S− 2αM(τ)( 􏼁

Γ(1+(1/2α))
�����
M(τ)

􏽰 ,

(A.12)

where τ � s − t, M(τ) � (r/ασ2(e2αrτ − 1)). □
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