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Based on a nonlinear disturbance observer, a backstepping slidingmode robust control is proposed for a wire-driven parallel robot
(WDPR) system used in the wind tunnel test to dominate the motion of the end effector. +e control method combines both the
merits of backstepping control and sliding mode robust control. +eWDPR is subject to different types of disturbances, and these
disturbances will affect the motion precision of the end effector. To overcome these problems, a nonlinear disturbance observer
(NDO) is designed to reject such disturbances. In this study, the design method of the nonlinear disturbance observer does not
require the reliable dynamic model of the WDPR. Moreover, the design method can be used not only in the WDPR but also in
other parallel robots. +en, a backstepping design method is adopted and a sliding mode term is introduced to construct a desired
controller, and the disturbances are compensated in the controller to reduce the switching gain and guarantee the robustness. For
the sake of verifying the stabilization of the closed-loop system, the Lyapunov function is constructed to analyze the stabilization of
the system. Finally, the feasibility and validity of the proposed control scheme are proved through both simulation and
experimental results.

1. Introduction

+e wind tunnel test is a flight condition test, which sim-
ulates an aircraft in a real atmospheric environment. And it
is the most important method to predict the aerodynamic
performance of the aircraft. In the wind tunnel test, model
support plays an extremely important effect in the study of
aerodynamics and the development of new aircraft. +e
traditional rigid support mode, due to the support frame,
causes distortion of the flow around the model, which makes
the model test results different from the aerodynamic
characteristics of the real aircraft. To improve the data ac-
curacy of the wind tunnel test, the change of support mode
of the wind tunnel model is one of the urgent problems to be
solved.

In the last few years, wire (cable)-driven parallel robots
have developed rapidly. Researchers have done a lot of
research and analysis for wire (cable)-driven parallel robots.
Chen et al. [1] designed a 7-DOF cable-driven humanoid

arm and proposed the kinematic calibration issues in order
to improve its motion control accuracy. Zi et al. [2] analyzed
a cable parallel manipulator with and without hybrid-driven
planar five-bar mechanism (HDPM). Yuan et al. [3] pre-
sented an original approach to analyze the modal interaction
and illustrated this approach by numerical investigations
and experimental analyses. Gao et al. [4] presented a novel
bio-inspired cable-driven parallel robot with a flexible spine
and investigated inverse kinematics and optimized the cable
placements to minimize the actuating cable force. Aflakian
et al. [5] presented an experimental study on the modeling
and control for underconstrained cable-driven parallel ro-
bots (CDPRs). Heo et al. [6] improved the dynamic stability
of CDPRs by means of frequency-based variable constraints
over the whole workspace.

However, wire (cable)-driven parallel robots have
multiple properties such as strong coupling, nonlinearity,
and time variant [7]; these may cause difficulties in achieving
accuracy control. For the sake of solving these problems,
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various control methods have been developed rapidly. For
the fully constrained cable-driven parallel robot, Khosravi
and Taghirad [8] proposed a robust PID control. However,
this method does not consider the external disturbance and
the verification experiment is only for a planar CDPM. In
2015, Babaghasabha et al. [9] also presented an adaptive
robust sliding mode controller for the fully constrained
cable-driven parallel robot. Although the method had been
verified in practice, it had increased the complexity of the
system and the difficulty of physical realization. Kraus et al.
[10] presented a position-force hybrid control. However, the
actual trajectory performance is not good because the ex-
ternal disturbance is not considered. For a cable-driven
parallel system,Wang et al. [11] studied the problem of type-
2 fuzzy adaptive inverse control. However, due to the
limitation of adaptive inverse control for the complex
nonlinear system, interval type-2 fuzzy nonlinear models are
considered, thus increasing the complexity of system con-
trol. For a fully constrained planar cable robot, Babagha-
sabha et al. [12] proposed an adaptive robust controller on
the basis of the singular perturbation theory. However, the
method was only verified by simulation on a planar cable-
driven parallel robot. And there is no specific explanation
and verification whether it can be used in space parallel
robots. Jabbari Asl and Yoon et al. [13] also designed a
robust tracking controller for fully constrained CDPRs.
However, the error between the desired path and robot’s
trajectories in the XaYa plane is large according to the
simulation results.

In the perspective of wind tunnel tests, some researchers
have sensitively captured the advantages and application
prospects of wire (cable)-driven parallel robots. +erefore, in
recent years, they have proposed that wire (cable)-driven
parallel robots can be introduced into the wind tunnel test,
which provides a new method for the supporting technology
of the aircraft model [14, 15]. However, as concluded from the
previous studies, the above control methods cannot solve the
control problem of WDPR in the wind tunnel test very well.
Because during the operation of wire (cable)-driven parallel
robots, external disturbances are usually unavoidable. To
control the pose of the end-effector during the operation, this
study proposes a backstepping sliding mode robust control
based on a nonlinear disturbance observer, thus improving
the robustness and accuracy of the control method. +e main
contribution of this study is that the backstepping sliding
mode robust control method is applied to a 6-DOF 8-wire-
driven parallel robot which has been developed by us and used
in the wind tunnel test. And the advantages and significance
of the proposed control method is that it can effectively deal
with the nonlinearities, joint frictions, external disturbances,
and dynamic uncertainties of the WDPR.

+e rest of this study is organized as follows. In Section 2,
the problem formulation is described. +e designed non-
linear disturbance observer is presented in Section 3.
Moreover, the design of backstepping sliding mode robust
control and Lyapunov stability analysis are addressed in
Section 4. In Sections 5 and 6, the simulation results and the
prototype experimental results are given, respectively. Fi-
nally, the conclusion is drawn in Section 7.

2. Problem Formulation

In this section, we will give the composition, working
principle, dynamic equations, properties on the WDPR, and
an initial disturbance observer, which play a central effect in
designing the nonlinear disturbance observer and the
controller.

2.1. System Description. +e WDPR and its wire structure
are shown in Figure 1. In this study, theWDPR is designed
for the low-speed wind tunnel test. It is a nonlinear
parallel system with multiinput and multioutput (MIMO).
And it suffers from different types of disturbances, for
instance, frictions between the traction wires and pulleys,
parameter uncertainties, unknown payloads, and
unmodeled dynamics. +e WDPR is composed of the end
effector (standard dynamics model (SDM)), a drive sys-
tem, a control system, a vision measurement system,
frame, and so on. +rough the pulley hinge point (Bi, i � 1,
2, 3, . . ., 8), the connection point (Pi, i � 1, 2, 3, . . ., 8) on
the end-effector of the moving platform is connected with
one end of the traction wire. +rough controlling the
length variation of eight wires, the end effector is made to
do 6-DOF motion of 3 positions and 3 attitude angles in
space. +e structure schematic diagram is shown in
Figure 2.

+e dynamic modeling of the WDPR is mainly com-
posed of two parts: the dynamic modeling of the end effector
and the dynamic modeling of the drive system. And the
dynamic modeling of the end effector is the design foun-
dation of motion control. +e two dynamic equations are
shown as follows:

M0
€θm + C0

_θm + μT � τ + τ1,

M(X) €X + N(X, _X) − wg − we � − JTT,

⎧⎨

⎩ (1)

where M0 is the inertia matrix equivalent to the driver, C0
is the viscous friction coefficient matrix equivalent to the
driver, μ is the transmission coefficient of the ball screw,
θm ∈ R8×1 is the motor angle vector, T ∈ R8×1 is the wire
tension vector, τ ∈ R8×1 is the output torque vector of the
driver, τ1 ∈ R8×1 is the vector of external disturbances,
M(X) ∈ R6×6 is the inertial matrix of the end-effector,
X� (Xp, Yp, Zp,ϕ, θ,ψ)T is the pose of the end-effector,
(XP, YP, ZP)T is the coordinate of point P relative to the
static platform, (ϕ, θ,ψ)T is the attitude angle of the end-
effector, and ϕ, θ, and ψ are the roll angle, pitch angle,
and yaw angle, respectively; _X ∈ R6×1 is the pose velocity of
the end-effector, J ∈ R8×6 is a Jacobi matrix,
N(X, _X) ∈ R6×1 is a nonlinear coriolis centrifugal matrix,
wg ∈ R6×1 is a gravitational vector of the end-effector,
wg � (0, 0, mg, 0, 0, 0)T, and we ∈ R6×1 is subject to external
dynamic loads at the end-effector, and we � [fe; τe]. fe and
τe are the aerodynamic and dynamic moments acting on
the end-effector, respectively. If the dynamic analysis is
carried out under the condition of 0 wind speed, then
we � 0:
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M(X) �
(mI)3×3

03×3

03×3

AGH
􏼢 􏼣,

N(X, _X) �
03×1

AG
_H _Q +(H _Q) × AGH _Q􏼐 􏼑

􏼢 􏼣
6×1

,

H �

cos θ cosψ − sinψ 0
cos θ sinψ cosψ 0

− sin θ 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

_Q �

_ϕ
_θ
_ψ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(2)

Here, AG is the inertia matrix of the end-effector, and _Q is
the attitude angular velocity vector.

+e relationship between the pose velocity _X, the wire
length L, and the motor angle θm is denoted by the following
equations:

_L � μ · _θm � JG _X, (3)

€L � μ · €θm � _JG _X + J _G _X + JG €X, (4)

where G ∈ R6×6 is a transition matrix based on the attitude

angle, G �
I3×3 03×3
03×3 H􏼢 􏼣.

According to equations (1), (3), and (4), we obtain the
whole dynamic equation of the WDPR with 6 DOF:

M(X) −
1
μ2

· JTM0JG􏼠 􏼡 €X −
1
μ2

JTM0
_JG+ JTM0J _G + JTC0JG􏼐 􏼑 _X

� −
1
μ

· JT τ+ τ1( 􏼁 +wg +we − N(X, _X).

(5)

Equation (5) is simplified as the following equation:

− μ M(X) −
1
μ2

· JTM0JG􏼠 􏼡 €X +
1
μ

JTM0
_JG + JTM0J _G + JTC0JG􏼐 􏼑

_X + μwg � JTτ+ τd,

(6)
where τd � JTτ1 + μN(X, _X) − μwe.

Let

A(X) � − μ M(X) −
1
μ2

· JTM0JG􏼠 􏼡,

B(X) �
1
μ

JTM0
_JG+ JTM0J _G + JTC0JG􏼐 􏼑.

(7)

Equation (6) is simplified as the following equation:

(a) (b)

Figure 1: WDPR and its wire structure.

x
yz

Airflow

O
X

Y
Z

P

Ground

)
SDM

Moving
platform

Static platform

1000mm

11
64

m
m

13
52

m
m

B3 B2

P2 (P7)
P1 (P6)

B4 B1

P3

P4
P5

P8

B5

B8

B6

B7

1600m
m

Figure 2: Structure schematic diagram of the WDPR.

Mathematical Problems in Engineering 3



A(X) €X +B(X) _X + μwg � JTτ+ τd. (8)

+e WDPR has several properties. In this study, these
properties will be used when designing the nonlinear dis-
turbance observer and the controller. +ese properties are
listed as follows.

Property 1. +e inertial matrix M(X) of the end-effector is
symmetric and positive definite. And its norm is bounded:

M− 1
(X) � M− T

(X) > 0,

M(X) � MT
(X)> 0,

(9)

M0 and G are symmetric and positive definite; therefore,

− μ M(X) −
1
μ2

· JTM0JG􏼠 􏼡 � − μ M(X) −
1
μ2

· JTM0JG􏼠 􏼡􏼠 􏼡

T

,

(10)

that is,

A− 1
(X) � A− T

(X) > 0,

A(X) � A(X)
T > 0.

(11)

In the same way, B(X) and B− 1(X) are symmetric and
positive definite by verification.

Property 2. +e Jacobi matrix J meets the following
properties:

JT JT􏼐 􏼑
+

� I6×6,

(J)+J � I6×6.
(12)

Property 3. +e transition matrix G meets the following
properties:

GG− 1
� I6×6,

G− 1G � I6×6.
(13)

where I6×6 is the identity matrix.
In practical engineering application, it is difficult to

acquire complete information of the WDPR because of
parameter uncertainties and external disturbances. +ere-
fore, assume that the whole dynamic equation of the WDPR
is as follows:

(A(X) +ΔA(X)) €X + (B(X) +ΔB(X)) _X + μwg � JTτ+ τd,

(14)

where ΔA(X) and ΔB(X) are parameter uncertainties
present in nonlinear systems.

+en, the total disturbance vector is defined as

D(X, _X, €X) � τd − ΔA(X) €X − ΔB(X) _X. (15)

According to the above definition, the effects of all
dynamic uncertainties, external disturbances, and joint
frictions are concentrated in a single disturbance vector
D(X, _X, €X). It is seen from equation (8) that

A(X) €X +B(X) _X + μwg � JTτ+D(X, _X, €X). (16)

2.2. Initial Disturbance Observer. Since the total disturbance
D(X, _X, €X) will adversely affect the precision of the end-
effector of the WDPR, a disturbance observer is an ordinary
means and can be used to reject these disturbances. A
disturbance observer equates the difference between the
actual object and the nominal model caused by the external
disturbance and the change of model parameters to control
input, that is, the equivalent disturbance is observed, and the
equivalent compensation is introduced into control to re-
alize the complete control of the disturbance. A basic idea of
designing the observer is to modify the estimation by the
difference between estimated output and actual output.
Hence, equation (16) can be written as

D(X, _X, €X) � A(X) €X +B(X) _X + μwg − JTτ. (17)

+erefore, according to the dynamic model of equation
(17), the initial disturbance observer can be designed as
follows:

_􏽢D(X, _X, €X) � K(X)(D(X, _X, €X) − 􏽢D(X, _X, €X))

� − K(X) 􏽢D(X, _X, €X) + K(X)D(X, _X, €X)

� − K(X) 􏽢D(X, _X, €X) + K(X) A(X) €X +B(X)􏼐

· _X + μwg − JTτ􏼑,

(18)

where K(X) is the gain matrix of the observer and
􏽢D(X, _X, €X) is the estimated value of D(X, _X, €X).

In general, there is no prior information about the de-
rivative of the disturbance D(X, _X, €X); therefore, it is as-
sumed that the variation of the disturbance is slow relative to
the dynamic characteristics of the observer, that is,
D(X, _X, €X) � 0. +en, let the estimation error of the non-
linear disturbance observer be

􏽥D(X, _X, €X) � D(X, _X, €X) − 􏽢D(X, _X, €X). (19)

Combining equation (19) with the initial disturbance
observer (18) yields

_􏽥D(X, _X, €X) � _D(X, _X, €X) − _􏽢D(X, _X, €X) � _􏽢D(X, _X, €X)

� − K(X)(D(X, _X, €X) − 􏽢D(X, _X, €X))

� − K(X) 􏽥D(X, _X, €X).

(20)

+at is, the observation error satisfies the constraint
conditions:

_􏽥D(X, _X, €X) + K(X) 􏽥D(X, _X, €X) � 0. (21)

3. Nonlinear Disturbance Observer Design

Due to the uncertainties of the WDPR and external dis-
turbance (the total disturbance), for the sake of reducing the
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impact of the total disturbance on the WDPR and im-
proving the control precision of the system, a nonlinear
disturbance observer (NDO) is designed to approach the
system disturbance. Based on the advantages of refer-
ences [16, 17], first, the auxiliary variable is designed as
follows:

z � 􏽢D(X, _X, €X) − Q(X, _X), (22)

where z ∈ R6×1 and Q(X, _X) is a function vector.
Let

_Q(X, _X) � K(X)A(X) €X. (23)

+en,

_z � _􏽢D(X, _X, €X) − _Q(X, _X) � _􏽢D(X, _X, €X)

− K(X)A(X) €X,

_􏽢D(X, _X, €X) � − K(X) 􏽢D(X, _X, €X) + K(X) A(X) €X􏼐

+B(X) _X + μwg − JTτ􏼑,

_z � _􏽢D(X, _X, €X) − _Q(X, _X) � K(X) A(X) €X􏼐

+B(X) _X + μwg − JTτ􏼑

− K(X) 􏽢D(X, _X, €X) − K(X)A(X) €X,

� K(X)A(X) €X +K(X)B(X) _X +K(X)μwg

− K(X)JTτ − K(X) 􏽢D(X, _X, €X) − K(X)A(X) €X,

� K(X)B(X) _X +K(X)μwg − K(X)JTτ

− K(X) 􏽢D(X, _X, €X).

(24)

+e design nonlinear disturbance observer is as follows:

_z � K(X)B(X) _X +K(X)μwg − K(X)JTτ − K(X) 􏽢D(X, _X, €X),

􏽢D(X, _X, €X) � z+Q(X, _X).

⎧⎨

⎩

(25)

+en,

_z � K(X)B(X) _X +K(X)μwg − K(X)JTτ − K(X)(z+Q(X, _X))

� K(X)B(X) _X +K(X)μwg − K(X)JTτ − K(X)z

− K(X)Q(X, _X),

� K(X) B(X) _X + μwg − JTτ − Q(X, _X)􏼐 􏼑 − K(X)z.

(26)
According to the above analysis, since _􏽥D(X, _X, €X) �

_D(X, _X, €X) − _􏽢D(X, _X, €X) � − _􏽢D(X, _X, €X), _D(X, _X, €X) � 0,
there are

_􏽥D(X, _X, €X) � − _z − _Q(X, _X). (27)

Equations (23) and (25) are substituted into equation
(27) and we obtain

_􏽥D(X, _X, €X) � − _z − _Q(X, _X)

� − K(X) B(X) _X + μwg − JTτ − Q(X, _X)􏼐 􏼑

+K(X)z − K(X)A(X) €X,

� K(X)(z +Q(X, _X)) − K(X) A(X) €X􏼐

+B(X) _X + μwg − JTτ􏼑.

(28)

Let function vector Q(X, _X) � P _X and design the gain
matrix K(X) � PA− 1(X), where P is an invertible matrix;
then, the observation error equation is as follows:

_􏽥D(X, _X, €X) +PA− 1
(X) 􏽥D(X, _X, €X) � 0, (29)

where P is obtained through LinearMatrix Inequality (LMI),
so that the gain matrix K(X) is obtained and the estimated
value 􏽢D(X, _X, €X) approximates the disturbance by
exponent.

Proof. For the sake of verifying whether the design non-
linear disturbance observer is convergent, a Lyapunov
function is designed as follows:

V0 � 􏽥D
T
(X, _X, €X)P− TA(X)P− 1 􏽥D(X, _X, €X). (30)

□

Since A(X) is a symmetric and positive definite matrix, and
thematrixP is invertible, thematrixP− TA(X)P− 1 is also positive
definite. +us, the Lyapunov function V0 is positive definite.

+e Lyapunov function derivation is obtained with re-
spect to time t, which is shown below:

_V0 � _􏽥D
T
(X, _X, €X)P− TA(X)P− 1 􏽥D(X, _X, €X)

+ 􏽥D
T
(X, _X, €X)P− T _A(X)P− 1 􏽥D(X, _X, €X)

+ 􏽥D
T
(X, _X, €X)P− TA(X)P− 1 _􏽥D(X, _X, €X).

(31)

From the error equation of the observer, we obtain

_􏽥D
T
(X, _X, €X) � − (K(X) 􏽥D(X, _X, €X))

T

� − PA− 1
(X) 􏽥D(X, _X, €X)􏼐 􏼑

T

� − 􏽥D
T
(X, _X, €X)A− T

(X)PT
.

(32)
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Hence, the following can be obtained:
_V0 � − 􏽥D

T
(X, _X, €X)A− T

(X)PTP− TA(X)P− 1 􏽥D(X, _X, €X)

+ 􏽥D
T
(X, _X, €X)P− T _A(X)P− 1 􏽥D(X, _X, €X)

+ 􏽥D
T
(X, _X, €X)P− TA(X)P− 1 _􏽥D(X, _X, €X)

� − 􏽥D
T
(X, _X, €X)P− 1 􏽥D(X, _X, €X) + 􏽥D

T
(X, _X, €X)P− T _A

· (X)P− 1 􏽥D(X, _X, €X) − 􏽥D
T
(X, _X, €X)P− TA(X)P− 1

· PA− 1
(X) 􏽥D(X, _X, €X)

� − 􏽥D
T
(X, _X, €X)P− 1 􏽥D(X, _X, €X) + 􏽥D

T
(X, _X, €X)P− T _A

· (X)P− 1 􏽥D(X, _X, €X) − 􏽥D
T
(X, _X, €X)P− T 􏽥D(X, _X, €X)

� − 􏽥D
T
(X, _X, €X) P− 1

− P− T _A(X)P− 1
+ P− T

􏼐 􏼑 􏽥D(X, _X, €X).

(33)

To make _V0 < 0, (P− 1 − P− T _A(X)P− 1 + P− T) needs to
satisfy a positive definite condition. Let

P− 1
− P− T _A(X)P− 1

+ P− T ≥Π, (34)

where Π> 0 and Π is a symmetric positive definite matrix.
+en,

_V0 ≤ − 􏽥D
T
(X, _X, €X)Π 􏽥D(X, _X, €X). (35)

+ere is Π′ > 0 that makes
_V0 ≤ − 􏽥D

T
(X, _X, €X)Π 􏽥D(X, _X, €X) � − Π′V0.

From equation (34), the nonlinear disturbance observer
exponentially converges, and the convergence accuracy
depends on the value of parameter Π. +e larger the value Π
is, the faster the convergence rate is and the higher the
precision is.

+e design of the nonlinear disturbance observer can
ultimately be attributed to solving the value of the invertible
matrix P. It is known that the value of P can be obtained by
using Linear Matrix Inequality (LMI).

+erefore, let Z � P, ZT � PT, and Z � P are substituted
into equation (34) and we obtain

PTP− 1P − PTP− T _A(X)P− 1P + PTP− TP≥PTΠP. (36)

Since PTP− T � I6×6 and P− 1P � I6×6, equation (35) can
be simplified as

PT
− _A(X) + P≥PTΠP. (37)

+at is, ZT − _A(X) + Z≥ZTΠZ, ZT + Z − ZTΠZ≥ _A(X).
Set ‖ _A(X)‖ ≤ η, then _A(X)≤ ηI6×6. If the above equation

is tenable, sufficient conditions for establishment of equation
(37) are

ZT
+ Z − ZTΠZ≥ ηI6×6. (38)

+at is, ZT + Z − ZTΠZ − ηI6×6 ≥ 0.

Theorem 1. +e Schur complement property of matrices
can transform nonlinear matrix inequalities into LMI
problems. Schur complement theorem: assuming that C1 is

a positive definite matrix, then A1 − B1C1
− 1B1

T ≥ 0 is

equivalent to A1
B1

T
B1
C1

􏼢 􏼣≥ 0.

Hence, equation (37) is equivalent to
ZT + Z − ηI6×6 ZT

Z Π− 1􏼢 􏼣≥ 0.

By using the YALMIP toolbox in MATLAB to get P, the
validity of the solution to the inequality depends on η andΠ.
+e smaller the values of η andΠ are, the easier it is to get the
effective solution.

4. Backstepping Sliding Mode Robust
Control Design

+e backstepping design method is a systematical con-
troller synthesis method for uncertain systems. It is a
regression design method combining the selection of
Lyapunov functions with the design of the controller. +e
backstepping method has been applied extensively be-
cause of the unique superiority in dealing with the
nonlinear control problem [18–23]. It begins with the
lowest order differential equations of the system, intro-
duces the concept of virtual control, and designs the
virtual control to meet the requirements step by step.
Finally, the real control law is designed. +e advantage of
sliding mode control is that it can get over the uncer-
tainties of the system, which has strong robustness to the
disturbance and unmodeled dynamics, and has good effect
especially on the control of the nonlinear system.

+erefore, based on the above mentioned designed
nonlinear disturbance observer to observe the total dis-
turbance D(X, _X, €X), the backstepping control method is
adapted and the sliding mode term is introduced to
overcome disturbance and enhance the robustness of the
controller.

Firstly, let X1 � X and X2 � _X, and the dynamic
equation (16) can be simplified as follows:

_X1 � X2,

_X2 � A− 1(X) − B(X)X2 + JTτ+D(X, _X, €X) − μwg􏼐 􏼑.

⎧⎨

⎩

(39)

Set the ideal pose to be Xd and take the tracking error as
e� X − Xd; then, _e � X − _Xd; that is, _e � X2 − _Xd. +e
following sliding mode function is defined:

s� _e + Γe, (40)

where Γ � diag λ1 λ2 · · · λ6􏼂 􏼃, λi > 0, i � 1, 2, . . . , 6.
Let z1 � e and define z2 � s� _e + Γe� _z1 + Γz1, where

z2 is the virtual control item, _z1 � z2 − Γz1.

Proof. A Lyapunov function is defined as

V1 �
1
2
eTe �

1
2
zT1 z1. (41)

□
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+en,

_V1 � zT1 _z1 � zT1 z2 − Γz1( 􏼁 � zT1 z2 − zT1Γz1. (42)

Define the switching function as

s1 � κz1 + z2 � κe + _e + Γe� _e +(κ + Γ)e� _z1 +(κ + Γ)z1,
(43)

where κ� diag ξ1 ξ2 · · · ξ6􏼂 􏼃, ξi > 0, i � 1, 2, . . . , 6.
Let ϑ� (κ + Γ), since ϑ� κ + Γ� diag λ1 + ξ1 λ2 + ξ2􏼂

· · · λ6 + ξ6 􏼃, λi + ξi > 0, i � 1, 2, . . . , 6; if s1 � 0, then z1 � 0,
z2 � 0, and _V1 ≤ 0.

Proof. For the sake of making the control law free of ac-
celeration term €X, _Xr � _X − s1 is defined; then, the deriv-
ative of Xr is

_Xr � _X − s1 � _X − ( _e +(κ + Γ)e)

� _X − _e − (κ + Γ)e � _Xd − (κ + Γ)e,

€Xr � €Xd − (κ + Γ) _e.

(44)

□

+erefore, it is guaranteed that €Xr does not contain the
acceleration item €X.

As a result, _s1 � €X − €Xd + ϑ _e, then

_s1 � €X − €Xr � €X − €Xd +(κ + Γ) _e � €X − €Xd + ϑ _e

� A− 1
(X) − B(X)X2 + JTτ+D(X, _X, €X) − μwg􏼐 􏼑 − €Xr,

A(X) _s1 � A(X) A− 1
(X) − B(X)X2 + JTτ+D(X, _X, €X) − μwg􏼐 􏼑 − €Xr􏼐 􏼑

� − B(X)X2 + JTτ+D(X, _X, €X) − μwg − A(X) €Xr.

(45)

Define the following Lyapunov function as follows:

V2 � V1 +
1
2
sT1A(X)s1 �

1
2
eTe +

1
2
sT1A(X)s1 �

1
2
zT1 z1 +

1
2
sT1A(X)s1.

(46)

+e derivative of V2 is

_V2 � _V1 + sT1A(X) _s1 +
1
2
sT1 _A(X)s1

� zT1 z2 − zT1Γz1 + sT1A(X) κ _z1 + _z2( 􏼁 +
1
2
sT1 _A(X)s1

� zT1 z2 − zT1Γz1 + sT1 − B(X)X2 + JTτ+D(X, _X, €X) − μwg􏼐

− A(X) €Xr􏼑 +
1
2
sT1 _A(X)s1.

(47)

According to equations (47) and (39), a backstepping
sliding mode robust control law τ is designed as follows:

τ � JT􏼐 􏼑
+

A(X) €Xd − ϑ z2 − Γz1( 􏼁􏼐 􏼑 +B(X) _Xd − ϑz1􏼐 􏼑 + μwg􏼐

− χ sgn s1 − 􏽢D(X, _X, €X)􏼑

� JT􏼐 􏼑
+

A(X) €Xd − ϑ _e􏼐 􏼑 +B(X) _Xd − ϑe􏼐 􏼑 + μwg − χsgn s1􏼐

− 􏽢D(X, _X, €X)􏼑

� JT􏼐 􏼑
+

A(X) €Xr +B(X) _Xr + μwg − χsgn s1 − 􏽢D(X, _X, €X)􏼐 􏼑,

(48)

where χ � diag ε1 ε2 · · · ε6􏼂 􏼃, εi > 0, i � 1, 2, . . . , 6.
+e design control law is substituted into equation (47),

and we obtain

Table 1: Positions of Pi and Bi.

Symbol Coordinate (mm)
P1 (− 208, 78, − 1)T

P2 (− 208, − 78, − 1)T

P3 (0, − 27.7, − 10.1)T

P4 (0, 27.7, − 10.1)T

P5 (0, 27.7, 10.1)T

P6 (− 208, 78, 1)T

P7 (− 208, − 78, 1)T

P8 (0, − 27.7, 10.1)T

B1 (200, 415, − 1280)T

B2 (200, − 415, − 1280)T

B3 (− 300, − 308, − 1250)T

B4 (− 300, 308, − 1250)T

B5 (− 315, 315, − 70)T

B6 (160, 415, − 70)T

B7 (160, − 415, − 70)T

B8 (− 315, − 315, − 70)T

+e parameter values in Table 2 are used for simulation analysis.

Table 2: Simulation parameter table.

Parameter Value
M0 7∗10− 5I8×8
C0 0.005I8×8
m 1.028 kg
μ 0.0025 pi
Γ 15I6×6
g 9.82m/s2

κ 5I6×6
η 2
χ 5I6×6
P 7.3361I6×6
Π 0.01∗ diag[5 7 9 8 10 15]

KP 103 ∗ diag[3 11 12 0.15 0.12 0.25]
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_V2 � _V1 + sT1A(X) _s1 +
1
2
sT1 _A(X)s1

� zT1 z2 − zT1Γz1 + sT1A(X) A− 1
(X) − B(X)X2 + JT JT􏼐 􏼑

+
A(X) €Xr +B(X) _Xr + μwg − χsgn s1 − 􏽢D(X, _X, €X)􏼐 􏼑 +D(X, _X, €X) − μwg􏼐 􏼑􏼐

− €Xr􏼑 +
1
2
sT1 _A(X)s1

� zT1 z2 − zT1Γz1 + sT1A(X) A− 1
(X) − B(X)X2 + A(X) €Xr +B(X) _Xr + μwg − χsgn s1 − 􏽢D(X, _X, €X)􏼐 􏼑 +D(X, _X, €X) − μwg􏼐 􏼑 − €Xr􏼐 􏼑

+
1
2
sT1 _A(X)s1

� zT1 z2 − zT1Γz1 + sT1A(X) A− 1
(X) − B(X) _X +B(X) _Xr − χsgn s1 + 􏽥D(X, _X, €X)􏼐 􏼑􏼐 􏼑 +

1
2
sT1 _A(X)s1

� zT1 z2 − zT1Γz1 + sT1A(X) A− 1
(X) − B(X)s1 − χsgn s1 + 􏽥D(X, _X, €X)􏼐 􏼑􏼐 􏼑 +

1
2
sT1 _A(X)s1

� zT1 z2 − zT1Γz1 − sT1A(X)A− 1
(X)B(X)s1 − sT1A(X)A− 1

(X)χsgn s1 + sT1 A(X)A− 1
(X) 􏽥D(X, _X, €X)􏼐 􏼑 +

1
2
sT1 _A(X)s1

� zT1 z2 − zT1Γz1 − sT1 B(X)s1 − sT1 χsgn s1 + sT1 􏽥D(X, _X, €X)􏼐 􏼑 +
1
2
sT1 _A(X)s1,
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Figure 3: Pose curve.
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_V2 ≤ z
T
1 z2 − zT1Γz1 − sT1(X)s1 − sT1 χsgn s1 +

1
2
sT1 _A(X)s1 + sT1KPs1

� zT1 z2 − zT1Γz1 − sT1 B(X) −
_A(X)

2
+ KP􏼠 􏼡s1 − sT1 χsgn s1

� − zT1Γz1 − zT1 z2 + sT1 B(X) −
_A(X)

2
+ KP􏼠 􏼡s1􏼠 􏼡 − sT1 χsgn s1, (49)

where A(X)A− 1(X) � I6×6, KP � diag K1 K2 · · · K6􏼂 􏼃,

andKi > 0, i � 1, 2, . . . , 6.
Take Y as shown in equation (50) as follows:

Y �

Γ + κT B(X) −
_A(X)

2
+ KP􏼠 􏼡κ B(X) −

_A(X)

2
+ KP􏼠 􏼡κ −

1
2

B(X) −
_A(X)

2
+ KP􏼠 􏼡κ −

1
2

B(X) −
_A(X)

2
+ KP􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (50)

Let xT � zT1 zT2􏽨 􏽩, then

0 2 4 6 8 10
Time (s)

0 2 4 6 8 10
Time (s)

0 2 4 6 8 10
Time (s)

0 2 4 6 8 10
Time (s)

0 2 4 6 8 10
Time (s)

0 2 4 6 8 10
Time (s)

–0.01

–0.005

0

0.005

0.01

Po
sit

io
n 

er
ro

r-
X 

(m
)

–0.01

–0.005

0

0.005

0.01

–0.01

–0.005

0

0.005

0.01

Po
sit

io
n 

er
ro

r-
Y 

(m
)

Po
sit

io
n 

er
ro

r-
Z 

(m
)

–0.1

–0.05

0

0.05

0.1

–0.1

–0.05

0

0.05

0.1

–0.1

–0.05

0

0.05

0.1
A

ng
le

 er
ro

r r
ol

l (
°)

A
ng

le
 er

ro
r p

itc
h 

(°
)

A
ng

le
 er

ro
r y

aw
 (°

)

Figure 4: Pose error curve.
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xTYx � xT
Γ + κT B(X) −

_A(X)

2
+ KP􏼠 􏼡κ B(X) −

_A(X)

2
+ KP􏼠 􏼡κ −

1
2

B(X) −
_A(X)

2
+ KP􏼠 􏼡κ −

1
2

B(X) −
_A(X)

2
+ KP􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

� zT1 zT2􏽨 􏽩

Γ + κT B(X) −
_A(X)

2
+ KP􏼠 􏼡κ B(X) −

_A(X)

2
+ KP􏼠 􏼡κ −

1
2

B(X) −
_A(X)

2
+ KP􏼠 􏼡κ −

1
2

B(X) −
_A(X)

2
+ KP􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 5: Pose speed curve.
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� zT1 Γ + κT B(X) −
_A(X)

2
+ KP􏼠 􏼡κ􏼠 􏼡z1 + zT2 B(X) −

_A(X)

2
+ KP􏼠 􏼡κ −

1
2

􏼠 􏼡z1 + zT1 B(X) −
_A(X)

2
+ KP􏼠 􏼡κ −

1
2

􏼠 􏼡z2

+ zT2 B(X) −
_A(X)

2
+ KP􏼠 􏼡z2 � zT1 Γ + κT B(X) −

_A(X)

2
+ KP􏼠 􏼡κ􏼠 􏼡z1 + 2zT1 B(X) −

_A(X)

2
+ KP􏼠 􏼡κ −

1
2

􏼠 􏼡z2

+ zT2 B(X) −
_A(X)

2
+ KP􏼠 􏼡z2 � zT1Γz1 − zT1 z2 + zT1 κ

T B(X) −
_A(X)

2
+ KP􏼠 􏼡κz1 + 2zT1 B(X) −

_A(X)

2
+ KP􏼠 􏼡κz2

+ zT2 B(X) −
_A(X)

2
+ KP􏼠 􏼡z2 � zT1Γz1 − zT1 z2 + κz1 + z2( 􏼁

T B(X) −
_A(X)

2
+ KP􏼠 􏼡 κz1 + z2( 􏼁 � zT1Γz1 − zT1 z2

+ sT1 B(X) −
_A(X)

2
+ KP􏼠 􏼡s1. (51)

If Y is a positive definite matrix, xTYx > 0; then,
_V2 ≤ − xTYx − s1Tχsgn s1 ≤ 0.

According to the positive definite discriminant
method of block matrix, suitable values (Γ, κ, KP) are
selected to ensure that Y is a positive definite matrix;
therefore, _V2 ≤ 0.

Proof. Design the Lyapunov function of the closed-loop
system as

V � V2 + V0 � V1 +
1
2
s1

TA(X)s1 + V0. (52)
+e derivative of V can be derived as

_V � _V2 + _V0 � _V1 + sT1A(X) _s1 +
1
2
sT1 _A(X)s1 + _V0. (53)

□

Because of _V2 ≤ 0 and _V0 ≤ 0, _V≤ 0.+erefore, the
backstepping sliding mode robust control system is as-
ymptotically stable.
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Figure 6: Pose speed error curve.
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5. Simulation Experiments

For the sake of verifying the effectiveness of the proposed
control approach, simulation experiments are implemented
on the WDPR, as shown in Figure 1. +e WDPR is used to
do 6-DOF motion for the simulation experiments. +e
desired pose of the end-effector is set as follows:

X � [0.2 × sin(t); 0.2 × sin(t); 0.2 × sin(t)

− 0.582; (pi/6) × sin(t); (pi/6) × sin(t); (pi/6)

× sin(t)].

(54)

Taking MATLAB/SIMULINK as the simulation
software, according to the task nature and motion
characteristics of WDPR, a simulation main program
diagram of the backstepping sliding mode robust control
is established.

+e coordinate points of WDPR: the positions of Pi (the
connecting point of the end-effector) and Bi (the hinge point
of the pulley) (i� 1∼8) are as shown in Table 1.

+e mass of the end-effector (aircraft model) is 1.028 kg;
Y is a positive definite matrix when Γ, κ, andKP and take the
values in Table 2. When η � 2, χ � 5I6×6, P � 7.3361I6×6,
Π � 0.01∗ diag[5 7 9 8 10 15], and KP � 103 ∗
diag[3 11 12 0.15 0.12 0.25], the system is stable. In the
simulation experiments, the ranges of pose error are set as
follows: ±0.005m and ±0.05°. +e ranges of pose speed error
are set as ±0.5m/s and ±5°/s. +e range of disturbance
observation error is set as ±0.05. +e simulation results are
shown in Figures 3–11.

According to the simulation results of the pose, it can be
concluded from Figure 3 that the curves of the theoretical
pose and the actual pose coincide well with continuous 10 s;
it can be seen from Figure 4 that the tracking error of the
pose is basically 0, and the tracking effect is good.

It can be concluded from Figure 5 that the curve coin-
cidence degree between the theoretical pose speed and the
actual pose speed also tends to be consistent within contin-
uous 10 s. As can be seen from Figure 6, the tracking error of
pose speed tends to be 0 and the control precision is very high.
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Figure 7: Disturbance observation results.
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From the simulation results in Figure 7, it can be seen
that the estimated disturbance observed by the nonlinear
disturbance observer is extremely high in coincidence degree
with the external disturbance; it can be concluded from
Figure 8 that the observation error of the nonlinear dis-
turbance observer is basically 0, which realizes the real-time
estimation and real-time compensation of external
disturbance.

It can be seen from Figure 9 that control inputs of the
eight motors all vary within a certain range, which conforms
to the physical significance of the design.

As can be seen from Figures 10 and 11, due to the six-
degrees-of-freedom motion, there is no regularity in the
variation of wire length and wire force, but the variation of
eight-wire length and the variation of wire tension are within
a certain range. +e variation of wire length is smooth, and
the variation of wire tension is gentle, which reduces the risk
of broken wires.

+e simulation results show that the equivalent distur-
bance can be observed through the proposed nonlinear
disturbance observer, and the equivalent compensation is
introduced into designed sliding mode control, which re-
alizes the effective control of the disturbance. +e tracking
effect of theWDPR is good, and the control precision is high,
which proves that the designed backstepping sliding mode
robust control is practicable and dependable and satisfies
motion tracking trajectory for the WDPR.

6. Prototype Experiments and Results

In order to further verify the correctness and effectiveness of
the designed control law, the experimental verification is
carried out on the WDPR prototype. +e experimental
mechanism is shown in Figure 1. +e experimental mech-
anism mainly consists of control software and hardware
system. +e control software is programmed in C++ lan-
guage on Visual Studio. +e hardware system mainly in-
cludes an industrial personal computer (IPC), a motion
controller, servo system, and mechanical structure. +e
motion controller is IMAC-HX, and it is powered by DC
regulated power supply of DRP-240-24, as shown in
Figure 12.

In order to validate the designed control method, first,
the servo driver is set to the torquemode, and the connection
of the hardware device and the configuration of the software
environment are completed. In view of the established
dynamic model and the robust control, the dynamic control
software is designed to complete the control experiment of
WDPR prototype. +e control software mainly includes
control main program, trajectory planning, inverse kine-
matics model, dynamic model, and other modules. Since the
dynamic control software involves a large number of matrix
operations for modeling and control, Eigen mathematical
function library is used to deal with the operation of matrix
vectors. +e dynamic control software invokes the class
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Figure 8: Disturbance observation error.
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library MFC to design the visual interface of the program.
+e software interface of WDPR prototype experiment
mechanism is designed by class library MFC.

In the control process, the Jacobian matrix J and its
pseudoinverse matrix J+ involve a lot of matrix operations,
and the calculation speed is too slow to realize real-time
online computation. +erefore, through MATLAB simu-
lation, the Jacobian matrix J and its pseudoinverse matrix
J+ are calculated offline and invoked in real-time during
the control to improve the control efficiency of the WDPR
prototype mechanism. +e performance of the existing
hardware devices cannot meet the requirements of
complex motion experiments. +erefore, the feasibility and
control property of the proposed control law is verified
through a single DOF motion experiment. +e theoretical
pose of the end-effector is set as follows: Xd �

0 0 − 0.582 0 (pi/6) × sin(t) 0􏼂 􏼃
T. +e experimental

results of the WDPR prototype are shown in Figures 13–17.
In Figures 13 and 14, the experimental results show

that the experimental pose curves of the end-effector are
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Figure 9: Control input of motors.
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smooth and continuous. And the error between the the-
oretical pose and the experimental pose is about ±0.05°.
Taking #1 motor as an example, it can be seen from
Figures 15 and 16 that the trend of the actual angular
velocity of #1 motor is correct and the absolute error of #1
motor is ±0.1 rad/s. And it can be seen from Figure 17 that
the actual output torque of #1 motor is within the range of

rated torque (1.27 Nm). +e above experimental results are
satisfactory. +erefore, it can be concluded that the pro-
posed backstepping sliding mode robust control is correct
and effective, and it can be used on the prototype for the
wind tunnel test.
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Figure 12: IMAC controller.
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7. Conclusions

In this study, the dynamic model for WDPR used in the
wind tunnel test is constructed. According to its dynamic
model, a backstepping sliding mode robust control is
designed based on a nonlinear disturbance observer.
+rough using the designed nonlinear disturbance ob-
server, the equivalent disturbance is observed. And the
equivalent compensation is introduced into the designed
backstepping sliding mode robust control, which achieves
complete suppression of the disturbance. +e Lyapunov
second method is used to prove the correctness of the
designed control strategy and analyze the stability of the
closed-loop system. +e simulation results show that the
robust control strategy has high control precision, and the
designed control scheme is feasible. Finally, the effec-
tiveness of the proposed control scheme is further proved
through prototype experiment. +e designed backstepping
sliding mode robust control has certain innovation,
guidance, and practicality for the application of WDPR
prototype in the wind tunnel test. +e future research
direction is to improve the hardware performance of
WDPR and carry out composite motion and six degree of
freedom motion experiments on the prototype to further
verify the feasibility of the designed control law.
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