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Bus passenger flow information can facilitate scientific dispatching plans, which is essential to decision making and operation
performance evaluation. Real-time acquisition of bus passenger flow information is an indispensable part for bus intellectu-
alization. -e method of passenger flow statistics in bus video monitoring scene based on deep convolution neural network can
provide rich information for passenger flow statistics. In order to adapt to the real scenario of mobile and embedded devices on
buses, and to consider the bandwidth limitation, this paper uses a lightweight network model M7, which is suitable for the vehicle
system. Based on the classic networkmodel tiny YOLO, the model is optimized by a depthwise separable convolutionmethod.-e
optimized network model M7 reduces the number of parameters and improves the detection speed, while maintaining a low loss
in detection accuracy. As such, the network model M7 is compressed and further optimized by removing redundant channels.-e
experimental results show that the detection speed of the network model target recognition after channel compression is 40%,
which is faster than the precious channel compression on the premise of ensuring detection.

1. Introduction

With the development of economy and society, urban traffic
is increasingly subject to overcrowdedness. Public transport
passenger flow has become the most important information
about vehicle scheduling in the transport sector. Real-time
collection of bus passengers flow data has become the key
issue of the intelligent public transportation system. By
carrying out statistical analysis on the passenger flow of each
bus and each station, accurate reference data can be provided
to schedule vehicles, to optimize the allocation of bus re-
sources, to improve the overall running speed of the bus
system, and to improve the travel experience of passengers.

Early counting methods are mostly manual, which is not
only time-consuming and inefficient but also manpower-
wasting and material-consuming, aggravating the operating
cost of the transportation system. In recent years, with the
continuous upgrading of processor performance, real-time
statistical analysis of bus passenger flow based on images has
been realized. -e technology of feature extraction and
matching recognition based on the two-dimensional image

has been widely used in passenger flow statistics at home and
abroad. -e development of the deep convolutional neural
network in feature extraction has brought amazing conve-
nience to traffic control under video monitoring. It can train
the crowd counting algorithm model under video moni-
toring scene of bus end-to-end, eliminating the steps of
foreground segmentation, artificial design, and feature ex-
traction. -e high-level features obtained by multilayer
convolution of the convolutional neural network can im-
prove the crowd counting algorithm with higher credibility
of population statistics.

Traditional convolutional neural network technology is
difficult to deploy for mobile terminals due to its high
computational complexity and large model size. In order to
solve the above problems, researchers proposed the con-
volutional neural network should adapt to mobile terminals,
with limited computing power and storage space through
efficient convolution.

Aiming at the passenger flow statistics of bus mobile
embedded system, this paper proposes a novel CNN based
on compression optimization of the M7 network model,
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which is based on the lightweight network model tiny YOLO
optimized by a depthwise separable convolution method.
-e network model is studied and optimized from the
perspective of channel compression.

Firstly, the amount of computation and parameters are
used to determine the convolutional layer to be compressed.
And then, the effect of removing channels on detection
results is used to evaluate the contribution of channels to
detection results. -e priority removed channels are de-
termined according to the contribution. Finally, the com-
pression algorithm is used to compress the convolutional
layer.

2. Related Works

Early methods of bus passenger flow statistics include
technologies such as pressure sensor, infrared sensor, and
thermal imager. However, these passenger flow statistics
methods have many shortcomings, which cannot effectively
adapt to complex and crowded bus occasions. For example,
the pressure sensor counts the number of passengers by the
size and change of the pedal pressure, which has the
problems of easily damaged equipment and high daily
maintenance cost. -e infrared product cannot solve the
ambient occlusion problem and distinguish passengers’
movement direction under crowded conditions. -at is, it
cannot count the passenger flow on and off at the same time.
-e thermal imager is easily affected by ambient temperature
and its price is too high to be widely used in the domestic
public transport system. Due to its simplistic description of
passenger characteristics, the bus passenger flow statistics
system of the above technologies cannot achieve satisfactory
results in terms of the crowded and chaotic situation in
dealing with the crowded and chaotic situation during the
peak period of bus passenger flow, with only an accuracy rate
of 60–70%.

In the statistical method of bus passenger flow, some
achievements have been made by using the traditional image
processing method combined with the feature extracted by
manual methods. However, due to the influence of the
target’s shape, background complexity, illumination, and
shadow, it is difficult to design a robust feature artificially
while adapting to the complex target detection environment.
With the continuous development of computer vision
technology, the use of video image processing method for
target detection, recognition, and tracking is increasingly
mature, with great research achievements made so far. In
recent years, with the rapid development of deep learning,
compared with traditional image processing and machine
learning algorithms, deep learning shows great advantages in
big datasets and gradually becomes a research hotspot in the
field of intelligent transportation.

Deep learning with the help of convolutional neural
network grasps the characteristics of objects autonomously
from a large number of data samples, which makes con-
tinuous breakthroughs in the field of target detection and
brings new solutions to target detection. In the condition of
actual bus passenger target detection, the space is narrow
and the problem of mutual occlusion between passengers

during the peak time is very serious. -erefore, it is im-
possible to take the passenger as the whole detection object.
Compared with the passenger body, the head area of the
person is in the highest position, and the head area occupies
the most important position when looking down from the
top view. It can transform the problem of detecting the
passenger target into the problem of detecting the head
target. It is as shown in Figure 1.

A large number of passenger head target samples are
extracted from bus video, and a model of passenger head
target is obtained by using deep network training, and then
the target detection algorithm is used to detect and identify
the bus passenger head target. -e convolutional neural
network model is superior in many area experiments, but it
is still subject to time and space constraints in practical
applications. Deep and large convolutional neural networks
models are computationally intensive but still not able to
meet the needs of many application occasions in time. In
addition, large-scale model parameters also take up a large
amount of memory space, which is not applicable for mobile
embedded terminals. -erefore, the compression network
model is an important research issue on the premise of not
affecting the accuracy of the convolutional neural network
model.

In recent years, compression methods of convolutional
neural network based on structured pruning have been
proposed successively, overcoming the unaccelerated
problem caused by unstructured sparse connections [1–3].
Its core idea relies on the filter significance criterion (i.e.,
identify the least important filtering criteria), thereby di-
rectly removes the significant filter, and accelerates the
network calculation. In 2016, Ref. [4] proposed to add an
architectural sparse loss function to the loss function of the
traditional depth model and assign 0 to the filter less than a
given threshold, to directly remove the entire convolution
filter with a value of 0 in the test stage.

As a large number of ReLU nonlinear activation func-
tions exist in the mainstream deep network, the output
feature map is highly sparse. Reference [5] takes full ad-
vantage of this feature to calculate the nonzero ratio of the
output feature map corresponding to each filter, as a cri-
terion to judge whether the filter is important. Reference [6]
added the constraints of structured sparseness to the ob-
jective function and used forward-backward splitting
method to solve the optimization problem of sparse
structural restriction and directly decided the number of
network nodes and redundant nodes in the training process.
Reference [7] added regularization restrictions on filtering
channels, filter shapes, and layer depth of deep neural
networks into the loss function and learned structured
convolution filtering by using structured sparse learning.
Besides, the norm value of direct measurement filtering is
used to judge the significance of filtering [8]. For example,
the least L1 norm of the current layer is removed directly,
that is, the feature map of the response is removed, and then
the channel number of the convolutional filter of the next
layer is reduced responsively. Finally, the recognition ac-
curacy of the removed model is improved through
retraining. Taking advantage of this property, Ref. [9]
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explores the importance of the input channel of the next
layer convolution kernels, instead of considering the current
layer filter directly, and establishes an effective channel
selection optimization function to remove redundant
channels and the corresponding current layer filter. Refer-
ence [10] dynamically prunes computation on subset of
input channels to reduce the computation cost for CNN.
Channel gating identifies regions in the features that con-
tribute less to the classification result and skips the com-
putation on a subset of the input channels for these
ineffective regions. Unlike static network pruning, channel
gating optimizes CNN inference at runtime by exploiting
input-specific characteristics, which allows substantially
reducing the computation cost with almost no accuracy loss.
Existing pruning methods either train from scratch with
sparsity constraints on channels, or minimize the recon-
struction error between the pretrained feature maps and the
compressed ones. Both strategies suffer from some limita-
tions: the former kind is computationally expensive and
difficult to converge, whilst the latter kind optimizes the
reconstruction error but ignores the discriminative power of
channels. Reference [11] investigates a simple-yet-effective
method called discrimination-aware channel pruning (DCP)
to choose those channels that really contribute to dis-
criminative power. Reference [12] proposes a new filter
pruning strategy based on the geometric median, named
FPGM, to accelerate the deep CNNs. -is article deems the
filter is also a point in Euclidean space and could be cal-
culated according to geometric median to get the “center” of
the filter, which is their common properties. If a filter is close
to this geometric median, the information of the filter can be
considered to overlap with (or even redundant with) other
filters, so that the filter can be removed without much impact
on the network. After removing it, its function can be
replaced by other filters. -us, a filter evaluation method
FPGM independent of norm is obtained, which breaks the
limitation of norm evaluation index.

-e compression method of deep network based on
structured pruning can directly compress the network and
accelerate the calculation of the whole network by removing

the whole filtering of convolutional layer without intro-
ducing additional data type storage.

3. Convolutional Neural Network
Model Optimization

In this chapter, the tiny YOLO network convolution structure
model is employed as the basis for optimization. Tiny YOLO is a
smaller version of YOLO [13], which ismore suitable formobile
machine learning and IoT devices. Although the convolutional
networkmodel structure based on tiny YOLO can achieve good
detection results in target detection of bus passengers, it is still
too complex to be used in practical applications for embedded
devices with limited resource performance.

A depthwise separable convolution method is used to
optimize the network structure at first in this chapter. On the
premise of guaranteeing the detection accuracy, parameters
of the network model are reduced and the detection speed
increased. And then, based on this optimized network
model, channels are compressed, and the network model is
optimized again by removing redundant channels to further
improve the detection speed.

3.1. #e Basis of Convolutional Network Model Optimization:
Tiny YOLO. Tiny YOLO is a lightweight network model
based on the Darknet reference network.-e whole network
consists of nine convolutional layers, six maximum pooling
layers, and one detection layer. -e network convolution
structure is shown in Table 1 [14].

-e performance of tiny YOLO convolution neural
network in target detection is tested by using a bus passenger
test set containing 12,749 pictures. -e selected test samples
contain various objective natural factors, such as the
brightness of light [15] and the influence of different head
shapes of bus passengers on target detection. -e detected
image is shown as Figure 2.

In this test set, the detection accuracy of tiny YOLO is 0.945
during rush hour. -e GNU profiler tool is used to get the
function call relationship of the program at the time of

Upperbody

(a)

Upperbody

Upperbody

Upperbody

(b)

Figure 1: -e passenger object detection results through bus video.
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detection. -e function call relationship diagram is shown as
Figure 3.

It can be seen from Figure 3 that the gemm_nn function
responsible for matrix multiplication takes up 86% of the
entire program runtime. -is function is called nine times,
corresponding to each convolution operation of 9 con-
volutional layers in the network structure. It can be seen that
the excessive number of parameters leads to excessive cal-
culation, which is the main reason for time consumption for
the detection model of tiny YOLO.

3.2. Depthwise Separable Convolution. Depthwise separable
convolution [16] is a lightweight convolution computing
technology, which separates conventional convolution in
the spatial dimension. -is technique not only reduces the
computational complexity of convolution operation but
also reduces the number of parameters. -erefore, it is a
highly efficient convolution method. In this section, the
lightweight network model tiny YOLO is taken as the
research object to optimize with depth separable convo-
lution method.

Table 1: Tiny YOLO network structure table. Reproduced from [14].

Layer Name Filters Size Input Output
0 conv 16 3× 3/1 416× 416× 3 416× 416×16
1 max 2× 2/2 416× 416×16 208× 208×16
2 conv 32 3× 3/1 208× 208×16 208× 208× 32
3 max 2× 2/2 208× 208× 32 104×104× 32
4 conv 64 3× 3/1 104×104× 32 104×104× 64
5 max 2× 2/2 104×104× 64 52× 52× 64
6 conv 128 3× 3/1 52× 52× 64 52× 52×128
7 max 2× 2/2 52× 52×128 26× 26×128
8 conv 256 3× 3/1 26× 26×128 26× 26× 256
9 max 2× 2/2 26× 26× 256 13×13× 256
10 conv 512 3× 3/1 13×13× 256 13×13× 512
11 max 2× 2/1 13×13× 512 13×13× 512
12 conv 1024 3× 3/1 13×13× 512 13×13×1024
13 conv 1024 3× 3/1 13×13×1024 13×13×1024
14 conv 30 1× 1/1 13×13×1024 13×13× 30
15 Detection

(a) (b)

(c) (d)

Figure 2: Test set image with various objective factors. Reproduced from [14].
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Usually, a conventional convolution operation is a three-
dimensional convolution kernel that convolves with an
input feature map. Each convolution kernel simultaneously
operates each channel of the input feature map, and the
channel number of the input feature map is consistent with
that of the convolution kernel. If the input tensor of the
convolution layer l is xl ∈ RHl×Wl×Dl , the convolution kernel
number of the layer is fl ∈ RH×W×Dt . -e three-dimensional
input convolution operation simply extends the two-di-
mensional convolution to all the channels of the corre-
sponding position, (i.e., Dl) and finally sums all the HWDl

elements processed by once convolution operation as the
result of convolution operation in this position. -e specific
process is shown in Figure 4.

Depthwise separable convolution is a factorized
convolutions operation, which can be decomposed into
two smaller operations: depthwise convolution and
pointwise convolution. -e specific process is shown in
Figure 5.

-e depthwise separable convolution method divides the
original convolutional layer into two convolutional layers. In
the depthwise convolution operation, each convolution
kernel is convolved with each channel of the input only. -e
pointwise convolution operation is responsible for feature

fusion that combines the results of the previous convolution.
-e original three-dimensional convolution kernel is a
convolution operation between multiple input channels and
convolution kernels to get an output channel. After the
improvement, only one channel is required to obtain an
output channel, and then a 1× 1 convolution is used for
channel feature fusion. -e advantage of this method is the
reduction of parameters and their calculation. -e number
of parameters of depthwise separable convolution is about 1/
3 of the conventional convolution, which can reduce the
calculation by about 8 to 9 times.

Input feature map

Filters
Output feature map

Figure 4: Conventional convolution operation. Reproduced from
[14].
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Figure 3: -e function call relationship diagram of tiny YOLO in the test set. Reproduced from [14].
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-e M7 network model studied in this paper replaces the
original tiny YOLO network structure with a depthwise
convolution and pointwise convolution network structure,
except for the first and last layer convolution. -e network
model structure is shown in Table 2.

3.3. Convolutional Neural Network Model Channel
Compression

3.3.1. Channel Compression Principle. In the convolutional
neural network, channels (also known as feature graphs) are
the output results obtained by the convolution operation of
the input layer. Figure 6 is a schematic diagram for channel
compression in a single convolutional layer. In the figure, A,
B, and C contain multiple channels, and W1 and W2 contain
multiple standard convolution kernels. After convolution
operation of A and W1, the output result B is obtained.
According to the characteristics of the convolutional neural
network, it can be known that the number of channels in B is
consistent with the number of convolutional kernels in W1
and is also related to the size of all convolutional kernels in
W2. If channels in B are removed (the gap blank part in B),
part of the convolution kernel in the previous convolutional
layer (the convolution kernel at the dotted line in W1) shall
be removed at the same time, and the size of all the con-
volution kernel in the latter convolutional layer (the gap
blank part of the convolution kernel in W2) shall be reduced
accordingly.

Briefly, in the standard convolutional neural network
model, compression channels will affect the number of
convolution kernels in the former convolutional layer and
the size of the convolution kernels in the latter convolutional
layer.

In the lightweight network model M7, which is based on
the tiny YOLO model, the channel compression process is
slightly different. Figure 7 is a schematic diagram for channel
compression in a single convolutional layer. In the figure, A,
B, C, and D contain multiple channels. W1 is the standard
convolution core, W2 is the depthwise convolution kernel,
and W3 is the pointwise convolution kernel. -e number of
channels in B is consistent with the number of convolution
kernels in W1 and is also related to the size of convolution

kernels in W2 and W3.-erefore, when the channels in B are
compressed (the blank part of the gap in B), part of the
convolution kernels in W1 are removed due to the influence
of channel compression (the convolution kernels of the
dotted line in W1), and the size of the convolution kernels in

Input feature map Depthwise
convolution

Pointwise
convolution

Output feature map

Filter

Depthwise
convolution

Pointwise
convolution

Figure 5: -e depthwise separable convolution.

Table 2: M7 network structure table.

Layer Name Filters Size Input Output
0 conv 16 3× 3/1 416× 416× 3 416× 416×16
1 max 2× 2/2 416× 416×16 208× 208×16
2 conv dw 16 3× 3/1 208× 208×16 208× 208×16
3 conv 32 1× 1/1 208× 208×16 208× 208× 32
4 max 2× 2/2 208× 208× 32 104×104× 32
5 conv dw 32 3× 3/1 104×104× 32 104×104× 32
6 conv 64 1× 1/1 104×104× 32 104×104× 64
7 max 2× 2/2 104×104× 64 52× 52× 64
8 conv dw 64 3× 3/1 52× 52× 64 52× 52× 64
9 conv 128 1× 1/1 52× 52× 64 52× 52×128
10 max 2× 2/2 52× 52×128 26× 26×128
11 conv dw 128 3× 3/1 26× 26×128 26× 26×128
12 conv 256 1× 1/1 26× 26×128 26× 26× 256
13 max 2× 2/2 26× 26× 256 13×13× 256
14 conv dw 256 3× 3/1 13×13× 256 13×13× 256
15 conv 512 1× 1/1 13×13× 256 13×13× 512
16 max 2× 2/1 13×13× 512 13×13× 512
17 conv dw 512 3× 3/1 13×13× 512 13×13× 512
18 conv 1024 1× 1/1 13×13× 512 13×13×1024
19 conv dw 1024 3× 3/1 13×13×1024 13×13×1024
20 conv 1024 1× 1/1 13×13×1024 13×13×1024
21 conv 30 1× 1/1 13×13×1024 13×13× 30
22 Detection

CBA W1

W2

Figure 6: Channels removed diagram.
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W2 and W3 is reduced due to the influence of channel
compression (the blank part of the convolution kernel in W2
and W3).

Briefly, in M7 network model, compression channel will
affect the number of convolution kernels in the former
convolutional layer and the size of depthwise convolution
kernels and pointwise convolution kernels in the latter
convolutional layer.

3.3.2. Channel Compression Process. -e process of channel
compression in a convolutional neural network is divided
into the following five steps to calculate each convolutional
layer compressible space, to assess importance of each
channel in the convolutional layer, to remove some un-
important channels, to train the compressed channel, and to
judge whether to continue the compression.

-e channel compression flow chart is shown in
Figure 8.

(1) Calculating Each Convolutional Layer Compressible
Space. Each convolutional layer is selected with more pa-
rameters and floating-point calculations. In the network
model M7, the amount of floating-point computation is
related to the number of convolution kernels and the width
and height of input channels. Because in the basic opera-
tions, the operation time of addition and the number of
addition operations are much less than those of multipli-
cation. Only approximate floating-point multiplication
computations that need to be performed at this level are
considered when computing floating-point computations.

Equation (1) shown as follows is the floating-point
computations equation.

Nmulti � Wout × Hout × Nfilters × s × s × Cin. (1)

In the equation, Nmulti is the floating-point multiplica-
tion computation, Wout is the width of the output channel,
Hout is the height of the output channel,Nfilters is the number
of the convolution kernel, s is the width (height) of the
convolution kernel, and Cin is number of input channels.

Equation (2) shown as follows is the convolution kernel
parameter computations equation.

N � Nfilters × s × s × Cin. (2)

In the equation, N is the amount of convolution kernel
parameters, Nfiltersis the floating-point multiplication
computation, s is the width (height) of the convolution

kernel, and Cin is the number of input channels (in the case
of 3× 3 depth convolution, Cin � 1).

For example, calculate floating-point computations and
convolution kernel parameters of 20th layer in M7 network
model. -e floating-point computing can be calculated by
equation (1): Nmulti�13×13×1024×1×1×1024�177209344.
According to equation (2), the number of convolution
kernel parameters is N�1024×1×1×1024�1048576.

-e number of convolution kernel parameters and
floating-point multiplication computation of each layer in
network model M7 are shown in Figure 9.

From Figure 9, it can be seen that, in the M7, floating-point
computation and the number of convolution parameters in
convolutional layers 2nd, 5th, 8th, 11th, 14th, 17th, 19th, and
21st account for a very low proportion in their respective total.
All of these convolutional layers belong to depthwise convo-
lution. Relatively, floating-point computations and the number
of convolution parameters in the remaining convolutional

BA DW1

W3

C

W2

Figure 7: Improved network model channels removed diagram.

Calculate each convolutional
layer compressible space

Assess each convolutional
layer importance

Remove the least
unimportant channel

Train the compressed model

Start

End

AP > threshold value

Yes

No

Figure 8: Channels compressed flow chart.
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layers 0th, 3rd, 6th, 9th, 12th, 15th, 18th, and 20th account for
large shares of their total. Most of these convolutional layers fall
into the type of pointwise convolutional layer.

Since the operation of the 0th convolutional layer is to
input color images of three channels, channel compression
cannot be carried out on this layer. -erefore, the pointwise
convolutional layer of the 3rd, 6th, 9th, 12th, 15th, 18th, and
20th layer is selected for channel compression analysis, so as
to achieve a more obvious optimization effect. -rough
comprehensive consideration of convolution kernel pa-
rameters, floating-point multiplication calculation, together
with other factors, channel compression is carried out to the
pointwise convolutional layer 20th.

(2) Assessing the Importance of Each Channel in the
Convolutional Layer.After the selection of the convolutional
layer that must be compressed, the importance of each
channel in the layer is evaluated. -e detection accuracy
difference is used to measure the contribution of the
channel to the network model and is the main basis to
evaluate the importance of the channel. -e difference of
detection accuracy refers to the discrepancy between the
accurate value of detection output when the input channel
number of a convolutional layer is compressed and that of
detection when the channel number is not compressed.-e
difference equation of detection accuracy is shown in
equation (3):

AP � P − P′. (3)

In the equation, AP is the number of convolution kernel
parameters, P is the detection accuracy before channel
compression, and P′ is the detection accuracy after channel
compression.

-en, the channels with a small difference of detection
accuracy, that is, those with a small contribution to the
network model, are sorted in an ascending order.

(3) Channel Compression Algorithm. After obtaining the
influence of each channel compression on the detection
accuracy, the channel compression is carried out. According
to the contribution of each channel to the network model, it
is removed in order from small to large. At the same time, it

monitors whether the current detection accuracy is lower
than the set threshold. When the detection accuracy is less
than the set value, the compression will stop immediately
and the channel compression algorithm ends. -e channel
compression algorithm is shown in Algorithm 1.

θp represents detection accuracy decreasing threshold. s
represents the percentage of removed channels in the total
number of channels in the convolutional layer.Dp represents
the difference value array of detection accuracy.

In Algorithm 1, the compressed channel index Ichannel
and the number of channels N are computed through
compression ratio s and detection accuracy array Dp. -en,
the new network configuration file C is generated from N,
and the new weight file Wcompressed is obtained by using the
original network weight Woriginal and Ichannel. Since channel
compression changes the original network structure, the
compressed network model is then trained to convergence
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Figure 9: -e number of convolution kernel parameters and floating. Point multiplication calculation of each layer in M7.

(1) Initialize: θp, s
(2) Compute value P
(3) while ΔP< θp do
(4) Updata Dp
(5) s, Dp ⟶ (Ichannel, N)

(6) N⟶ C

(7) Train set Ichannel, Woriginal ⟶Wcompressed
(8) Train set C, Wcompressed ⟶W′
(9) C, W′ ⟶ P′
(10) ΔP � P − P′
(11) end while

ALGORITHM 1: Channel compression algorithm.

Table 3: Experimental hardware environment parameter.
Reproduced from [14].

Name Type and configuration parameters
Operation system Ubuntu 16.0.4
CPU Intel(R) Core(TM) i7-7700K CPU@ 4.20GHz
RAM DDR4 4∗ 8G
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on the training set, and the new weight file W′ is obtained.
And then the detection accuracy P′ of the new weight is
computed. Finally, according to the difference of accuracy
ΔP it is determined whether to continue compression.When
the difference value reaches the set threshold of detection
accuracy decreasing, the compression stops. Channel
compression algorithm ends.

4. Experiment

-is section involves the experiments designed to investigate
the optimization performance index of M7 network model.
On this basis, an iterative compression experiment is carried
out for the proposed channel compression algorithm. By
analyzing the relevant experimental data of each compres-
sion, the optimization effectiveness of the channel com-
pression algorithm is verified by measuring the detection
speed and accuracy.

4.1. Experimental Parameter Configuration. Table 3 shows
the detailed information of the operating system, CPU, and
RAM used in this experiment.

-e passenger dataset in this paper consists of 12,749
images captured by bus videos from the camera photo-
graphing bus passengers vertically. -e ratio of the training
set and test set in these images is approximately 4 :1. -e
datasets are about different weathers in our bus videos,
including sunny day, rainy day, snowy day, and so on. As a
result of driving the bus in day and night, light condition is a
factor that cannot be ignored and often causes errors in the
bus passenger object detection.-e experiment has prepared
enough datasets to take everything into account to ensure
the reliability of our data.

-e hyperparameters of the network structure (ex-
cluding the number of convolution kernels) were taken

consistent default settings in the experiments. Some
hyperparameters are shown in Table 4.

4.2. Analysis of Experimental Results. In the channel com-
pression algorithm, the values of the θp and s are set to 2%
and 5%, respectively. -e number of channels calculated by
the channel compression algorithm N is rounded down-
ward. -e network compression iterative experimental re-
sults are obtained by the channel compression algorithm.
-e experimental results are shown in Table 5.

As can be seen from Table 5, in the process of gradually
increasing compression ratio, the detection accuracy is al-
ways floating around 0.93, while the detection time is
gradually decreasing and the detection speed is constantly
improving. When the compression ratio of the network
model is 65%, the detection accuracy drops sharply and
exceeds the threshold value of the detection accuracy dif-
ference set by 0.02, stopping the network compression.

-e total execution time of the program is 0.225 s in the
M7 network model measured by the GNU profiler tool.
Among them, the execution time of the gemm_nn function
is 0.129 s, accounting for 57.14% of the total execution time
of the program. After optimization by the channel com-
pression algorithm, the deletion parameters account for 62%
of the total parameters, and the total execution time of the
program is 0.162 s. Among them, the execution time of the
gemm_nn function is 0.061 s, accounting for 37.84% of the
total execution time of the program. After channel com-
pression, the convolution operation is no longer the bot-
tleneck of time-consuming of the detection program. -e
number of parameters decreased from 7MB in M7 network
model to 3.3MB. Compared with the M7 network model,
the detection speed of the network optimized by the channel
compression algorithm is increased by nearly 40% times,
while the detection accuracy is only reduced by 5%.

Table 4: Hyperparametric configuration table. Reproduced from [14].

Interactive times Learning rate Input size Momentum Weight decay Training algorithm Batch
42000 0.001 416∗ 416∗ 3 0.9 0.0005 Gradient descent 64

Table 5: Experimental results of network compression iteration.

Compression ratio (%) Remove channels AP Time-consuming (s) FPS
0 0 0.936 0.225 0.449
5 52 0.937 0.202 4.958
10 102 0.934 0.197 5.084
15 154 0.936 0.194 5.164
20 204 0.932 0.190 5.270
25 256 0.933 0.188 5.321
30 308 0.934 0.185 5.414
35 358 0.930 0.180 5.549
40 410 0.935 0.176 5.667
45 460 0.932 0.174 5.740
50 512 0.934 0.168 5.941
55 564 0.932 0.166 6.024
60 614 0.931 0.162 6.173
65 666 0.849 0.159 6.289
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In three sets of contrast experiments, this section
measures the original network model tiny YOLO, improved
network model M7, and compressed M7 from the aspects of
average precision (AP), time-consuming, frames per second
(FPS), and model weight size, as shown in Table 6.

In terms of AP, the values of each network model differ
slightly, and the value that varies greatly is just declining by
about one percent. In terms of time-consuming detection,
the time for detecting an image in the improved network
model is reduced from 0.915 s to 0.162 s, compared with the
original network model. In terms of FPS, the detection speed
increases from 1.093 frames to 6.217 frames, with an obvious
improvement in the detection speed. In terms of weight file
size, it is reduced from the original 60.5MB to 3.3MB.

Analyzed from the perspective of the recall rate accuracy,
Figure 10 reveals the precision and recall figure of the tiny
YOLO, M7, and compressed M7 network structures. In
Figure 10, the abscissa is the recall rate and the ordinate is the
detection accuracy. From the figure, the detection accuracy
of each network model drops significantly when the recall
rate exceeds 0.93.

Based on the indicators above, the compressed M7
model significantly improves the detection speed while re-
ducing the detection time as well as weight file size. In
particular, there is little sacrifice in detection accuracy.

5. Conclusion

In this paper, the convolution network model optimization
of bus passenger target detection is studied by means of

video observation on the basis of a lightweight network
model M7 optimized by depthwise separable convolution
method. Firstly, the influence of channel compression on
network model is analyzed, and then the channel com-
pression process is described. Secondly, the network pa-
rameters and theoretical calculation quantity are analyzed to
determine the convolutional layer which needs channel
compression. And then the importance of each channel to
the whole network model is evaluated according to the
difference of its influence on detection accuracy. Finally,
combined with the channel compression algorithm, the
lightweight network model M7 is compressed. -e experi-
mental results show that when 62% of parameters of the
convolutional network are removed by channel compres-
sion, the time consumption of convolution operation is
reduced by one time, the size of weight file is reduced by
nearly one time, and the detection speed is increased by 40%.
To sum up, channel compression achieves better com-
pression effect.
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