
Research Article
Method of CouplingMetrics for Object-Oriented Software System
Based on CSBG Approach

Aihua Gu ,1 Lu Li,1 Shujun Li,1 Qifeng Xun,1 Jian Dong,1 and Jianhong Lin2

1School of Information Engineering, Yancheng Teachers University, Yancheng 224002, China
2Zhejiang Ponshine Information Technology Co., Ltd., Hangzhou 310012, China

Correspondence should be addressed to Aihua Gu; guaihua1978@163.com

Received 2 November 2019; Accepted 5 February 2020; Published 19 March 2020

Guest Editor: Weifeng Pan

Copyright © 2020 Aihua Gu et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Context. Coupling between classes is an important metric for software complexity in software systems. Objective. In order to
overcome the shortcomings of the existing coupling methods and fully investigate the weighted coupling of classes in different
cases in large-scale software systems, this study analyzed the relationship between classes at package level, class level, and method
level.Method. ,e software system is considered as a set of special bipartite graphs in complex networks, and an effective method
for coupling measurement is proposed as well. Furthermore, this method is theoretically proved to satisfy the mathematical
properties of coupling measurement, leading to overcome the disadvantages of the majority of existing methods. In addition, it
was revealed that the proposed method was efficient according to the analyses of existing methods for coupling measurement.
Eventually, an algorithm was designed and a program was developed to calculate coupling between classes in three open-source
software systems. Results. ,e results indicated the scale-free characteristic of complex networks in the statistical data. Addi-
tionally, the calculated power-law value was used as a metric for coupling measurement, so as to calculate coupling of the three
open-source software. It indicated that coupling degrees of the open-source software systems contained a certain impact on
evaluation of software complexity.Conclusions. It indicated that coupling degrees of the open-source software systems contained a
certain impact on evaluation of software complexity. Moreover, statistical characteristics of some complex networks provided a
reliable reference for further in-depth study of coupling. ,e empirical evidence showed that within a certain range, reducing the
coupling was helpful to attenuate the complexity of the software, while excessively blindly pursuit of low coupling increases the
complexity of software systems.

1. Introduction

Coupling refers to the degree of interdependence between
software modules; a measure of how closely connected two
routines or modules are [1]; and the strength of the rela-
tionships between modules. Structured design, including
cohesion and coupling, was published in an article by Ste-
vens et al. and a book by Stevens et al. [2, 3], and the latter
subsequently became standard terms. Coupling is consid-
ered as a double-edged sword in object-oriented pro-
gramming. On the one hand, object-oriented software
development (OOSD) includes object-oriented requirement
analysis, as well as object-oriented design. OOSD is a
practical method of developing a software system which

focuses on the objects of a problem throughout develop-
ment. Interactions between objects reflect the interdepen-
dence between objects. If objects are isolated, then the
software system can only achieve simple functions. How-
ever, objects are equivalent to cells in human body. If cells
are completely isolated from human body, they basically do
not play any significant role, reflecting that functions of a
software system require a tight coupling between objects. On
the other hand, tight coupling between objects would lead to
a water-wave effect, meaning that changes in one object may
result in further changes in other objects. ,e most terrible
case is that there is a possibility of “avalanche” effect, which
may affect the whole system, leading to a sharp decline in the
testability, understandability, reliability, and maintainability

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 3428604, 20 pages
https://doi.org/10.1155/2020/3428604

mailto:guaihua1978@163.com
https://orcid.org/0000-0002-1397-6155
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3428604

of the system.,erefore, it is expected that classes are loosely
coupled in terms of software design. A system can be tightly
coupled in one aspect while being loosely coupled in an-
other. However, software developers mainly prefer to de-
velop those systems that are as loosely coupled as possible;
thus, design, testing, and maintenance of the system would
be relatively independent and more reasonable. Moreover, a
decrease may be observed in the possibility that errors
propagate between modules if there are few connections
between modules [4]. Coupling has been widely used in
evaluation of the degree of failure in classification [5–7],
effective analysis [8, 9], and design pattern [10] of software
systems.

,e present article has the following organization:
Section 2 summarizes the materials and methods. Section 3
shows the results. Section 4 provides a conclusion and
suggests perspectives.

2. Materials and Methods

2.1. Methods. Currently, the methods for coupling mea-
surement of object-oriented software systems are mainly
structure-oriented measurement methods (Tables 1 and 2)
[8, 11–15].

Comparative analysis of typical methods is shown in
Tables 1–3, indicating that

(1) Methods for coupling measurement are mainly
based on method invocation between classes.

(2) Calculation of coupling strength is defined as the
degree of method invocation, which is weighted
coupling.

(3) A small number of methods use fan-in and fan-out as
metrics.

(4) Inheritance is dominant.
(5) Few methods use static method invocation, system

measurement, and package-level metrics.

In addition to the abovementioned structural informa-
tion methods, some scholars have recently used dynamic
information methods [17, 18], semantic information
methods [19–21], and logical information methods [22, 23].
Based on the results of previous studies, methods of coupling
measurement cover the following cases:

(1) ,e DCMs are more accurate than that of structural
information methods, while it seems to be difficult in
the measurement of coupling metrics. However,
structural information methods are more intuitive
and easier to be perceived compared with semantic
information and logical information methods.

(2) At present, the majority of the traditional structural
information methods analyze coupling based on the
degree of connecting edges between classes and
mainly focus on complexity between classes and
emphasize more on measurement from a local fine-
grained aspect. Moreover, these degrees of con-
necting edges only consider a certain or a limited
aspects of software engineering. ,erefore, these

methods contain some limitations, which cannot
properly satisfy the requirement of an effective
coupling measurement in complex software systems.

(3) Although a number of coupling measurement
methods analyze network relationship from overall
and macro perspectives based on graph theory, the
majority of measurement metrics mainly use classes,
packages, or methods as nodes to construct some
undirected, directed, unweighted, or weighted net-
work models. Moreover, they ignore a complex re-
lationship of object-oriented characteristics between
different classes. Some methods have not been
theoretically verified for developing the mathemat-
ical characteristics of the measurement metrics.

,e process of establishment of an effective method for
coupling measurement between classes in a software sys-
tem is determined by the following two aspects: reasonable
measurement metrics and theoretical support of mea-
surement metrics [24, 25]. Briand et al. mathematically
analyzed measurement metrics of the software system and
presented a robust theoretical support for the measurement
metrics [4, 26, 27]. Many of complex networks have been
shown to share the features such as “scale-free” and “small
world” [28, 29]. Pan et al. revealed many physics-like laws
in software systems from a complex network perspective
recently [30, 31]. Studies on complex networks and soft-
ware engineering revealed that class-level, method-level,
and package-level diagrams of a software system could
show the characteristics of “scale-free” and “small world,”
which provided a novel perspective for finding more
reasonable measurement metrics [32–34]. Complex net-
work theories were applied to measure software [35, 36],
identify key software elements [37], and cluster Web ser-
vices [38–39]. Researchers have found that many real
networks have the bipartite graph characteristics of com-
plex networks [40–45]. With combination of package level,
class level, and method level, this study analyzed a complex
relationship between classes in the same layer and all layers
of a package and proposed a method for coupling metrics
for object-oriented systems based on bipartite graph of
complex networks, named here CSBG, and object-oriented
software systems were expressed as a set of special bipartite
graphs.

2.2. Problem Description. In this study, a statistical method
for complex networks was used to analyze the degree of fan-
out and the heterogeneity of classes at the same layer and all
layers of a package, in addition to the calculation of coupling
of software systems.

2.2.1. Relationship between Classes

Definition 1. ASS relationship (association and aggregation).
Association means which/how classes interact with each

other, and association can be represented by a line between
these classes with an arrow indicating the navigation

2 Mathematical Problems in Engineering

direction. Aggregation implies that one class exists in an-
other class in the form of attribute.

Definition 2. DEP relationship (dependency)
DEP_D: dynamic dependency refers to an instancemethod

in a class that invokes methods and attributes in another class.
DEP_S: static dependency refers to static methods in a

class invokes methods and attributes in another class.

Definition 3. GEN (generalization)
One class inherits with another class, or one class imple-

ments interfaces with another class, or that of an abstract class.

2.2.2. Definition of Package Hierarchy. Packages of an ob-
ject-oriented software system include classes and sub-
packages in the current hierarchy, and these subpackages
contain classes in the current hierarchy and their

subpackages. Software systems can actually be considered to
be a tree hierarchical structure composed of packages.

t layer of a package is defined as pt ≤Et+1, Rt+1 > . Et+1

represents a set of classes in the t layer, while this layer does
not contain subpackages of this layer. Rt+1 represents class
relationship in the t layer, that is, Rt+1 ⊆Et+1 × Et+1.

S layer(i) is defined as a set of weighted fan-out of Ci at
the t layer of the package, that is, S layer(i)⊆Rt+1. S all(i) is
the set of weighted cross-package fan-out of Ci, that is,
S all(i)⊆R1 ∪R2 · · · Rt · · ·.

2.3. CSBG for CouplingMeasurement. Software stability and
modularity could be measured based on complex network
theories. In this study, software systems can be expressed as a
set of bipartite graphs that use nodes as classes, and ASS as
well as DEP are the edges constituted by attributes of the
class with those of another class based on complex network
theories. However, GEN is a direct connection between

Table 1: ,e first part of existing methods for coupling measurement.

Method Description

CBO [11] CBO(c) � | d ∈ C − c{ } | uses(c, d)∨uses(c, d){ }|; the metric is 1, if method in one class invokes other
classes or is attributed to another class, otherwise it is 0

CBO′ [12] CBO′(c) � | d ∈ C − (c∪Ancestors(C){ }) | uses(c, d)∨uses(c, d){ }|; this is similar to CBO method;
however, that does not consider inheritance

RFC [13] RFC(c) � RFC1(c), which is used for calculating the number of methods responding to an object’s
message

RFCα [13] R0(c) � M(c), Ri+1(c) � ∪m∈Ri(c)PIM(m), that is, a set of polymorphic methods invoked by functions in
set Ri(c); then RFCα(c) � |∪αi�0Ri(c)| with α � 1, 2, 3, . . . ,

RFC′ [13] RFC′(c) � RFC∞(c)

MPC [13] MPC(c) � 􏽐m∈MI(c)􏽐m′∈SIM(m)− MI(c)NSI(m, m′); this calculates the number of static method invocation of
classes

DAC [14] DAC(c) � | a | a ∈ AI(c)∨T(a) ∈ C􏼈 􏼉|

DAC′ [14] DAC′(c) � | T(a) | a ∈ AI(c)∨T(a) ∈ C􏼈 􏼉|; this formula is similar to DAC; however, if there is a
relationship between classes, the metric is 1, otherwise the metric is 0

Table 2: ,e second part of existing methods for coupling measurement.

Method Description
COF [14] COF(C) � (􏽐c∈C| d | d ∈ C − c{ }∪Ancestors(c)∧uses(c, d){ }|)/|C|2 − |C| − 2􏽐c∈CDescendent(c)

ICP [14] ,is method calculates the parameters invoked by the method in a weighted class
IH-ICP [14] ,is is similar to ICP, however, that only considers inheritance
NIH-ICP [14] ,is is similar to ICP, however, that does not consider inheritance
SIMAS [8] ,is method calculates the number of direct or indirect invocations between static methods of two different classes
PIM [8] ,is method calculates the number of invocations in class C of methods in class D, and polymorphism is considered

PIMAS [8] ,is method calculates the number of direct or indirect invocations between class methods, and polymorphism is taken
into account

INAG [8] ,e metric is 1 if there is an indirect aggregation between two classes; otherwise, the metric is 0

ACAIC [15] ACAIC(c) � 􏽐d∈Ancestors(c)CA(c, d); this calculates the number of out-degrees between one class and attributes of
another classes in two classes with inheritance

OCAIC [15] OCAIC(c) � 􏽐d∈Others(c)∪Friends(c)CA(c, d); it calculates the number of out-degrees between one class and attributes of
another class in two classes without inheritance

ACMIC [15] ACMIC(c) � 􏽐d∈Ancestors(c)CA(c, d); it calculates the number of out-degrees between one class and methods of another
class in two classes with inheritance

OCMIC [15] OCMIC(c) � 􏽐d∈Others(c)∪Friends(c)CA(c, d); it calculates the number of out-degrees between one class and methods of
another class in two classes without inheritance

AMMIC [15] AMMIC(c) � 􏽐d∈Ancestors(c)MM(c, d); it calculates the number of out-degrees for methods between two classes with
inheritance

OMMIC [15] OMMIC(c) � 􏽐d∈Others(c)∪Friends(c)MM(c, d)

ICF, FCF [16] ICFi � 􏽐
n
k�1 I(k, i)ICFk, I(i, j) � e(i, j)/􏽐

n
k�1 e(i, k), FCFi � 􏽐

n
k�1 F(k, i)FCFk, I(i, j) � e(i, j)/􏽐

n
k�1 e(k, j)

Mathematical Problems in Engineering 3

Ta
bl

e
3:

C
om

pa
ra
tiv

e
an
al
ys
is
fo
r
th
e
ty
pi
ca
lm

et
ho

ds
of

co
up

lin
g
m
ea
su
re
m
en
t.

M
et
ho

d
Ty

pe
St
re
ng

th
Fa
n-
ou

t/
fa
n-
in

In
di
re
ct

co
up

lin
g

In
he
ri
ta
nc
e

W
ei
gh

te
d

St
at
ic

in
vo
ca
tio

n
Sy
st
em

m
et
ri
c

Pa
ck
ag
e

le
ve
l

C
BO

M
et
ho

d
in
vo
ca
tio

n,
at
tr
ib
ut
e
re
fe
re
nc
e

#c
ou

pl
ed

cl
as
se
d

Bo
th

N
o

Bo
th

N
o

N
o

N
o

N
o

C
BO
′

N
on

-in
h.
-

ba
se
d

N
o

N
o

RF
C

M
et
ho

d
in
vo
ca
tio

n
#m

et
ho

ds
in
vo
ke
d

Im
po

rt
N
o

Bo
th

Ye
s

N
o

RF
C
α

Ye
s

Ye
s

RF
C
′

Ye
s

Ye
s

M
PC

M
et
ho

d
in
vo
ca
tio

n
#m

et
ho

ds
in
vo
ca
tio

ns
Im

po
rt

N
o

Bo
th

Ye
s

Ye
s

D
A
C

Ty
pe

of
at
tr
ib
ut
e

#a
ttr
ib
ut
es

Im
po

rt
N
o

Bo
th

Ye
s

N
o

D
A
C
′

#d
ist
in
ct

ty
pe
s

N
o

N
o

C
O
F

M
et
ho

d
in
vo
ca
tio

n,
at
tr
ib
ut
e
re
fe
re
nc
e

#c
ou

pl
ed

cl
as
se
d

Bo
th

N
o

N
on

-in
h.
-

ba
se
d

Ye
s

N
o

Ye
s

IC
P

M
et
ho

d
in
vo
ca
tio

n
#m

et
ho

ds
in
vo
ca
tio

ns
,

#p
ar
am

et
er
s
pa
ss
ed

Im
po

rt
N
o

Bo
th

Ye
s

N
o

N
o

IH
-I
C
P

in
h.
-b
as
ed

Ye
s

N
o

N
IH

-I
C
P

N
on

-in
h.
-

ba
se
d

Ye
s

N
o

SI
M
A
S

M
et
ho

d
in
vo
ca
tio

n
#m

et
ho

ds
in
vo
ca
tio

ns

Im
po

rt

Ye
s

Bo
th

Ye
s

Ye
s

PI
M

M
et
ho

d
in
vo
ca
tio

n
#m

et
ho

ds
in
vo
ca
tio

ns
N
o

Bo
th

Ye
s

N
o

PI
M
A
S

M
et
ho

d
in
vo
ca
tio

n
#m

et
ho

ds
in
vo
ca
tio

ns
Ye

s
Bo

th
Ye

s
N
o

IN
A
G

Ty
pe

of
at
tr
ib
ut
e

#a
ttr
ib
ut
es

Ye
s

Bo
th

N
o

N
o

A
C
A
IC

Ty
pe

of
at
tr
ib
ut
e

#a
ttr
ib
ut
es

Im
po

rt
N
o

in
h.
-b
as
ed

Ye
s

N
o

O
C
A
IC

N
on

-in
h.
-

ba
se
d

Ye
s

A
C
M
IC

Ty
pe

of
pa
ra
m
et
er

#o
fp

ar
am

et
er
s

in
h.
-b
as
ed

Ye
s

O
C
M
IC

N
on

-in
h.
-

ba
se
d

Ye
s

A
M
M
C

M
et
ho

d
in
vo
ca
tio

n
#m

et
ho

d
in
vo
ca
tio

ns
in
h.
-b
as
ed

Ye
s

O
M
M
C

N
on

-in
h.
-

ba
se
d

Ye
s

IC
F

M
et
ho

d
in
vo
ca
tio

n,
at
tr
ib
ut
e
re
fe
re
nc
e

#m
et
ho

d
in
vo
ca
tio

ns
Im

po
rt

N
o

Bo
th

Ye
s

N
o

N
o

N
o

FC
F

Ex
po

rt
Ye

s

4 Mathematical Problems in Engineering

classes. ,erefore, object-oriented software systems are taken
into account as a set of special bipartite graphs constituted by
classes in the package, as shown in Figure 1. ,ere are defects
in the coupling metrics containing the two metrics of fan-in
and fan-out, because their total number is equal in a software
system [46]. ,erefore, this study only analyzed fan-out
metric. ,e coupling strength between classes is correlated
with the complexity of information exchange between mod-
ules. ,e more complex the information interaction (such as
CBO), the tighter the coupling [47]. Coupling measurement
metrics refer to the weighted fan-out of classes in special
bipartite graphs. In these special bipartite graphs, classes as-
sociate with a class that may be at the same layer of the same
package or at different layers of the package. ,erefore, this
study analyzed degrees of fan-out for classes in the same layer
and all layers of the package. Moreover, heterogeneity of the
abovementioned weighted out-degree was analyzed.

2.3.1. Demonstration of CSBG for Coupling Measurement.
,e detailed scheme proposed here is explained in the
following, as illustrated in Figure 2:

(1) ,e object-orient software systems are constructed
as directed weighted network graphs, and classes and
relationship between classes are shown as nodes and
edges, respectively.

(2) ,e package level, class level, and method level are
combined to construct special weighted bipartite
graphs between classes, aiming to make preparation
for calculating the weighted out-degree of classes at

the same layer of the package (see step 3,
(|􏽐S layer(i)|)), and the weighted out-degree
((| 􏽐 S all(i)|)) of all classes with classes across layers
of the package (see step 3).

(3) ASS layer, DEP D layer, DEP S layer, and
GEN layer at the same layer of the package were
calculated. S layer is determined by adding the
weights of x1, x2, x3, andx4 to the four mentioned
metrics, respectively, in order to calculate ASS all,
DEP D all, DEP S all, and GEN all between classes
across different layers of the package. ,en, weights
of x5, x6, x7, andx8 were added to these four metrics
to determine S all:

􏽘

n

i�1
S layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
ASS layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP D layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,⎡⎣

􏽘
n

i�1
DEP S layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
GEN layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎤⎦

× x1, x2, x3, x4􏼂 􏼃
T
,

􏽘

n

i�1
S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
ASS all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP D all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,⎡⎣

􏽘
n

i�1
DEP S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
GEN all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎤⎦

× x5, x6, x7, x8􏼂 􏼃
T
.

(1)

(4) S layer and S all are weighted to calculate the
weighted out-degree S of the software system. ,e
system coupling is calculated through dividing S by
the number of classes:

S � 􏽘

n

i�1
S(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
S layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦ ×[α, β]

T
,

S �
S

n
.

(2)

2.3.2. Calculation of the Weighted Fan-Out of Classes in a
Software System. A special bipartite graph is constructed
between classes of a software system. Weighted fan-out of
classes in the special bipartite graph is analyzed based on
characteristics of the object-oriented software.

(1) Construction of the Special Bipartite Graph in Software
Systems. In the graph G(V, E), if we divide the set V of nodes
into two complementary subsets S and T,
S∪T � V, and S∩T � ϕ, the graph G(V, E) is the bipartite
graph. In the graph Gij(Cij, Eij) constructed by classes Ci

and Cj for the software, if only coupling relationship be-
tween classes is considered, coupling of methods and at-
tributes in the class wouldn’t be taken into account; then, the

Figure 1: Illustration of a software system network composed of a
set of special bipartite graphs (the large squares represent packages,
and the 4 packages are at the same layer. ,e small squares show
subpackages in the package. ,e circles denote classes in the
package, and edges represent relationship between classes).

Mathematical Problems in Engineering 5

property of bipartite graph Ci ∩Cj � ∅ is satisfied. A net-
work diagram constructed by classes Ci and Cj satisfies the
following formula: Ci∪Cj � Cij. Moreover, the two points of
a connecting edge between classes Ci and Cj are in classes Ci

and Cj, respectively.
In summary, the complex coupling between classesCi and

Cj constructs a bipartite graph Gij(Cij, Eij). However,
Gij(Cij, Eij) not only possesses the general properties of a
bipartite graph, including method invocation and depen-
dencies, but also possesses its own characteristics. In aggre-
gation, reference, inheritance, and interface implementation
between classes Ci and Cj, the two points of the connecting
edge are in classes Ci and Cj, respectively.,is bipartite graph
Gij(Cij, Eij) is defined as a special bipartite graph. However,
the software system G(C, E) can be considered as a set of
special bipartite graphs Gij(Cij, Eij) as well (Figure 3).

In the present study, the coupling of the complete bipartite
graph Gij(Cij, Eij) constructed by classes Ci and Cj was used
to analyze the coupling of the software system G(C, E).

(2) Modeling the Coupling of Special Bipartite and Calcu-
lating the Number of Weighted Fan-Out in Software Systems.
In this study, a software system G � (C1, C2, . . . , CN) was
defined. Classes Ci and Cj were defined as two different
classes in a software system: Ci � (Oi, Ai, Mi). Among them,
Oi � Oi1, Oi2, . . . , Oip􏽮 􏽯 was the set of instantiated objects in
class Ci and p is the number of instantiated objects. Ai �

Ai1, Ai2, . . . , Aiq􏽮 􏽯 is the attribute set of class Ci, and q is the
number of attribute. Mi � Mi1, Mi2, . . . , Mir􏼈 􏼉 is the
method set of class Ci, and r is the number of methods. ,e
methods included class methods and instance methods, that
is, (C M∪C O M) ⊂M.

,e relationship of the special bipartite graph between
classes Ci and Cj can be summarized as follows:

ASS

In class Ci, there was instantiation of class Cj (as-
sociation), or one class existed in another class in the
form of attribute (aggregation), which was defined as
Cj Ojp′ , where 1≤p′ ≤p.

In the class Ci, instantiated object Ojp′ of class Ci was
implemented (1≤p′ ≤p), or Ojp′ was a part of class
Ci; then, there was an ASS edge between classes Ci and
Cj, that is, (Ci, Cj Ojp′) ∈ RASS. ,e set of ASS
weighted fan-out of class Ci was

ASS(i) � Ci, Cj Ojp′􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌 1≤ j≤N, 1≤p′ ≤p,􏼚

Ci, Cj Ojp′􏼐 􏼑 ∈ RASS􏼛.
(3)

DEP

Relationship between classes is implemented defined
by instance methods and variables.
In class Ci, there are instance methods of class Cj: if
Cj Ojp′ Mjr′ , 1≤ j≤N, 1≤p′ ≤p, and 1≤ r′ ≤ r,
then the relationship between classes Ci and Cj is
defined as (Ci, Cj Ojp′ Mjr′) ∈ RDEP D M. In class Ci,
there are instance variables of class Cj: if
Cj Ojp′ Ajq′ , 1≤ j≤N, 1≤p′ ≤p, and 1≤ q′ ≤ q,
then relationship between classes Ci and Cj is defined
as (Ci, Cj Ojp′ Ajq′) ∈ RDEP D A. Under the condi-
tion of instance methods and instance variables, the
set of weighted fan-out for Ci was

S

x1, b1

x2, b2 x3, b3

x4, b4 x5, b5
x6, b6

x7, b7
x8, b8

1/n

∑S(i)

α, b1 + b2 + b3 + b4
β, b5 + b6 + b7 + b8

∑S_layer(i) ∑S_all(i)

∑ASS_layer(i) ∑ASS_all(i)∑GEN_layer(i)∑DEP_D_layer(i) ∑DEP_D_all(i) ∑DEP_S_all(i) ∑GEN_all(i)∑DEP_S_layer(i)

–

Figure 2: Illustration of the coupling measurement for a software system.

S_layer(i) ⊆ Rt+1

Rt+1 ⊆ Et+1 × Et+1

Gij (Cij, Eij)(Ci, Cj)

G = (C1, C2, …, CN)

ASS DEP_D DEP_S GEN

Ci ∪ Cj = Cij

Ci ∩ Cj = Ø

S_all(i) ⊆ R1
 ∪ R2… Rt…

Figure 3: Abstract diagram of the software system network
composed of a set of special bipartite graphs.

6 Mathematical Problems in Engineering

DEP D(i) � Ci, Cj Ojp′ Mjr′􏼐 􏼑, Ci, Cj Ojp′ Ajq′􏼐 􏼑􏽮

· 1≤ j≤N, 1≤p′ ≤p, 1≤ r′ ≤ r
􏼌􏼌􏼌􏼌 ,

1≤ q′ ≤ q, Ci, Cj Ojp′ Mjr′􏼐 􏼑 ∈ RDEP D,

Ci, Cj Ojp′ Ajq′􏼐 􏼑 ∈ RDEP D A􏽯.

(4)

Implementing connecting edges between two classes
through class methods and class variables.
If there are class methods of Cj (static methods) in class
Ci: Cj.Mjr′ , and 1≤ r′ ≤ r, then the relationship be-
tween classes Ci and Cj is defined as
(Ci, Cj Mjr′) ∈ RDEP S M, 1≤ r′ ≤ r. If there are class
variables (static variables) of Cj in class
Ci:Cj.Ajq′ , 1≤ q′ ≤ q, then the relationship between
classes Ci and Cj is defined as
(Ci, Cj Ajq′) ∈ RDEP S A, 1≤ q′ ≤ q. ,ereafter, under
the conditions of class methods and class variables, the
set of weighted out-degree for class Ci was

DEP S(i) � Ci, Cj Mjr′􏼐 􏼑, Ci, Cj Ajq′􏼐 􏼑􏽮

· 1≤ j≤N, 1≤ r′ ≤ r, 1≤ q′ ≤ q,
􏼌􏼌􏼌􏼌

Ci, Cj Mjr′􏼐 􏼑 ∈ RDEP S M,

Ci, Cj Ajq′􏼐 􏼑 ∈ RDEP S A􏽯.

(5)

GEN

As the inheritance is preferred in software engi-
neering, if one class is a subclass of another class, the
derived connecting edge was taken into account only
once in this study. Because transfer of derived con-
necting edges would make the software system net-
work more complex, this study did not consider
transfer of derived connecting edge but only con-
sidered the conditions that class Ci was a direct
subclass of class Cj (through extension), or class Ci

was implemented through interface class Cj (through
implementation), or class Ci was implemented by
abstract class Cj (through extension). ,us, there was
a GEN connecting edge between classes Ci and Cj,
which was defined as (Ci, Cj) ∈ RGEN, and a set of
GEN weighted out-degree for class Ci was

GEN(i) � Ci, Cj􏼐 􏼑 Ci, Cj􏼐 􏼑 ∈ RGEN

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛. (6)

(3) Determination of Weights. In software systems, one class
can construct one or more special bipartite graphs with other
classes. Supposing that the number of classes and the total
number of weighted fan-out of all classes are definite in a
software system, the first case is that the number of weighted
fan-out in each class is the same or roughly the same. ,e
second case is that there is no rule for the distribution of the

number of weighted fan-out in a class. ,e third case is that
the number of weighted fan-out of a class is heterogeneity,
which approximately obeys the power-law distribution. For
the second case, heterogeneity of the out-degree of the class
is superior than that of the first case; however, this is im-
possible to be compared with the third case. For the third
case, because the number of fan-out is limited for the
majority of classes, only few classes have a large number of
fan-out; therefore, maintenance staff can dedicate more
effort on these few classes. Moreover, the maintenance
workload of these classes is lower than that of the first case.

In this study, heterogeneity under the situation of fan-
out was analyzed. If the distribution was the above-
mentioned third case, then the larger the power-law value,
the easier the maintenance, and the smaller the coupling
degree. However, if the distribution was one of the other two
cases, then it was considered in this study that the power-law
value was equal to 1. b1, b2, b3, and b4 are the power-law
values for the distribution of ASS layer, DEP D layer,
DEP S layer, and GEN layer, respectively. b5, b6, b7, and b8
are the power-law values for the distribution of ASS all,
DEP D all, DEP S all, and GEN all, respectively. ,e cal-
culating formula for weights was as follows:

x1, x2, x3, x4􏼂 􏼃
T

� 􏽘
4

i�1

bi

b1
, 􏽘

4

i�1

bi

b2
, 􏽘

4

i�1

bi

b3
, 􏽘

4

i�1

bi

b4

⎡⎣ ⎤⎦

T

,

x5, x6, x7, x8􏼂 􏼃
T

� 􏽘
8

i�5

bi

b5
, 􏽘

8

i�5

bi

b6
, 􏽘

8

i�5

bi

b7
, 􏽘

8

i�5

bi

b8

⎡⎣ ⎤⎦

T

,

α �
􏽐

8
i�4 bi

􏽐
8
i�1 bi

,

β � 1 − α.

(7)

In the present study, statistical analyses were performed
for the out-degree of the three open-source software sys-
tems, and the distributions were the first and the third cases
as mentioned above, demonstrating that the proposed
method had a certain practical value.

2.4.?eoreticalVerificationofCouplingMetrics. Whether the
proposed CSBG method met the mathematical properties of
the measurement metrics [4] was theoretically verified.

CSBG Property 1. CSBG satisfies nonnegativity.

Proof. In an object-oriented software system G �

(c1, c2, . . . , cN), there are two classes c1, c2 ∈ G. When
ASS layerDEP D layer, DEP S layer, and GEN layer are all
0, the minimum value of the software system CSBG(G) is 0.
However, there is a maximum value M(M> 0), so that the
CSBG(G) value is in the range of [0, M]. ,us, nonnegativity
of CSBG is satisfied, and the proposition is proved. □

CSBG Property 2. CSBG satisfies zero value.

Mathematical Problems in Engineering 7

Proof. As described in CSBG property 1, if the minimum
value is 0, then CSBG satisfies zero-value, and the propo-
sition is proved as well. □

CSBG Property 3. CSBG satisfies monotonicity.

Proof. If one edge is arbitrarily added in the system, the
weighted out-degree of classes would increase according to
CSBG measurement metrics. Obviously, the coupling in-
creases as well. ,us, CSBG meets monotonicity and the
proposition is proved. □

CSBG Property 4. CSBG meets the property of class
merging.

Proof. In an object-oriented software system G �

(c1, c2, . . . , cN), there are two classes c1, c2 ∈ G, and class c′ is
a merger of classes c1 and c2. ,e object-oriented system G′
is a system in which classes c1 and c2 in G are replaced by
class c′. CSBG mainly calculates the weighted out-degree of
classes in software systems. ,erefore,

CSBG c1(􏼁 + CSBG c2(􏼁≥CSBG c′(􏼁 CSBG(G)≥CSBG G′(􏼁
􏼌􏼌􏼌􏼌􏽨 􏽩.

(8)

□

CSBG Property 5. CSBG satisfies the merge property of
two irrelevant classes.

Proof. In an object-oriented software system G �

(c1, c2, . . . , cN), there are two classes c1, c2 ∈ G, and the two
classes are not coupled. Moreover, class c′ is the merger of
classes c1 and c2.,e object-oriented system G′ is a system in
which classes c1 and c2 in G are replaced by class c′. CSBG
mainly calculates the weighted out-degree of classes in
software systems. ,erefore,

CSBG c1(􏼁 +CSBG c2(􏼁 � CSBG c′(􏼁 |CSBG(G) � CSBG G′(􏼁􏼂 􏼃.

(9)

□

2.5.ComparativeExperiment. In the next sections, the CSBG
method is herein proposed for coupling measurement and
the existing measurement methods were compared and
analyzed in order to verify the rationality of the results of
CSBG measurement.

2.5.1. Calculating the Coupling of the Software System Using
CSBG. In this section, CSBG for coupling measurement was
compared with the existing measurement methods.

,is experiment was conducted on a simple system as an
example to analyze and compare themeasurement values by the
existing coupling measurements. ,is system was composed of
6 classes (Shape.java, Point.java, Line.java, Triangle.java,
Quadrilateral.java, and Square.java), which described shapes,
points, edges, triangles, quadrilaterals, and squares, respectively.

Among them, the first three classes were in package graph, and
the last three classes were in package graph.polygon (hierarchy
of classes in package level is shown in Figure 4). ,ere were
inheritance, combination, variable declaration, and method
invocation among these classes, which were appropriate for
analyzing the coupling model. Codes of classes are shown in
Figures 5–10.

Graph1

Triangle2

Quadrilateral2

Square2

Graph.polygon2

Shape3

Point3

Line3

Figure 4: Diagram at package level.

Figure 5: Demonstration of class shape.

Figure 6: Demonstration of class point.

8 Mathematical Problems in Engineering

,ere were three classes in the package graph, including
class Shape, class Point, and class Line.

,ere were three classes in the package graph.polygon,
which were classes of Triangle, Square, and Quadrilateral.

In this study, an algorithm was designed and the pro-
gram was developed based on the aforementioned mathe-
matical model, mainly calculating the four metrics for the
out-degree of classes in the same layer and different layers of
the package in software systems, including ASS, DEP_D,
DEP_S, and GEN. Couplingmetrics, including ASS, DEP_D,

DEP_S, and GEN, were corresponded to the cases described
in Section 2.3. Out-degrees of classes in various layers are
shown in Table 4.

,e mathematical model described in Section 2.3 was
herein used. Because the number of classes was small, the
heterogeneity of out-degree of classes could not be reflected.
Moreover, heterogeneity had little impact on the coupling in
this example.,erefore, it was considered that heterogeneity
was approximately the same. Coupling of software systems
was calculated as follows:

Figure 8: Demonstration of class triangle.

Figure 9: Demonstration of class square.

Figure 7: Demonstration of class line.

Mathematical Problems in Engineering 9

CSBG(G) �
􏽐

6
i CSBG Ci(􏼁

6
� 6.55,

x1, x2, x3, x4􏼂 􏼃
T

� [1, 1, 1, 1]
T
,

x5, x6, x7, x8􏼂 􏼃
T

� [1, 1, 1, 1]
T
,

α � 0.5,

β � 1 − α � 0.5,

􏽘

n

i�1
S layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
ASS layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP D layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP S layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
GEN layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦ × x1, x2, x3, x4􏼂 􏼃

T

� [6, 10, 0, 3] ×[1, 1, 1, 1]
T

� 19,

􏽘

n

i�1
S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
ASS all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP D all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
GEN all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦ × x5, x6, x7, x8􏼂 􏼃

T

� [24, 38, 0, 5] ×[1, 1, 1, 1]
T

� 67,

S � 􏽘
n

i�1
S(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
S layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦ ×[α, β]

T

� [19, 67] ×[0.5, 0.5]
T

� 43,

S �
S

n
�
43
6

� 7.17.

(10)

Figure 10: Demonstration of class quadrilateral.

10 Mathematical Problems in Engineering

2.5.2. Analysis of the Results of Various Methods for Coupling
Measurement. Coupling of software systems was calculated
based on existing measurement methods, which is shown in
Table 5. In addition to CSBG coupling measurement, other
measurement methods mainly focus on measurement of a
certain local fine-grained aspect.,ese methods were based on
the theory of reductionism, which did not investigate the
coupling of software systems from an overall and global
perspective. ,erefore, the measurement values were mostly
either very large or very small, and severalmetrics were equal to
0. In addition, discrimination of these metrics was not sig-
nificant compared with other methods for coupling mea-
surement. ,e metrics calculated by CSBG had a better
discrimination. ,erefore, the existed methods have limita-
tions, which cannot accordingly satisfy an effective coupling
measurement for complex software systems. CSBG not only
can consider a complex relationship between classes in object-
oriented software systems but also analyze the complexity of
classes and the special bipartite graph composed of classes from
the prospective of overall package level. ,erefore, the CSBG
measurement method contained a certain rationality in theory.

3. Results

3.1. Application of CSBG Measurement Metrics in the ?ree
Open-Source Software Systems. In order to further validate
the effects of CSBG, this study used CSBG to measure and
analyze coupling between classes in the three Java open-
source software systems from different fields, including Art
of Illusion [48], JabRef [49], and GanttProject [50]. Some
studies have reported results of class cohesionmetrics for the
three open-source software systems [51–53]; it is feasible to
further study the complexity of the three open-source
software systems if there is a more reasonable method for
coupling measurement. In order to verify the effects of the
CSBG measurement method in actual open-source software
systems, three Java open-source software systems from
different aforementioned fields were used. Art of Illusion is a
software system for 3D rendering, modeling, and animation.
JabRef is a graphical application for managing bibliographic
database. GanttProject is a software system for project
scheduling characterized by resource calendar, manage-
ment, and import or export (MS Project, PDF, HTML). ,e
reasons to use the three open-source software systems in the
measurement were because (1) these systems were based on
object-oriented Java; (2) the classes in the systems had a
certain scale; (3) the three systems were from different fields;

and (4) the source codes were available as well. Scholars can
freely download the source codes from an open-source
website (http://sourceforge.net).

3.2. Association of Coupling with Statistical Characteristics of
the ?ree Open-Source Software Systems. Firstly, the pro-
gram was developed and out-degree of classes at the same
layer and all layers of the package was eventually obtained,
including ASS, DEP_D, DEP_S, and GEN.

In this section, DEP_D and DEP_S were analyzed, and
the results are shown in Figures 11–18. In the experimental
results, DEP(i) was a nonstandardized part of probability
distribution P(i). If, P(i) ∼ i− c, then DEP ∼ (i)− c. A linear
function was fitted using the double logarithmic method that
was fitted to estimate Gamma index c (R is the Pearson’s
correlation coefficient and SD is standard deviation; c is also
expressed as B in the following table).

Although inheritance between classes increases coupling of
the system, this is encouraged by the software system, which is
conducive to reduce function definition and attribute defini-
tion in order to create a new class; thus, it is a poor coupling. It
can be seen from linear distribution of GEN (Table 6) that
neither all classes have an inheritance relationship, nor the
GEN fan-out of all classes were very large or very small.
However, classes with values equal to 0 or 1 were dominant.

Pearson’s correlation coefficient (R) and SD value pro-
vided the quality of the linear fitting; the larger the R value,
the better the quality of the linear fitting, and B is estimated
Gamma index c. Moreover, the smaller the SD value, the
better the quality of the linear fitting. As shown in Table 7, if
0.95 is considered to be the minimum value, it can be ap-
proximated that the distribution obeyed the power-law
distribution except that ASS value in JabRef was relatively
small (0.91651 and 0.88148). Furthermore, the distributions
of ASS layer, ASS_all layer, DEP_D layer, DEP_S layer,
DEP_D_all layer, and DEP_S_all layer were assumed to obey
power-law distribution. ,e results demonstrated that there
was a certain rule for the number of fan-out of classes in the
form of ASS and DEP, which was not the case that the values
were mostly large or small. However, they had “scale-free”
property for complex networks, which obeyed the power-
law distribution. In actual software development process, if
software developers excessively pursue low coupling be-
tween classes, a class may be divided into two or more
subclasses; thus, system complexity may be accordingly in-
creased.,e process of determination of the range of coupling

Table 4: Out-degrees of classes at the same layer and all layers of the package.

Class name
Out-degree at the same layer Out-degree of all layers

ASS DEP_D DEP_S GEN Total ASS DEP_D DEP_S GEN Total
Quadrilateral 0 0 0 0 0 8 16 0 1 25
Triangle 0 0 0 0 0 6 12 0 1 19
Line 6 10 0 1 17 6 10 0 1 17
Point 0 0 0 1 1 0 0 0 1 1
Shape 0 0 0 0 0 0 0 0 0 0
Square 0 0 0 1 1 4 0 0 1 5
Total 6 10 0 3 19 24 38 0 5 67

Mathematical Problems in Engineering 11

http://sourceforge.net

1 10 100

1

10

100

lo
g 1

0(
D

EP
_D

_l
ay

er
(i)

)

log10(i)

y = 6.07342 ∗ x – 14.40843
R = 0.97249
SD = 0.13761
0 < i < 471

(a)

1

10

100

lo
g 1

0(
D

EP
_D

_l
ay

er
(i)

)

1 10 100
log10(i)

y = 20.06268 ∗ x – 55.32035
R = 0.97537
SD = 0.12677
0 < i < 695

(b)

1

10

100

lo
g 1

0(
D

EP
_D

_l
ay

er
(i)

)

10 100 1000
log10(i)

y = 25.12239 ∗ x – 73.32253
R = 0.95689
SD = 0.14931
0 < i < 947

(c)

Figure 12: ,e double logarithmic diagrams of the fan-out of DEP_D invocation for classes at the same layer of a package.

Table 5: Results of various methods for coupling measurement.

Quadrilateral Triangle Line Point Shape Square Software system
CSBG 17.5 13.3 5.1 0.3 0 3.1 7.17
CBO 3 2 2 5 4 2
CBO′ 1 1 1 4 0 1
RFC 0 0 0 38 0 0
RFCα 0 0 0 38 0 0
RFC′ 0 0 0 38 0 0
MPC 0 0 0 0 0 0
DAC 8 6 6 0 0 4
DAC′ 1 1 1 0 0 1
COF 0.2
ICP 16 12 10 0 0 1
IH-ICP 0 0 0 0 0 1
NIH-ICP 16 12 10 0 0 0
SIMAS 0 0 0 0 0 0
PIM 16 12 10 0 0 1
PIMAS 16 12 10 0 0 1
INAG 1 1 1 0 0 1
ACAIC 0 0 0 0 0 0
OCAIC 4 3 3 0 0 0
ACMIC 0 0 0 0 0 0
OCMIC 0 0 0 0 0 0
AMMC 0 0 0 0 0 1
OMMC 16 12 10 0 0 1
ICF 0 0 0 1 0 0
FCF 1 1 1 0 0 1

1 10 100

0.1

1

10

lo
g10

(A
SS

_l
ay

er
(i)

)

log10(i)

y = 2.51614 ∗ x – 5.48165
R = 0.97722
SD = 0.08465
1 < i < 471

(a)

log10(i)
1 10 100

lo
g10

(A
SS

_l
ay

er
(i)

)

0.1

1

10

100
y = 7.1483 ∗ x – 19.22832
R = 0.91651
SD = 0.17962
0 < i < 695

(b)

lo
g10

(A
SS

_l
ay

er
(i)

)

100010 100
log10(i)

0.1

1

10 y = 7.22368 ∗ x – 20.54354
R = 0.94567
SD = 0.11961
0 < i < 947

(c)

Figure 11: ,e double logarithmic diagrams of the fan-out of ASS invocation for classes at the same layer of a package.

12 Mathematical Problems in Engineering

log10(i)

y = 1.84955 ∗ x – 3.37653
R = 0.97418
SD = 0.10346
0 < i < 471

1 10 100

1

10

100

lo
g 1

0(
A

SS
_a

ll(
i))

(a)

1

10

100

lo
g 1

0(
A

SS
_a

ll(
i))

y = 1.65033 ∗ x – 3.69578
R = 0.88148
SD = 0.2079
0 < i < 695

log10(i)
1 10 100

(b)

lo
g 1

0(
A

SS
_a

ll(
i))

log10(i)
10 100 1000

0.1

1

10

y = 3.64204 ∗ x – 9.71088
R = 0.94905
SD = 0.13485
0 < i < 947

(c)

Figure 15: ,e double logarithmic diagrams of the fan-out of ASS invocation for classes at all layers of a package.

0.1

1

10

lo
g 1

0(
D

EP
_S

_l
ay

er
(i)

)

log10(i)

y = 5.52632 ∗ x – 13.42274
R = 0.95388
SD = 0.14533
0 < i < 471

1 10 100

(a)

lo
g 1

0(
D

EP
_S

_l
ay

er
(i)

)

1

10

100
y = 14.97997 ∗ x – 41.00201
R = 0.94658
SD = 0.19504
0 < i < 695

log10(i)
1 10 100

(b)

lo
g 1

0(
D

EP
_S

_l
ay

er
(i)

)

log10(i)
10 100 1000

0.1

1

10 y = 17.20075 ∗ x – 50.19695
R = 0.94086
SD = 0.1309
0 < i < 947

(c)

Figure 13: ,e double logarithmic diagrams of the fan-out of DEP_S invocation for classes at the same layer of a package.

0.0
0.5
1.0
1.5
2.0
2.5
3.0

G
EN

_l
ay

er
(i)

i
0 100 200 300 400 500

(a)

0

1

2

3

4

G
EN

_l
ay

er
(i)

i
–100 0 100 200 300 400 500 600 700

(b)

0 200 400 600 800 1000

0.0
0.5
1.0
1.5
2.0
2.5
3.0

G
EN

_l
ay

er
(i)

i

(c)

Figure 14: ,e double logarithmic diagrams of fan-out of GEN invocation for classes at the same layer of a package.

1

10

100

lo
g 1

0(
D

EP
_D

_a
ll(

i))

log10(i)

y = 3.39056 ∗ x – 7.06826
R = 0.97028
SD = 0.14556
0 < i < 471

1 10 100

(a)

lo
g 1

0(
D

EP
_D

_a
ll(

i))

log10(i)

1

10

100
y = 8.47787 ∗ x – 22.41636
R = 0.97314
SD = 0.13056
0 < i < 695

1 10 100

(b)

lo
g 1

0(
D

EP
_D

_a
ll(

i))

log10(i)
10 100 1000

1

10

100
y = 9.56684 ∗ x – 26.95122
R = 0.96602
SD = 0.13634
0 < i < 947

(c)

Figure 16: ,e double logarithmic graph of fan-out of DEP_D invocation for classes at all layers of a package.

Mathematical Problems in Engineering 13

0

1

2

3

4

G
EN

_a
ll(

i)

i
0 100 200 300 400 500

(a)

0

1

2

3

4

G
EN

_a
ll(

i)

i
–100 0 100 200 300 400 500 600 700

(b)

0 200 400 600 800 1000

0

1

2

3

4

5

G
EN

_a
ll(

i)

i

(c)

Figure 18: ,e double logarithmic diagrams of fan-out of GEN invocation for classes at all layers of a package.

1

10

100
lo

g 1
0(

D
EP

_S
_a

ll(
i))

log10(i)

y = 3.5066 ∗ x – 7.66929
R = 0.97265
SD = 0.1208
0 < c < 471

1 10 100

(a)

lo
g 1

0(
D

EP
_S

_a
ll(

i))

log10(i)

1

10

100
y = 4.47638 ∗ x – 11.10457
R = 0.96831
SD = 0.14207
0 < i < 695

1 10 100

(b)

lo
g 1

0(
D

EP
_S

_a
ll(

i))

log10(i)
10 100 1000

0.1

1

10

y = 5.99337 ∗ x – 16.67654
R = 0.95419
SD = 0.12876
0 < c < 947

(c)

Figure 17: ,e double logarithmic diagrams of fan-out of DEP_S invocation for classes at all layers of a package.

Table 6: Values of fan-out for different classes of GEN.

Value of fan-out 0 1 2 3 4 5 7

GEN_layer
Illusion 244 199 21 5 1 0 0
JabRef 479 192 16 6 1 0 0

GanttProject 630 264 45 6 0 1 0

GEN_all
Illusion 173 246 29 19 3 0 0
JabRef 309 276 79 27 3 0 0

GanttProject 485 349 79 21 10 1 1

Table 7: Values of R, SD, and B parameters.

Software system R SD B

ASS_layer
Illusion 0.9772 0.08465 2.51614
JabRef 0.91651 0.17962 7.1483

GanttProject 0.94567 0.11961 7.22368

DEP_D_layer
Illusion 0.97249 0.31761 6.07342
JabRef 0.97537 0.12677 20.06268

GanttProject 0.95689 0.14931 25.12239

DEP_S_layer
Illusion 0.95388 0.14533 5.52632
JabRef 0.94658 0.19504 14.97997

GanttProject 0.94086 0.1309 17.20075

ASS_all
Illusion 0.97414 0.10346 1.84955
JabRef 0.88148 0.2079 1.65033

GanttProject 0.94905 0.13485 3.64204

DEP_D_all
Illusion 0.97028 0.14556 3.39056
JabRef 0.97314 0.13056 8.47787

GanttProject 0.96602 0.13634 9.56684

DEP_S_all
Illusion 0.97265 0.1208 3.5066
JabRef 0.96831 0.14207 4.47638

GanttProject 0.95419 0.12876 5.99337

14 Mathematical Problems in Engineering

between classes in software systems is significant. Based on
data analysis, it can be seen that scale-free” property of
complex networksmotivated software developers to paymore
attention to the distribution range of the coupling in large-
scale software systems, which could provide a reliable ref-
erence for developing more reasonable software systems.

3.3. Coupling Measurement for the ?ree Open-Source Soft-
ware Systems. According to the results of the above-
mentioned analysis, out-degrees of classes were often equal to

0, 1, and 2 for class inheritance in generalization, interface
implementation, and implementation of abstract classes, which
were approximately linearly distributed. ,erefore, the power-
law value of GEN was approximated to 1.

3.3.1. Calculation of Coupling Measurement for Art of
Illusion. According to the CSBG method for coupling
measurement, coupling of the software system for Art of
Illusion was calculated as follows:

x1, x2, x3, x4􏼂 􏼃
T

� 􏽘
4

i�1

bi

b1
, 􏽘

4

i�1

bi

b2
, 􏽘

4

i�1

bi

b3
, 􏽘

4

i�1

bi

b4

⎡⎣ ⎤⎦

T

� 􏽘

4

i�1

bi

2.51614
, 􏽘

4

i�1

bi

6.07342
, 􏽘

4

i�1

bi

5.52632
, 􏽘

4

i�1

bi

1
⎡⎣ ⎤⎦

T

� [6.007567, 2.48858, 2.735252, 15.11588]
T
,

x5, x6, x7, x8􏼂 􏼃
T

� 􏽘
8

i�5

bi

b5
, 􏽘

8

i�5

bi

b6
, 􏽘

8

i�5

bi

b7
, 􏽘

8

i�5

bi

b8

⎡⎣ ⎤⎦

T

� 􏽘
8

i�5

bi

1.84955
, 􏽘

8

i�5

bi

3.39056
, 􏽘

8

i�5

bi

3.5066
, 􏽘

8

i�5

bi

1
⎡⎣ ⎤⎦

T

� [5.269774, 2.874661, 2.779533, 9.74671]
T
,

α �
􏽐

8
i�4 bi

􏽐
8
i�1 bi

� 0.392023,

β � 1 − α � 0.607977,

􏽘

n

i�1
S layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
ASS layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP D layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP S layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
GEN layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦ × x1, x2, x3, x4􏼂 􏼃

T

� [2479, 5848, 2005, 260] ×[6.007567, 2.48858, 2.735252, 15.11588]
T

� 38861.91,

􏽘

n

i�1
S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
ASS all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP D all(i)(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
GEN all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦ × x5, x6, x7, x8􏼂 􏼃

T

� [6705, 13883, 6255, 373] ×[5.269774, 2.874661, 2.779533, 9.74671]
T

� 96264.25,

S � 􏽘
n

i�1
S(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
S layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦ ×[α, β]

T

� [38861.91, 96264.25] ×[0.392023, 0.607977]
T

� 73761.21,

S �
S

n
�
73761.21

470
� 156.9387.

(11)

Mathematical Problems in Engineering 15

3.3.2. Calculation of Coupling Measurement for JabRef.
According to CSBG for coupling measurement, coupling of
the software system for JabRef was calculated as follows:

x1, x2, x3, x4􏼂 􏼃
T

� 􏽘
4

i�1

bi

b1

bi

b1
, 􏽘

4

i�1

bi

b2
, 􏽘

4

i�1

bi

b3
, 􏽘

4

i�1

bi

b4

⎡⎣ ⎤⎦

T

� 􏽘
4

i�1

bi

7.1483
bi

7.1483
, 􏽘

4

i�1

bi

20.06268
, 􏽘

4

i�1

bi

14.97997
, 􏽘

4

i�1

bi

1
⎡⎣ ⎤⎦

T

� [6.042129, 2.152801, 2.883247, 43.19095]
T
,

x5, x6, x7, x8􏼂 􏼃
T

� 􏽘
8

i�5

bi

b5
, 􏽘

8

i�5

bi

b6
, 􏽘

8

i�5

bi

b7
, 􏽘

8

i�5

bi

b8

⎡⎣ ⎤⎦

T

� 􏽘
8

i�5

bi

1.65033
, 􏽘

8

i�5

bi

8.47787
, 􏽘

8

i�5

bi

4.47638
, 􏽘

8

i�5

bi

1
⎡⎣ ⎤⎦

T

� [9.45543, 1.840625, 3.485982, 15.60458]
T
,

α �
􏽐

8
i�4 bi

􏽐
8
i�1 bi

� 0.26540419,

β � 1 − α � 0.734596,

􏽘

n

i�1
S layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
ASS layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP D layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
GEN layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦ × x1, x2, x3, x4􏼂 􏼃

T

� [1326, 2032, 2396, 246] ×[6.042129, 2.152801, 2.883247, 43.19095]
T

� 29375.8,

􏽘

n

i�1
S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
ASS all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP D all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
GEN all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦ × x5, x6, x7, x8􏼂 􏼃

T

� [3430, 4403, 6733, 527] ×[9.45543, 1.840625, 3.485982, 15.60458]
T

� 71947.46,

S � 􏽘
n

i�1
S(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
S layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦ ×[α, β]

T

� [29375.8, 71947.46] ×[0.26540419, 0.734596]
T

� 60648.76,

S �
S

n
�
60648.76

694
� 87.39015.

(12)

16 Mathematical Problems in Engineering

3.3.3. Calculation of CouplingMeasurement for GanttProject.
According to CSBG for coupling measurement, coupling of
the software system for GanttProject was calculated as
follows:

x1, x2, x3, x4􏼂 􏼃
T

� 􏽘
4

i�1

bi

b1
, 􏽘

4

i�1

bi

b2
, 􏽘

4

i�1

bi

b3
, 􏽘

4

i�1

bi

b4

⎡⎣ ⎤⎦

T

� 􏽘
4

i�1

bi

7.22368
, 􏽘

4

i�1

bi

25.12239
, 􏽘

4

i�1

bi

17.20075
, 􏽘

4

i�1

bi

1
⎡⎣ ⎤⎦

T

� [6.997378, 2.012023, 2.93864, 50.54682]
T
,

x5, x6, x7, x8􏼂 􏼃
T

� 􏽘
8

i�5

bi

b5
, 􏽘

8

i�5

bi

b6
, 􏽘

8

i�5

bi

b7
, 􏽘

8

i�5

bi

b8

⎡⎣ ⎤⎦

T

� 􏽘
8

i�5

bi

3.64204
, 􏽘

8

i�5

bi

9.56684
, 􏽘

8

i�5

bi

5.99337
, 􏽘

8

i�5

bi

1
⎡⎣ ⎤⎦

T

� [5.5496, 2.111695, 3.370766, 20.20225]
T
,

α �
􏽐

8
i�4 bi

􏽐
8
i�1 bi

� 0.285548,

β � 1 − α � 0.714452,

􏽘

n

i�1
S layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
ASS layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP D layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP S layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
GEN layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦ × x1, x2, x3, x4􏼂 􏼃

T

� [1102, 1331, 565, 379] ×[6.997378, 2.012023, 2.93864, 50.54682]
T

� 31206.69,

􏽘

n

i�1
S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
ASS all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP D all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
DEP S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
GEN all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦ × x5, x6, x7, x8􏼂 􏼃

T

� [3201, 3833, 2291, 622] ×[5.5491, 2.111695, 3.370766, 20.20225]
T

� 46138.17,

S � 􏽘
n

i�1
S(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
S layer(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 􏽘

n

i�1
S all(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦ ×[α, β]

T

� [31206.69, 46138.17] ×[0.285548, 0.714452]
T

� 41874.52,

S �
S

n
�
41874.52

946
� 44.26482.

(13)

Mathematical Problems in Engineering 17

,e three aforementioned open-source software systems
were analyzed from the points of view of package level, class
level, and method level using CSBG for coupling mea-
surement. A programwas also developed to calculate various
metrics; thus, the coupling of the three open-source software
systems in descending order was the Art of Illusion, JabRef,
and GanttProject, suggesting that it was feasible to use CSBG
for coupling measurement of software systems that con-
tained a certain practical value.

4. Conclusion

Based on bipartite graphs for complex networks, by com-
prehensive consideration of the weighted fan-out between
classes from points of view of package level, class level, and
method level, this study expressed that the interaction of
classes is a special bipartite graph, while a software system is
a set of these special bipartite graphs. For this purpose, first,
this study analyzed the four relationships for a software
system, including ASS, DEP_D, DEP_S, and GEN, and
coupling relationship for a class with other classes in the
same layer of package was considered as well. Moreover,
coupling relationship for classes in a package with other
classes in different layers of the package was taken into
account. ,erefore, the CSBG method for coupling mea-
surement of software systems was proposed, which was
completely in compliance with the mathematical charac-
teristics of the widely accepted metrics. Second, for a soft-
ware system, other typical methods and CSBG method were
compared for the purpose of coupling measurement, and the
results revealed that the measured value was either large or
small due to the defects of other measurement methods that
were analyzed from an overall and global perspective.
Moreover, the corresponding values were mostly equal to 0.
,erefore, there were some defects in other measurement
methods, while CSBG had its rationality. Eventually, a
program was developed based on the CSBGmethod to apply
the three open-source software systems (Art of Illusion,
JabRef, and GanttProject). ,e results demonstrated that
coupling of the three open-source software systems in the
descending order was the Art of Illusion, JabRef, and
GanttProject. Although inheritance between classes in-
creases coupling of the system, this is also followed by
software engineering, which is conducive to reduce function
definition and attribute definition in order to create a new
class, and thus, this is weak coupling. It can be concluded
from the linear distribution of GEN that all classes either had
an inheritance relationship, or that the number of GEN fan-
out of all classes was very large or very small. However,
classes with values equal to 0 or 1 were accounted. Fur-
thermore, it was revealed that in the same layer and total
layers of the package, fan-out values of ASS, DEP_D, and
DEP_S obeyed the scale-free property of complex networks.
,ese findings provided empirical support for the CSBG
method. ,e statistical power-law metrics were applied to
the method for coupling measurement proposed in this
study in order to calculate the coupling of the three open-
source software systems, which provided a reliable reference
for further investigation of coupling between classes in

software systems using statistics of complex networks. In
[54], it was mentioned that cohesion distribution of the
majority classes of a software system contained a certain
regularity. In other words, it was not the case that neither
cohesion of all classes was very large nor very small. In the
empirical analysis of coupling, the values of coupling metrics
had a regularity similar to class cohesion. Although coupling
represented the degree of interdependence between classes,
the greater the coupling, the more complex the software
from an intuitive aspect. However, excessive pursuit of “high
cohesion and low coupling” of software systems increases
the workload of software developers and the complexity of
software systems as well. ,erefore, the empirical evidence
showed that within a certain range, reducing the coupling
was helpful to attenuate the complexity of the software, while
excessively blindly pursuit of low coupling increases the
complexity of software systems.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is work was supported by the National Natural Science
Foundation of China (no. 61602400). ,is work was also
supported in part by the Key Research and Development
Program of Hangzhou under Grant 20182011A46.

References

[1] W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured
design,” IBM Systems Journal, vol. 13, no. 2, pp. 115–139, 1974.

[2] W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured
design,” IBM Systems Journal, vol. 38, no. 2, pp. 231–256, 1999.

[3] E. Yourdon and L. L. Constantine, Structured Design: Fun-
damentals of a Discipline of Computer Program and Systems
Design, Yourdon Press, Englewood Cliffs, NJ, USA, 1979.

[4] L. C. Briand, J. W. Daly, and J. K. Wust, “A unified framework
for coupling measurement in object-oriented systems,” IEEE
Transactions on Software Engineering, vol. 25, no. 1, pp. 91–
121, 1999.

[5] M. D’Ambros, M. Lanza, and R. Robbes, “On the relationship
between change coupling and software defects,” in Proceed-
ings of the 2009 16th Working Conference on Reverse
Engineering, Lille, France, October 2009.

[6] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of
object-oriented metrics on open source software for fault
prediction,” IEEE Transactions on Software Engineering,
vol. 31, no. 10, pp. 897–910, 2005.

[7] P. Yu, T. Systa, and H. Muller, “Predicting fault-proneness
using OO metrics. An industrial case study,” in Proceedings of
the Sixth European Conference on Software Maintenance and
Reengineering, Budapest, Hungary, March 2002.

[8] L. C. Briand, J. Wuest, and H. Lounis, “Using coupling
measurement for impact analysis in object-oriented systems,”

18 Mathematical Problems in Engineering

in Proceedings of the IEEE International Conference on Soft-
ware Maintenance, Oxford, UK, September 1999.

[9] F. G. Wilkie and B. A. Kitchenham, “Coupling measures and
change ripples in C++ application software,” Journal of
Systems & Software, vol. 52, no. 2-3, pp. 157–164, 2000.

[10] G. Antoniol, R. Fiutem, and L. Cristoforetti, “Using metrics to
identify design patterns in object-oriented software,” in
Proceedings of the Fifth International Software Metrics
Symposium, Bethesda, MD, USA, November 1998.

[11] S. R. Chidamber and C. F. Kemerer, “Ametrics suite for object
oriented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493, 1994.

[12] S. R. Chidamber and C. F. Kemerer, “Towards a metrics suite
for object oriented design,” in Proceedings of the ACM
Conference on Object Oriented Programming, Systems, Lan-
guages and Applications, Orlando, FL, USA, 1991.

[13] W. Li and S. Henry, “Object-oriented metrics that predict
maintainability,” Journal of Systems and Software, vol. 23,
no. 2, pp. 111–122, 1993.

[14] Y. Lee, “Measuring the coupling and cohesion of an object-
oriented program based on information flow,” in Proceedings
of the International Conference on Software Qualiy, Maribor,
Slovenia, 1995.

[15] L. Briand, P. Devanbu, and W. Melo, “An investigation into
coupling measures for C++ software engineering,” in Pro-
ceedings of the 19th International Conference on Software
engineering, Boston, MA, USA, May 1997.

[16] H. Li and B. Li, “A pair of coupling metrics for software
networks,” Journal of Systems Science and Complexity, vol. 24,
no. 1, pp. 51–60, 2011.

[17] E. Arisholm, L. C. Briand, and A. Foyen, Dynamic Coupling
Measurement for Object-Oriented Software, IEEE Press, Pis-
cataway, NJ, USA, 2004.

[18] J. K. Chhabra and V. Gupta, “A survey of dynamic software
metrics,” Journal of Computer Science & Technology, vol. 25,
no. 5, pp. 1016–1029, 2010.

[19] D. Poshyvanyk and A. Marcus, “,e conceptual coupling
metrics for object-oriented systems,” in Proceedings of the
2006 22nd IEEE International Conference on Software
Maintenance, Philadelphia, PA; USA, September 2006.

[20] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy,
“Using information retrieval based coupling measures for
impact analysis,” Empirical Software Engineering, vol. 14,
no. 1, pp. 5–32, 2009.

[21] M. Gethers and D. Poshyvanyk, “Using relational topic
models to capture coupling among classes in object-oriented
software systems,” in Proceedings of the 2010 IEEE Interna-
tional Conference on Software Maintenance, Timisoara,
Romania, September 2010.

[22] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical
coupling based on product release history,” in Proceedings of
the International Conference on Software Maintenance,
Washington, DC, USA, April 1998.

[23] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl,
“Mining version histories to guide software changes,” IEEE
Transactions on Software Engineering, vol. 31, no. 6,
pp. 429–445, 2005.

[24] E. J. Weyuker, “Evaluating software complexity measures,”
IEEE Transactions on Software Engineering, vol. 14, no. 9,
pp. 1357–1365, 1988.

[25] I. Vessey and R. Weber, “Research on structured program-
ming: an empiricist’s evaluation,” IEEE Transactions on
Software Engineering, vol. SE-10, no. 4, pp. 397–407, 2009.

[26] L. C. Briand, S. Morasca, and V. R. Basili, “Property-based
software engineering measurement,” IEEE Transactions on
Software Engineering, vol. 22, no. 1, pp. 68–86, 1996.

[27] L. C. Briand, J. W. Daly, and J. Wüst, “A unified framework
for cohesion measurement in object-oriented systems,” Em-
pirical Software Engineering, vol. 3, no. 1, pp. 65–117, 1998.

[28] D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-
world” networks,” Nature, vol. 393, 1998.

[29] A.-L. Barabási and R. Albert, “Emergence of scaling in ran-
dom networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[30] W. Pan, H. Ming, C. K. Chang, Z. Yang, and D.-K. Kim,
“ElementRank: ranking java software classes and packages
using multilayer complex network-based approach,” IEEE
Transactions on Software Engineering, 2019.

[31] W. Pan, B. Li, J. Liu, Y. Ma, and B. Hu, “Analyzing the
structure of java software systems by weighted K-core de-
composition,” Future Generation Computer Systems, vol. 83,
pp. 431–444, 2018.

[32] C. R. Myers, “Software systems as complex networks:
structure, function, and evolvability of software collaboration
graphs,” Physical Review E, vol. 68, no. 4, 15 pages, 2003.

[33] N. LaBelle and E. Wallingford, “Inter package dependency
networks in open source software,” 2004, http://arxiv.org/abs/
0411096.

[34] D. Hyland-Wood, D. Carrington, and S. Kaplan, “Scale-free
nature of java software package,” class and method collabo-
ration graphs,” Techical report no. TR-MS1286, University of
Maryland College, College Park, MD, USA, 2006.

[35] Y. Xiang, W. Pan, H. Jiang, Y. Zhu, and H. Li, “Measuring
software modularity based on software networks,” Entropy,
vol. 21, no. 4, p. 344, 2019.

[36] W. Pan and C. Chai, “Measuring software stability based on
complex networks in software,” Cluster Computing, vol. 22,
no. S2, pp. 2589–2598, 2019.

[37] W. Pan, B. Song, K. Li, and K. Zhang, “Identifying key classes
in object-oriented software using generalizedk-core decom-
position,” Future Generation Computer Systems, vol. 81,
pp. 188–202, 2018.

[38] W. Pan and C. Chai, “Structure-aware mashup service
clustering for cloud-based internet of things using genetic
algorithm based clustering algorithm,” Future Generation
Computer Systems, vol. 87, pp. 267–277, 2018.

[39] W. Pan, J. Dong, K. Liu, and J. Wang, “Topology and topic-
aware service clustering,” International Journal of Web Ser-
vices Research, vol. 15, no. 3, pp. 18–37, 2018.

[40] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and
Y. Åberg, “,e web of human sexual contacts,” Nature,
vol. 411, no. 6840, pp. 907-908, 2001.

[41] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and
A.-L. Barabási, “,e large-scale organization of metabolic
networks,” Nature, vol. 407, no. 6804, pp. 651–654, 2002.

[42] P.-P. Zhang, K. Kan Chen, Y. He et al., “Model and empirical
study on some collaboration networks,” Physica A: Statistical
Mechanics and Its Applications, vol. 360, no. 2, pp. 599–616,
2006.

[43] Q. Xuan, F. Du, and T. J. Wu, “Empirical analysis of internet
telephone network : from user ID to phone,” Chaos: An In-
terdisciplinary Journal of Nonlinear Science, vol. 19, no. 2,
Article ID 023101, 2009.

[44] M.-S. Shang, L. Lü, Y.-C. Zhang, and T. Zhou, “Empirical
analysis of web-based user-object bipartite networks,” EPL
(Europhysics Letters), vol. 90, no. 4, p. 48006, 2010.

[45] K.-I. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and
A.-L. Barabasi, “,e human disease network,” Proceedings of

Mathematical Problems in Engineering 19

http://arxiv.org/abs/0411096
http://arxiv.org/abs/0411096

the National Academy of Sciences, vol. 104, no. 21,
pp. 8685–8690, 2007.

[46] B. Kitchenham, “What’s up with software metrics?-a pre-
liminary mapping study,” Journal of Systems and Software,
vol. 83, no. 1, pp. 37–51, 2010.

[47] J. Eder and M. Schrefl, “Coupling and cohesion in object-
oriented systems,” in Proceedings of the International
Workshop on Object Orientation in Operating Systems,
pp. 264–272, Dordan, France, September 1992.

[48] Illusion, 2012, http://sourceforge.net/projects/aoi/.
[49] JabRef, 2012, http://sourceforge.net/projects/jabref/.
[50] GanttProject, 2012, http://sourceforge.net/projects/ganttproject/.
[51] J. Al Dallal and L. C. Briand, “An object-oriented high-level

design-based class cohesion metric,” Information and Soft-
ware Technology, vol. 52, no. 12, pp. 1346–1361, 2010.

[52] J. Al Dallal, “Measuring the discriminative power of object-
oriented class cohesion metrics,” IEEE Transactions on Soft-
ware Engineering, vol. 37, pp. 778–804, 2011.

[53] J. Al Dallal, “,e impact of accounting for special methods in
the measurement of object-oriented class cohesion on
refactoring and fault prediction activities,” Journal of Systems
and Software, vol. 85, no. 5, pp. 1042–1057, 2012.

[54] A. Gu, X. Zhou, Z. Li, Q. Li, and L. Li, “Measuring object-
oriented class cohesion based on complex networks,” Arabian
Journal for Science and Engineering, vol. 42, no. 8, pp. 3551–
3561, 2017.

20 Mathematical Problems in Engineering

http://sourceforge.net/projects/aoi/
http://sourceforge.net/projects/jabref/
http://sourceforge.net/projects/ganttproject/

