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To improve adaptability, feature resolution, and identification accuracy when diagnosing mechanical faults in an on-load tap
changer (OLTC) of a transformer, in the present research, wavelet packet energy entropy is used to describe the information
comprising vibration signal in the switch process of an OLTC, and a fuzzy weighted least squares support vector machine (CSA-
fuzzy weighted LSSVM) model based on the cuckoo search algorithm is proposed to identify mechanical fault types. Specifically,
according to the different importance of the sample data in different periods, the idea of fuzzy weighting of training samples is
proposed. The cuckoo search algorithm is used to optimise regularisation parameters, kernel function width, and weight control
factor of CSA-fuzzy weighted LSSVM. Finally, the real experimental platform for typical mechanical faults of an OLTC is
established, and the vibration signals of several typical mechanical faults under different degrees of fatigue are obtained. The
results show that the new method achieves a higher accuracy rate of fault identification compared with other common methods. It
can better deal with small sample and nonlinear prediction problems and shows higher fitting accuracy than CSA-LSSVM, single
LSSVM, and radial basis neural network methods and is thus better suited for mechanical fault diagnosis in OLTCs. This paper
presents a new intelligent diagnosis scheme for mechanical faults of on-load tap changers, which can achieve noninterruption and
nonintrusive detection. The proposed diagnosis method would change the traditional diagnosis method of the on-load tap
changer and improves the power supply quality and the detection efficiency under the premise of ensuring the safety of the staff.

1. Introduction

As important electrical equipment in the power transmis-
sion and distribution network in China, an on-load tap
changing transformer (OLTCT) mainly plays an important
role in connecting high- and low-voltage power transmis-
sion and distribution network, regulating and controlling
power flows, and stabilising the voltage at the load centre of a
system. OLTCTs have been increasingly extensively applied
in modern power transmission and distribution networks in
China. The voltage regulation function of an OLTCT is

realised by switching the tap position of contacts of an on-
load tap changer (OLTC) step-by-step. The operating
condition of an OLTC affects the safe and reliable operation
of a power system and also plays an important role in
guaranteeing flexible dispatching of power grids; however,
the manufacturing and maintenance technologies for
OLTCs have not yet been perfected. The accidents caused by
faults in OLTCs happen frequently with the large-scale
application of OLTCTs in power grids. Online monitoring
and diagnosis of mechanical faults of OLTCs play an in-
creasingly important role in modern power transmission
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and distribution network, also exert excellent practical
significance on the overall safe operation of power grids, and
are regarded as the important demand of construction of
ubiquitous power for the Internet of Things.

Owing to the vibration signals of OLTCs presenting
time-varying characteristics and instability, some time-do-
main analysis methods (such as fast Fourier transform
(FFT)) show unsatisfactory performance when they are used
to detect certain faults. By introducing wavelet transform
into mechanical fault detection of OLTCs, Kang and Birt-
whistle [1, 2] established a ridge distribution map to char-
acterise the mechanical condition of OLTCs by utilising the
wavelet coeflicient obtained through two-dimensional dis-
crete wavelet transform. The ridge distribution map clearly
reveals the disparity of features of OLTCs with mechanical
faults and in normal state. Kang and Birtwhistle and Rivas
et al. [3, 4] extracted the time-domain features (including
peak time and amplitude) of vibration signals by applying
wavelet analysis and compared the features of vibration
signals in normal and fault states by using a self-organising
map and genetic algorithm (GA). On this basis, a database
for features of vibration signals of OLTCs is constructed to
establish a set of evaluation procedure for the mechanical
state of OLTCs; however, only low-frequency components
are selected for further decomposition during each calcu-
lation in wavelet analysis and therefore wavelet analysis fails
to extract the features of high-frequency signals. The high-
frequency sections of vibration signals of OLTCs contain lots
of effective information, so it is necessary to make certain
improvements to the wavelet analysis technique.

As the further extension of wavelet analysis, wavelet
packet analysis can perform multilevel and multiresolution
decomposition of low- and high-frequency components of
vibration signals, which can deal with the time-varying,
nonstationary vibration signals arising from OLTCs. Li et al.
[5] in Shandong University extracted the time- and fre-
quency-domain features of OLTC vibration signals by
employing wavelet packet decomposition. After collecting
the vibration signals on the OLTC surface by applying a
piezoelectric accelerometer, the frequency composition of
OLTC vibration signals at different scales can be attained
through wavelet packet decomposition. On the basis of
effectively decomposing the mechanical vibration signals of
OLTCs, the dynamic characteristics contained therein can
be reasonably described.

The common methods for diagnosing fault modes
mainly include artificial neural network (ANN) and support
vector machine in the field of fault diagnosis. Shi [6]
established a backpropagation neural network optimised by
adaptive genetic algorithm (AGA) to diagnose the me-
chanical fault types of OLTCs; however, a neural network
requires a large training sample dataset and is likely to be
trapped in a local optimum. By utilising a fuzzy weighted
least square support vector machine (LSSVM) model based
on particle swarm optimisation (PSO), Kong et al. [7] di-
agnosed the mechanical faults of operating mechanisms of a
high-voltage circuit breaker. The model could provide good
fitting accuracy based on a small training dataset and avoid
the occurrence of local optima. The mechanical state of
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OLTCs changes during long-term operation, and the fea-
tures of vibration signals measured in different periods also
gradually change; therefore, the characteristic data of vi-
bration signals of OLTCs in different periods have varying
importance in the training process of the model. Thus, a
fuzzy weighted LSSVM model is introduced to assign
varying weights to different characteristic parameters ob-
tained through feature extraction of vibration signals. Ad-
ditionally, the regularisation parameters, kernel function
width, and weight control factor of the CSA-fuzzy weighted
LSSVM are optimised by applying the cuckoo search al-
gorithm (CSA) to improve the fitting accuracy of the model,
thus increasing the accuracy of diagnosis of mechanical
faults in OLTCs.

To improve the adaptability, feature resolution, and
fitting accuracy of the model for diagnosing mechanical
faults in OLTCs, the information contained in vibration
signals in the switchover process of OLTCs is described by
using wavelet packet energy entropy. Additionally, the fuzzy
weighted LSSVM optimised by CSA is proposed for use
when identifying mechanical fault types in OLTCs. More-
over, based on an SYJZZ-35 OLTC, a real model experi-
mental platform for typical mechanical faults of an OLTC is
built to attain the vibration signals of several typical me-
chanical faults (such as loose moving contact, loose tran-
sition contact, and a motor shaft jam). Moreover, the
proposed method for diagnosing mechanical faults of
OLTGCs is used to identify the mechanical states of OLTCs
corresponding to vibration signals and compared with the
existing methods to verify its effectiveness. This paper
presents a new intelligent diagnosis scheme for mechanical
faults of on-load tap changers, which can achieve non-
interruption and nonintrusive detection. The proposed di-
agnosis method would change the traditional diagnosis
method of the on-load tap changer and improve the power
supply quality and the detection efficiency under the premise
of ensuring the safety of the staff.

2. Diagnosis of Mechanical Faults in OLTCs
Based on CSA-Fuzzy Weighted LSSVM

2.1. Wavelet Packet Transform and Wavelet Packet Energy
Entropy. A wavelet packet can accurately and compre-
hensively deal with high- and low-frequency signals, so it
plays an important role in improving the time-frequency
resolution of signals and exploring features of full-band
signals. Therefore, wavelet packet decomposition can be
used to process vibration signals arising from mechanical
faults on OLTCs.

hy and g refer to the coefficients in filters of wavelet
packet transform; moreover, the wavelet function is defined
as ¢ (), and the corresponding scaling function is expressed
as y(t). The wavelet function and scaling function can be
expressed by using an equation set as follows:

$(t) = Y g2t - k),

k=Z

(1)
y() =) gpp (2t k).
k=7



Mathematical Problems in Engineering

The following function sets are defined:
1, () = V2 3 h(K)$, (2t - k),
i 2)

Uper (1) = V2 kZZg(k)un(Zt - k),

where u,, (t) and u,,,, (t) separately represent the scaling
and wavelet functions and the function set {u,} is a wavelet
packet defined by the basis function u (). Thus, the wavelet
packet can be regarded as a set of a class of functions
composed of wavelet and scaling functions.

Hence, the function set {2/%u, (2/t —k); n € k; k € Z}
can be attained, where j, k, and n refer to the scaling function,
displacement function, and oscillating coefficient, respec-
tively. By adjusting the values of j and k, wavelet packet
decomposition can be applied to mechanical vibration
signals from OLTCs.

The basic principle underlying frequency division of
wavelet packet decomposition is described in Figure 1. In
short, wavelet packet decomposition can be used to analyse
the vibration signals by constantly conducting high- and
low-frequency decomposition of vibration signals [7].

In Figure 1, L represents the low-frequency part,
showing low-pass characteristics; H denotes the high-fre-
quency part, with high-pass characteristics; the first digit of
the subscript represents the level of wavelet packet
decomposition.

It is supposed that u stands for an original signal. After
undergoing ] layers of wavelet packet decomposition, 2]
subsignals that are not overlapped can be attained and serve
as the characteristic signals of the originals. It is supposed
that the reconstructed signal at the i node in the layer J is u;,
and thus, the corresponding Shannon entropy is calculated

as follows:
E(u;) = Z uzlog( ) (3)

An eigenvector is constructed by using the energy of 2]
nodes, which can be used as the input of the subsequent
classifier.

The data of each eigenvector are normalised to [0, 1]

using the following formula = (x; = Xpin)/
(Xmax = Xmin)- Here, x; refers to the i* datum of an eigen-
vector; x i, and x,,.. denote the minimum and maximum of

the eigenvector; and x;* represents the normalised value,
respectively. In this way, the data pertaining to various ei-
genvectors can be mapped into [0, 1].

2.2. Fuzzy Weighted LSSVM. In the fields of pattern rec-
ognition, knowledge engineering, management decision-
making, and social selection, it is a very important issue that
people estimate the various factors of complex things to
make decisions. For example, in terms of OTLC mechanical
condition assessment, the influence of sampling data in
different periods on the assessment results is different, so
different periods of data must be given different weights to
highlight the factors that have a greater impact on the as-
sessment. Because the process of OLTC mechanical con-
dition evaluation itself has a certain degree of ambiguity,
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FIGURE 1: Frequency division of wavelet packet decomposition.

there is one kind of ambiguity in subjective cognitive ability.
Therefore, the diagnosis process of OLTC mechanical failure
becomes a thinking process with a lot of ambiguity, and it is
necessary to assign a weight to different factors to obtain a
better diagnosis effect. In this case, it is a good method to use
fuzzy mathematics theory to fuzzy-weight the training data
in different periods. The effect of this method has been
confirmed in many previous studies [8-10].

Given a sample set T = (x;, y;) (where M-dimensional
1nput x; € RM and one dimensional output y; €R,i=
L2, N ), it is feasible to map the nonlinear, indecom-
posable samples into high-dimensional characteristic space
by utilising nonlinear mapping function ¢(x), so as to
transform the estimation problem of nonlinear function into
a linear regression problem:

y(x) = wT(/)(x) +0. (4)

According to the structural risk minimisation principle
[11], the linear regression problem can be rendered equivalent
to an optimisation problem with equality constraint:

1 7
min w,e) =—w w+ e, 5
min J (w,) = 2;, (5)

st. yi=wlo(x;)+b+e, i=12,---,N. (6)

Afterwards, the above constrained optimisation problem
can be transformed into an unconstrained problem by using
Lagrange multipliers:

L(w,b,e,a) =] (w,e) — Z (

i-1

(x;)+b+e — yi), (7)

where «; (i = 1,2,--+,N) refers to a Lagrange multiplier.
According to the KKT condition [11], the partial de-
rivatives of various variables are calculated based on
L(w, b, e, a) for the unconstrained optimisation problem. Let
the derivative function be 0, and the extreme point of
L(w,b,e,a) can be determined. Therefore, the above un-
constrained optimisation problem can be transformed into

RPN



where I=1[1,1, ---,I]T; y= [)/1>)/2,--->yN]T§ o=

[ag, ,~-,ocN]T; Q={Qylk!l=12,---,N}, where Q =
¢(x) ¢ (x) = K(xp %)), k,1=1,2,---,N; andK (x;, x;)
refers to the kernel function of support vector machine. The
radial basis function (RBF) is applied for the calculation:
K (xp, x;) = exp (=x; — x}/0%).

Linear equation set (8) is calculated to attain aand b,
that is, the output of the LASVM can be obtained:

N
y(x) = Z oK (x, x;) +b. 9)
i=1

The training effect and generalisation ability of the
LSSVM model are affected by the parameter ¢ in the kernel
function and penalty factor C. Hence, CSA is used to op-
timise 0 and C to eliminate the effect of subjective factors on
the reliability of the proposed model.

The mechanical state of an OLTC gradually changes
during long-term operation, and the features of vibration
signals measured over different periods also vary gradually.
The measured latest data of vibration signals can better
reflect the current mechanical state of the OLTC; therefore,
the importance of feature data of vibration signals of OLTC
changes in different periods in the training process of the
model; the latest data are more important; therefore, it is
feasible to add a fuzzy weighted membership degree y; to
each sample vector in the training sample set. Thus, the
optimisation problem in equation (5) can be corrected to

1, Cc&
i Je) =— +— 10
I:Jl;lel J(w,e) 2w w 5 ;‘ulel (10)

If the sample size of the training sample set is N, the
corresponding fuzzy weighted membership degree y; of the
i" group of samples can be defined using equation (11)
according to the principle that the latest sample is of greater

importance:
i—-1
= f()=(1- , 11
;= () =( e)\{N_1+e (11)

where &€ [0,1] denotes the weight control factor,
e=y; < --- <py = 1; that is, the lower the value of ¢, the less
important the early data in the training of the model.

2.3. CSA. As a new bionic swarm evolutionary algorithm,
CSA was proposed by Yang and Deb [12, 13] in the Uni-
versity of Cambridge by using the Levy flight search prin-
ciple on the basis of exploring the reproductive mechanism
of nest parasitism among cuckoos. Through plenty of tests,
the algorithm shows better performance in many aspects
compared with GA and PSO [14]. For example, CSA yields
better global search effect while setting a smaller number of
parameters and has a rapid convergence rate, with superior
generalisation ability and stronger robustness. Therefore,
CSA has been widely used in many studies [15-18].

The optimisation mode of CSA learns from the breeding
habits of cuckoos. Cuckoos will lay eggs in nests of other
birds while they do not incubate the eggs. The owner of such
anest is called the host bird. If the host bird finds that an egg
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in the nest is not its own, the egg, or nest, will be abandoned.
Thus, the cuckoo egg fails to be successfully incubated.
Hence, cuckoos prefer to choose a nest where a host bird just
lays eggs. Once the cuckoo egg can be preserved, the
fledgling cuckoo can push the other eggs out of the nest
instinctively owing to a cuckoo egg exhibiting a higher
incubation rate. In such a way, the host bird will raise the
fledgling cuckoo egg as its own offspring. Additionally, the
flight path of cuckoos when searching for their own nests can
be described by using Levy flight concepts [19]. Therefore,
CSA usually performs optimisation through the following
two paths: (1) local search based on the probability that the
cuckoo eggs are identified by the host bird; (2) global search
by determining the step size according to Levy flight
concepts.

The local search mode of CSA can be expressed as
follows:
XD :x§+ocs®H(po—8)®(x;—x§(), (12)

1

where x’. and x{ denote two different series; H (1), 6, s, p,,
and « refer to the Heaviside function, a random number, the
step size, the probability that cuckoo eggs are found by a host
bird, and the parameter for controlling the step size,
respectively.

The global search mode of CSA can be expressed as

x.(t+1) = xf +a®L(s,A), (13)

1

where L(s,A) = AT (A)sin (mA/2)/71/s'*, s> so (1<A<3),
and o represents the parameter for controlling the step size.
Similar to PSO, CSA also employs scalar product “®7;
however, CSA which performs a random search based on
Levy flight and thus requires a larger step size; therefore,
CSA returns a faster convergence rate and can realise better
optimisation in tandem with a local search.

The specific steps in diagnosis of mechanical faults of an
OLTC by applying the CSA-fuzzy weighted LSSVM are as
follows:

(1) The historical data of vibration signals of the OLTC
are collected or a fatigue test is conducted on the
OLTC to simulate the change in its working state
during long-term operation and attain the vibration
signals in the switchover process in different oper-
ating periods. Moreover, the wavelet packet energy
entropy is obtained through wavelet packet de-
composition, serving as the input variable of the
fuzzy weighted LSSVM, and its corresponding me-
chanical state type of the OLTC is taken as the output
variable. Furthermore, a training sample set is
formed by using data from different periods.

(2) Initialisation of populations: #n bird nests
XO — ((')xl(;),)’xé())’ L ’xr(l()))T’ where xi(O) — (Ji(O)’Ci(O)’
. 51'( )) (i=1,2,---,n), are stochastically gener-

ated. The root mean square error (RMSE) is applied
as the fitness function, which is expressed as follows:

(14)
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where y, refers to the predicted value obtained by using the
fuzzy weighted LSSVM at time ¢, which is the corresponding
actual value in the training sample set at time ¢. The fitness of
each bird nest is calculated to find the current optimal
position x,” of the nest.

After obtaining the sample data, the overall flow of the
diagnostic method is shown in Figure 2.

(3) Location update: the optimal position xéo) of the nest
in the last generation is retained and the positions

X;= (5, 6T, where x = (6,CY,
si(j))T (i=1,2,---,n), of n bird nests are updated
according to Levy flight mode. Furthermore, the
fitness of the positions of each bird nest is calculated
to find the optimal position xét), which is compared

with the fitness of the optimal position xéo) of the
bird nests in the last generation. If the former is
superior, the position is updated again according to
the Levy flight mode; otherwise, the optimal position
xéo) of the nests in the last generation is retained.

(4) Local optimisation: random number & € (0,1) is
generated and compared with P, If »>P,, the
original position of the nests is retained; if § < P, the
position of the nests is updated using a stochastic
step size; afterwards, the fitness of the position of the
nests is separately calculated and compared with that
of their original positions. If the new position of the
nests has a higher fitness, the position is updated
again in the same way; otherwise, the position of the
nests in the last generation is retained to attain the
positions X;,, = (9ch+1 ,x2(1+1),---,xnj+1)) of n nests
after updating.

(5) Steps (3) and (4) are repeated until reaching the
preset maximum iteration number. The optimal
position x;, = (0,,Cp,&,)" of the nests obtained
through multiple iterations is taken as the preset
parameter of the fuzzy weighted LSSVM.

3. Real Model Experiment on Mechanical
Faults in an OLTC

3.1. Real Model of an Experimental OLTC. The typical defect
model for an OLTC of a transformer is established by
selecting the SYJZZ-35 OLTC (Figure 3), based on which
several common mechanical faults (such as a worn contact,
loose fixed contact, and a contact jam) are simulated. The
three-phase SYJZZ-35 OLTC adopted jumper voltage reg-
ulation in the middle part, with direct switching, a rated
voltage of 35kV, and seven working positions. This type of
OLTC, with its simple structure, operates reliably and is easy
to disassemble and maintain, so it is applicable for the
present research on mechanical fault diagnosis on OLTCs.

3.2. Real Model Experiment for the Typical Mechanical Faults
in an OLTC. To test the effect of the proposed method for
mechanical faults of OLTCs on fault identification, the
simulation experiment of faults is conducted using the

typical defect model for an OLTC by taking looseness and
jamming faults as examples. According to the statistical
reporting of field data, it can be seen that looseness and
jamming faults accounted for a proportion greater than 60%
among the mechanical faults of the OLTC. Therefore, the
acquired sample data are deemed representative. When
simulating the faults, the loose contacts are simulated by
unscrewing the fastening screw or spring of the contacts. A
jammed motor is simulated by applying resistance to the
motor shaft, as shown in Figures 4 and 5. To simulate the
change of fatigue state of OLTCs during long-term opera-
tion, the looseness of the fastening screw and spring is in-
creased step-by-step when simulating loose contacts; the
resistance on the motor shaft is also increased step-by-step
when simulating the jamming of the driving mechanism.
The time stamps of different experimental groups are sep-
arately defined to simulate the sample data measured in
different periods. By doing so, the superiorities of the fuzzy
weighted LSSVM relative to the LSSVM can be validated.

Three UTL2001X piezoelectric acceleration sensors
(sensitivity: 500 mV/g) produced by Beijing Quatech Elec-
tronic Co., Ltd (Beijing, China) are used. The vibration
signals in the switchover process of the OLTC are acquired
by employing a DI-4108 data acquisition system produced
by DATAQ Co., Ltd (USA). During the experiment, three
vibration sensors are distributed as shown in Figure 6 to
record the mechanical vibration signals in the switchover
process of OLTCs in three interactively vertical directions.

To reduce the random error in the switchover process of
the OLTC, it is switched over all tap positions in the ex-
periment; that is, the OLTC is switched over from the first to
the seventh tap position (uplink) and then reversely switched
over to the first tap position (downlink). Additionally, for
loose contacts, these are separately simulated at each of the
three phases of the OLTC by considering the effect of faults
at different positions on the collected vibration signals.

4. Analysis and Results

4.1. Acquisition of Wavelet Packet Energy Entropy of Vibration
Signals. The wavelet packet transform is characterised by
multiresolution analysis and imposes no requirement on
stability [20]. Therefore, the composition information of vi-
bration signals at different frequencies can be attained in
various scale spaces after the collected mechanical vibration
signals of the OLTC are decomposed by using a wavelet packet
transform. While analysing the mechanical vibration signals,
the dynamic characteristics thereof are accurately described.

Based on wavelet packet decomposition, it is necessary to
calculate multiresolution characteristic parameters in ef-
fective frequency bands to characterise the time- and fre-
quency-domain complexity in the mechanical vibration
signals of the OLTC (Figure 7).

The multiresolution characteristic parameters (effective
entropy) in effective frequency bands are extracted
according to the following steps:

(1) At first, the wavelet packet decomposition is per-
formed on the collected mechanical vibration signals
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FIGURE 2: Mechanical fault diagnosis for an OLTC based on the CSA-fuzzy weighted LSSVM model.

of the OLTC to calculate the wavelet packet trans-
forms of the mechanical vibration signals at various

scales j(j=1,2,---,]). Furthermore, the wavelet
packet coefficients at various scales are expressed as
follows:

») i1,
d{ "= %hk,zldi "

j.2n+1 j-ln (15)
d = %gk—zldk :

When decomposing the mechanical vibration signals of
OLTCs, j = 3; the mechanical vibration signals of OLTCs are
decomposed into eight frequency bands, which are sepa-
rately expressed as [S;4], [S51],--+, [S35], in which low-
frequency parts (below 12.5kHz) correspond to four fre-
quency bands [3,0], [3, 1], [3,2], and [3, 3] while the high-
frequency parts correspond to the remainder.

and

(2) Threshold processing: the wavelet packet coeficients
corresponding to low-frequency parts are processed
according to the threshold to retain only those co-
efficients exceeding the threshold, so as to eliminate
the low-frequency noise components contained in

vibration signals. To be specific,

N { x(i), |x@@)|>1,
x(i) =
0, lx ()] <1,

where [ represents the threshold, which can be calculated
according to I = nd, where n refers to a constant, and ¢
denotes the standard deviation of the wavelet packet coef-

ficient and is expressed as follows:

5 1 N/2 5
=<5 2, [x()-xT,
N2 &
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Ficure 3: SYJZZ-35 OLTC.

FIGURE 4: Fault simulation of typical looseness. (a) Normal working condition of moving contact. (b) Simulating the loosening of moving
contact. (c) Normal working condition of transition contact. (d) Simulating the loosening of transition contact.



FIGURE 6: Positions of accelerometers.

where X and N denote the mean and the sequence length of
mechanical vibration signals, respectively.

(3) Acquisition of energy entropy: the signals collected
from various nodes [S;4l, [S3;],---, [S35] are
reconstructed to calculate Shannon entropies of
various nodes. Eventually, the effective entropy for
characterising the mechanical vibration signals of the
OLTC is obtained through combination thereof.

4.2. Verification of the Effect of the Model in Fault
Identification. In the present study, 330 groups of data
under four working conditions (normal working conditions,
loose moving contact, loose transition contact, and a jam-
med driving mechanism) are selected as training samples.
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Mechanical vibration signals of the OLTC

'

Wavelet packet decomposition

i 5 p | Low
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Energy Energy Energy Energy Energy
entropy entropy entropy entropy entropy
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Combined with characteristic parameters of mechanical
vibration signals of the OLTC

FiGure 7: Extraction of characteristic parameters of vibration
signals of the OLTC.

Additionally, 50 groups of data under each working con-
dition are chosen as test samples. To verify the effect of the
CSA-fuzzy weighted LSSVM model in identifying the me-
chanical fault types of the OLTC, single LSSVM, CSA-
LSSVM, and RBF neural network models are introduced for
comparison. Moreover, the initial parameters of single
LSSVM and RBF neural network models are set as listed in
Table 1.

In the CSA-fuzzy weighted LSSVM, the optimal values of
regularisation parameter C, kernel function width o2, and
weight control factor ¢ are 979.3348, 175.5435, and 0.631,
respectively. The confusion matrices obtained by processing
200 groups of test data based on the four models are shown
in Tables 2-5.

The statistical analysis results of the effect of the four
models in fault identification are listed in Table 6. The “kappa”
coefficient is used to measure the accuracy of the models for
fault identification, which represents the fitting degree be-
tween the predicted results and actual working conditions.
The coefficient can better reflect the prediction and classifi-
cation effect of the model relative to the percentage of ac-
curate classifications [21] and is calculated as follows:

NYSoa, - Yo, (a,a,;)
N? - Zlc=_01 (ai+a+i)

where a;; refers to the value of the positive diagonal in the
confusion matrix; a;, and a,; denote the sums of values in
the i row and j column in the confusion matrix; and N is
the total number of the test samples.

As shown in Table 6, CSA-fuzzy weighted LSSVM
presents the highest classification accuracy and the largest
Kappa value, thus showing optimal accuracy of fault
identification. The three prediction models based on LSSVM

kappa = , (18)
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TaBLE 1: Initial parameters of the models for comparison. TaBLE 4: Confusion matrix of CSA-LSSVM.
Model Parameter Value Predicted working
. Regularisation parameter C 200 condition
Single LSSVM Kernel function width ¢ 90 1 2 3 4
Node number in the hidden layer 50 1 50 0 0 0
Maximum iteration number 100 . -, 2 2 47 1 0
RBF neural network Learning rate 01 Actual working condition 3 1 1 48 0
Error 0.0004 4 1 1 1 47
TaBLE 2: Confusion matrix of RBF neural network. TaBLE 5: Confusion matrix of CSA-fuzzy weighted LSSVM.
Predicted working Predicted working
condition condition
1 2 3 4 1 2 3 4
1 50 0 0 0 1 50 0 0 0
. . 2 3 31 8 8 . o 2 0 49 1 0
Actual working condition 3 5 9 29 10 Actual working condition 3 0 1 49 0
4 2 10 11 27 4 0 0 50

TaBLE 3: Confusion matrix of single LSSVM.

Predicted working

condition
1 2 3 4
1 47 2 0 1
. s 2 2 43 3 2
Actual working condition 3 ) 3 9 23
4 2 3 0 45

are successively displayed as single LSSVM, CSA-LSSVM, and
CSA-fuzzy weighted LSSVM, respectively, in terms of their
kappa values. This validated the suggestion that the cuckoo
algorithm can optimise the LSSVM to improve its fitting
accuracy. Relative to CSA-LSSVM, the classification accuracy
of CSA-fuzzy weighted LSSVM is further strengthened. The
RBF neural network is inferior to the aforementioned pre-
dictive models based on LSSVM in terms of classification
accuracy. The reason for this is that an RBF neural network
model exhibits poor capacity for processing small sample
datasets, and therefore, it fails to attain an ideal effect unless
there are a large number of training samples; however,
LSSVM presents a strong ability to process small sample data,
so it is better suited to identify mechanical faults in an OLTC
compared with an RBF neural network.

Above all, the proposed CSA-fuzzy weighted LSSVM can
deal with small sample sizes and nonlinear prediction prob-
lems; moreover, relative to CSA-LSSVM and single LSSVM,
the proposed model shows higher fitting accuracy. The effect of
fault identification of the model also presents significant su-
periority compared with RBF neural network techniques. This
also indicates that it is feasible to identify the mechanical faults
of OLTCs by applying CSA-fuzzy weighted LSSVM.

5. Conclusion

A CSA-fuzzy weighted LSSVM is constructed to identify
mechanical faults in OLTCs. The model assigns different

TABLE 6: Statistical results showing classification accuracy of the
four pattern recognition methods.

Correctly e
Model classified sample Clasmﬁcatl;) N Kappa
. accuracy (%)
size

RBF neural 137/200 68.5 0.580
network

Single LSSVM 177/200 88.5 0.836
CSA-LSSVM 192/200 96.0 0.947
CSA-fuzzy

weighted 198/200 99.0 0.987
LSSVM

weights to the training data in different periods. Addi-
tionally, the parameters of the model are optimised by
applying CSA to improve the accuracy of fault identification.
The following conclusions are drawn:

(1) The mechanical state of an OLTC during long-term
operation gradually changed and the characteristics
of vibration signals measured in different periods
also differed, therefore proving the importance of the
characteristic data of vibration signals of OLTCs
changes in different periods during the training
phase. Assigning different weights to the training
data in different periods can improve the identifi-
cation accuracy of mechanical faults of OLTCs.

(2) Wavelet packet energy entropy can effectively
characterise the frequency composition information
of vibration signals of OLTCs at different scales and
can describe the dynamic characteristics contained
in vibration signals on the basis of decomposing the
mechanical vibration signals of OLTCs. Therefore,
wavelet packet energy entropy is suitable for
extracting the features of mechanical vibration sig-
nals arising from OLTCs.

(3) The CSA-fuzzy weighted LASSVM can process
small sample sizes and nonlinear classification
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TABLE 7: Abbreviations.
Term Abbreviation
Fast Fourier transform FFT
Adaptive genetic algorithm AGA
Least square support vector machine LSSVM
Cuckoo search algorithm CSA
Artificial neural network ANN
Backpropagation BP
Genetic algorithm GA
On-load tap changer OLTC
On-load tap changing transformer OLTCT
Radial basis function RBF

problems. Compared with CSA-LSSVM, single
LSSVM, and RBF neural network methods, the
model exhibits higher fitting accuracy and is ap-
plicable to diagnosis of mechanical faults in
OLTCs.

The proposed diagnosis method would change the tra-
ditional diagnosis method of the on-load tap changer and
improve the power supply quality and the detection effi-
ciency under the premise of ensuring the safety of the staff.

However, the research in this article still has deficiencies.
For example, this article does not conduct an in-depth study
on the propagation law of the mechanical vibration waves of
the on-load tap changer, nor does it take into account the
noise of the core and winding vibrations during normal
operation of the transformer. We need to do further research
in the next step as follows:

(1) Based on the in-depth study of the internal structure
of the on-load voltage-regulating transformer, the
propagation law and attenuation mode of the me-
chanical vibration of the on-load tap changer in the
transformer could be studied from the perspective of
physical acoustics. The vibration sensor measure-
ment method and vibration signal feature extraction
method should be further improved.

(2) The vibration generation mechanism of transformer
core and winding and other components should be
studied, and we should pay attention to the appli-
cation of blind source separation algorithm in
extracting mechanical vibration to obtain more ac-
curate and true mechanical vibration signal of on-
load tap changer.

The abbreviations are given in Table 7.

Data Availability
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