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&is paper reviews the progress of the multiple population mortality model and the defects in parameter estimation and proposes
an effective method to improve the performance of the mortality model. We set up a multiple population group, using the data of
mainland China, Hong Kong (China), and Japan, to test fitting performance and forecasting performance. Using the TSWLS and
TSSVD methods in a multiple population stochastic mortality model has advantages in fitting performance and robustness. In
addition, the forecasting value of mortality ratio between any two populations can converge to a fixed constant in a certain time
period which obeys the regular of human biological characteristics.

1. Introduction

With the demographic dividend gradually disappearing
worldwide, it is common for the elders to have fewer
children. In the future, it will seriously change the age
structure of the population and interfere with the country’s
formulation of certain strategic policies. Additionally, the
acceleration of the life expectancy and the ageing of the
population would lead to varying shocks to the national
pension system, commercial insurance companies, and
families, which makes a negative impact on the economic
development for a country. &erefore, it is beneficial to take
countermeasures in advance to help economic entities, using
scientific methods to forecasting the population mortality
and reasonably assessing the impact of longevity risk. &e
research on the method of forecasting of mortality has
experienced the development from a single population
model to multiple population model. Among them, some
classical methods, such as the Lee–Carter model, APC
model, and CBD model, have been verified for stability,
which represent the frontier progress of the research on the
stochastic mortality model.

&e stochastic mortality model which is used for a single
population group is first proposed by Lee and Carter in [1].

&e Lee–Carter model assumes that the logarithmic mor-
tality is composed of independent age and period effects,
with fewer model parameters, simple fitting process, robust
forecasting results, and other advantages, which has been
widely used by scholars all over the world. &e Lee–Carter
model applies a two-stage method to estimate parameters. In
the first stage, it uses the orthogonal least squares (OLS)
method, the maximum likelihood estimate (MLE) method,
or singular value decomposition (SVD) method to estimate
static parameters. For the second stage, dynamic parameters
are fitted by the time series model [2]. Scholars have made
many improvements to the Lee–Carter model, including the
improvement of the parameter estimation method [3] and
model hypothesis [4]. Renshaw et al. [5] took the cohort
effect of population mortality into consideration and further
expanded it into the age-period-cohort (APC) model. Al-
though the APC model is used in medicine for a long time,
the idea of modelling stochastic mortality originated from
the Lee–Carter model. Furthermore, due to the relatively
small number of population exposures of old age, the
Lee–Carter model and APC model are not well suitable for
the mortality of the elders. However, it is found that the CBD
model with two factors could cope with this problem [6].&e
CBD mode with cohort effects is a prominent choice [7] for
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fitting mortality of the elders when both BIC information
criterion and robustness of the parameters are considered.
With the continuous development of population mortality
models, there is an increasing number of shortcomings of
single population stochastic mortality model exposed and
there would be unreasonable crossover or deviation in
mortality forecasting in a long time [8, 9]. Because the
mortality modelling is a kind of systematic work, it only
considers a single population group, which will cause dif-
ferent population mortality violating human biological laws
over time. &erefore, it is necessary to promote the fore-
casting performance of mortality in the long term by
combining with two or more populations in one model,
which can make the mortality model have better fitting
goodness and forecasting performance.

Carter and Lee [10] proposed the first multiple mortality
model called the Joint-k model, which assumes that the
mortality of multiple populations has the common period
effect factor, and the gap among population groups reflects
only in the individual age effect factor. Li and Lee [11]
extended the age effect factor to a common factor based on
the Joint-k model and then put forward the Li–Leemodel, an
augmented common factor model, which has common age
and period effect factors plus the additional age and period
effect factors that represent the mortality in a single pop-
ulation. Li and Hardy [12] proved that there is a cointe-
gration relationship on the trend of the period effect factor
among multiple populations and then established a linear
time-effect factor model called the cointegrated Lee–Carter
model. Kleinow [13] proposed a common age effect (CAE)
model, using a common principal component analysis to
estimate the parameter. &e model is simple and has a better
fitting performance. Enchev et al. [14] compared the above
models with the MLE method to select which model has the
best fitting performance. According to the result, the CAE
model and Li–Lee model are more suitable for modelling on
multiple population mortality, but there is a problem in
converging of parameter estimation. Li and Liu [15] built a
logistic two-population mortality projection model for the
mortality at ages 80 to 100 of both sexes, applied this model
and its extensions to high-quality old-age mortality data of
Belgium, Sweden, Switzerland, and the UK, and produced a
decent model performance in both mortality fitting and
forecasting. Tsai and Zhang [16] proposed a nonparametric
method to forecast the mortality of a multiple populations of
the United States, the United Kingdom, and Japan.

According to current research, it is found that the
multiple population stochastic mortality model has become
the frontier progress, and there have been studies on the
quantitative comparison of different types of multiple
mortality models, but the quantitative comparison of pa-
rameter estimation methods is still blank. In addition, most
of the data used to test the multiple population mortality
models are European countries in the human mortality
database, but few studies use data from statistical institutions
in developing countries. As a country with a large population
and rapid economic development, the mortality rate of
mainland China is rapidly decreasing, but there are few
studies on mortality forecasting based on the multiple

population model. It is meaningful for mainland China to
build a multiple mortality model with neighbouring
countries or regions which not only have the lower values
and higher quality mortality but also have much closer genes
and habits that can affect mortality. &erefore, this paper
selects East Asian countries and regions, including Hong
kong (China) and Japan to build a multiple population
model with mainland China to compare quantitatively the
methods of parameter estimation.

&e structure of this paper is as follows. Section 2 ex-
plains the rationale of the methods of parameter estimation
for the multiple mortality model. Next, Section 3 describes
the data features and research scheme. Following this,
Section 4 inspects the fitting performance of the proposed
methods. Section 5 examines the forecasting performance
among the three population groups. Finally, Section 6
concludes the paper.

2. Mortality Models

2.1. Lee–Carter Model. Lee and Carter (1992) propose a
logarithmic, linear stochastic mortality model as follows:

lnm(x, t) � α(x) + β(x)∗ k(t) + ε(x, t), (1)

in whichm(x, t) is the crude mortality rate at the age x in the
year t for a single population, α(x) and β(x) are variables
about the age x, while α(x) is the average of the logarithmic
mortality in all years, β(x) shows the age effect parameter
which stands for the slope of the logarithmic mortality, k(t)
explains the period effect parameter that represents the slope
of the logarithmic mortality in the year t, and ε(x, t) is the
normal error with i.i.d. &ere are three types of methods to
estimate the parameters in the Lee–Carter model, including
the OLS, SVD, and MLE method.

2.2. Li–LeeModel. While requiring the high quality of death
data, the Lee–Carter model can only be used to forecast the
mortality of a single population. To make up for the defects
of the Lee–Carter model, Li and Lee proposed a mortality
model from the perspective of multiple populations as
follows:

lnm(x, t, i) � α(x, i) + B(x)∗K(t) + β(x, i)∗ k(t, i) + ε(x, t, i),

(2)

in which m(x, t, i) is the crude mortality rate at the age x in
the year t in the population i and α(x, i) explains the average
of logarithmic mortality at the age x in all years in the
population i. &e common age effect parameter B(x) rep-
resents the slope of the logarithmic mortality at the age x for
all population groups, K(t) is period effect parameter which
shows the slope of the logarithmic mortality in the year t for
all population groups, the specific age effect parameter β(x, i)
is the slope of the logarithmic mortality at the age x in the
population i, k(t, i) is the specific period effect parameter that
represents the slope of the logarithmic mortality in the year t
in the population i, and ε(x, t, i) is the normal error with i.i.d.
Similar to the Lee–Carter model, the Li–Lee model also
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contains three methods to estimate the parameters that are
SVD, OLS, and MLE.

Li and Lee used the SVD method to estimate the
parameters of the multiple population mortality model.
However, that experiment discovers the lack of suitability
in the SVDmethod for certain deformation forms. Enchev
et al. used the MLE method, which has an extensive range
of applications to almost all types of multiple population
mortality models, to estimate parameters. Nevertheless,
the multiple population mortality models have more
parameters, and there will be errors that the converging
value is mistaken for the optimal local solution during the
calculation process of the Newton–Raphson iterative al-
gorithm. For the sake of solving the problems above, we
propose two methods to estimate the parameter of the
Li–Lee model, which are two-step weighted least squares
(TSWLS) and two-step singular-value decomposition
(TSSVD).

In what follows, we derive and implement constraints for
the parameters that allow us to solve the identifiability issues.
&e constraints are as follows:


x

B(x) � 1,


t

K(t) � 0,


x

β(x, i) � 1,


t

k(t, i) � 0,

(3)

in which we normalise the sums of the common age pa-
rameter to equate to unity. Additionally, the specific age
parameters should also equate to unity for every population
i. Furthermore, the common period parameter should sum
to zero, and finally, the specific period parameters should
sum to zero for each population i as well. &e steps of
TSWLS and TSSVD methods are as follows:

Step 1: using the Lee–Carter model, define

ln(x, t, i) � α(x, i) + B(x)∗K(t) + ε(x, t, i), (4)

and then estimate the parameters α(x, i), B(x), and K(t)
for the combined dataset of all populations. Both the
methods, TSWLS and TSSVD, have the same Step 1.

(1) Based on tK(t) � 0, get the estimation of α(x, i):t

αx,i �


tU

t�tL
lnmx,t,i

tU − tL + 1
. (5)

(2) Based on xB(x) � 1, get the estimation of K(t):

Kt � 
r

i�1


xU

x�xL

wi × ln mx,t,i  − αx,i . (6)

in which t � tL, . . . , tU, i � 1, . . . , r, x � xL, . . . , xU,
and i � 1, . . . , r; wiis the weight of the group i, that is,


r
i�1 wi � 1; in this article, the weight of every group

is wi � 1/r.
(3) Based on [ln(mx,t,i) − αx,i], use WLS to obtain the

estimation of B(x):

Bx �


r
i�1 

t�tU

t�tL
wi

Kt × lnmx,t,i − αx,i  


tU

t�tL

K
2
t

. (7)

Step 2: using the Li–Lee model, define

lnm(x, t, i) � α(x, i) + B(x)∗ K(t) + β(x, i)∗ k(t, i).

(8)

in which the estimated α(x, i), B(x), andK(t) are fixed
as constant values.

(4) Based on xB(x, i) � 1, obtain the estimation of
k(t, i):

kt,i � 

xU

x�xL

ln mx,t,i  − αx,i − Bx × Kt . (9)

(5) Based on [ln(mx,t,i) − αx,i − Bx × Kt], use OLS to
obtain the estimation of β(x, i):

βx,i �


tU

t�tL

kt,i × lnmx,t,i − αx,i   − Bx 
tU

t�tL
Kt

kt,i


tU

t�tL

k
2
t,i

.

(10)

&e above step is the parameter estimation process of the
TSWLS method, and the process of the TSSVD method can
be directly used by singular-value decomposition.

2.3. Mortality Graduation Method. Although the Li–Lee
model, as Kang et al. [17] reveal, is one of the classical
methods among the multiple population mortality models,
the fluctuation of crude mortality data defects the fitting
performance.&erefore, graduating the crude mortality data
before fitting the model is necessary. In this paper, we apply
the two-dimensional beta kernel density method, which can
guarantee the reasonable smoothing results on both age and
time dimensions, to graduate the crude mortality [18]. &e
two-dimensional beta kernel density method requires three
steps, as follows:

Step 1: modelling two-dimensional beta kernel
density:

(1) Define the distribution function of the numbers of
death:

d(x, y) ∼ Bin[e(x, y), q(x, y)], (11)

in which x is the age, y is the year, at the age x in the
year y, d(x, y) is the numbers of death satisfying the
binomial distribution, e(x, y) is the exposure, and
q(x, y) is the actual mortality.

(2) Define the function of two-dimensional beta kernel
density:
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khZ
z; mZ(  � z − aZ +

1
2

 
mZ− aZ+(1/2)( )/ hZ cZ+1( )( )

· bZ +
1
2

− z 
bZ+(1/2)− mZ( )/ hZ cZ+1( )( )

, z ∈Z,

(12)

in which Z is a two-dimensional random variable that
has the value space of Z � aZ, bZ , cZ � bZ − aZ, and
hz is the bandwidth. &e above formula can be stan-
dardized as

KhZ
z; mZ(  �

khZ
z; mZ( 

ω∈ZkhZ
ω; mZ( 

, z ∈Z. (13)

(3) Estimate the crude mortality:

q(x, y) � 
u∈X


v∈Y

KhX,hY
u, v; mX � x, mY � y(  _q (u, v),

(x, y) ∈ X × Y,

(14)

in which _q(x, y) is defined as the crude mortality that is
accord with the q(x, y), x ∈ X, and y ∈ Y. Otherwise,

KhX,hY
x, y; mX, mY(  � KhX

x; mX( KhY
y; mY( ,

(x, y) ∈ X × Y.

(15)

Step 2: setting the adaptive bandwidth:
&e formula of bandwidth adaptation is

hZ z; sZ(  � hZ lZ(z) 
sZ , z ∈ Z, (16)

in which hZstands for the global bandwidth factor and
sis a sensitive parameter as the local bandwidth factor,
s ∈ [0, 1]. &e reliability function lZ(z)can determine
the numerical ranges of the local bandwidth factor, and
at the same time, reliability function is limited by the
local bandwidth factor so that extreme values do not
occur.
Mazza and Punzo used variation coefficient (VC) to
measure lZ(z), which is as follows:

VC(z) �

����������������
e(z)q(z)[1 − q(z)]



e(z)q(z)
, z ∈Z. (17)

When the reliability function satisfies the condition of
[lZ(z)]sZ ∈ [0, 1],

lZ(z)  �
VC(z)

ω∈ZVC(ω)
, z ∈Z. (18)

Step 3: selection of sensitive parameters:
In the process of mortality graduation of the two-di-
mensional beta kernel, the selection of bandwidth is
realised by minimizing CV statistics, whose formula is

CV hZ(  � 
z∈Z

res2 _q(z), q−z(z) , (19)

in which res[ _q(z), q−z(z)] is the residual in z and _q(z)is the
rude mortality in z. &e formula of q−z(z) can be expressed
as

q−z(z) � 
v∈Z

v≠zZ

khZ
v; mZ � z( 


w∈Z
w≠z

khZ
w; mZ � z( 

_q(z).
(20)

Furthermore, the proportional difference form of re-
sidual in mortality graduation is commonly used, that is,

res _q(z), q−z(z)  �
q−z(z)

_q(z)
− 1. (21)

2.4. Fitting and Forecasting. Before forecasting the mortality
out-of-sample, it is necessary to test the fitting performance.
&e average absolute percentage error (MAPE) is used
frequently [19] whose expression is

MAPEi �
1

xU − xL + 1
1

tU − tL + 1


xU

x�xL



tU

t�tL

mx,t,i − mx,t,i

mx,t,i




.

(22)

Forecasting the mortality should model the time-effect
factors first. &e Li–Lee model includes both the common
time-effect factor, K(t), and the specific time-effect factor,
k(t, i). &ey are modeled as

Kt � θ + Kt−1 + εt,

kt,i � ϕ0 + ϕ1kt−1,i + εt,i.
(23)

in which K(t) is the processes of a random walk with drift
and k(t, i) explains the autoregressive process with one
order. On this basis, we get the following mortality pre-
diction formula:

mx,t,i � _mx,s,i exp Bx
Kt − Ks  + βx,i

kt,i − ks,i  . (24)

&e forecasting results can not only reflect the trend of
mortality decline but also ensure the long-term consistency
of mortality among different population groups.

3. Data and Research Scheme

We perform our analysis based on data obtained from public
resources of the National Bureau of Statistics of China (BSC)
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and Human Mortality Database (HMD). &e typical dataset
consists of the numbers of deaths and the central exposure.
&e age period range considered is from 0 up to 100 years
(101 consecutive ages in total) and from 1994 up to the year
2014 (21 years in total), respectively.

To compare advantages of methods used in this paper, we
make the following designs: (1) due to the lower number of
deaths, we select male mortality as the research samples; (2) in
order to keep up with the standard of HMD data, we use two-
dimensional beta kernel density method to graduate the mor-
tality in mainland China; (3) we select the data from East Asian
countries or regions of mainland China, Hong Kong (China),
and Japan to compare our method with the Lee–Carter model;
and (4) we test the robustness of our method by replacing the
data of crude mortality with the graduated mortality.

4. Quantitative Comparison of
Fitting Performance

In this paper, we compare models between the multiple
population stochastic mortality model and single population
Lee–Carter model, so do methods between the TSWLS
method and the TSSVD method in the Li–Lee model, from
the perspective of horizontal comparison. Because major
research on mortality modelling of China uses the crude
data, this paper first applies the same mortality data for
analysis. Also, the MLE method cannot converge to a stable
value all the time in the Li–Lee model, so it is not included in
our study. Based onmethods of the second part in this paper,
we can calculate the MAPE values.

Table 1 shows the MAPE values of the three methods in
mainland China, Hong Kong (China), and Japan, in which a
smaller MAPE value indicates a better fitting performance. In
general, the Li–Lee model with the TSSVD method has the
lowest MAPE value of 20.22% in all the years from 1995 to
2014, while the Lee–Carter model has the highest MAPE value
of 21.18%. &erefore, we can infer that the fitting performance
of multiple populationmortality model under the twomethods
for parameter estimation is better than that under the single
populationmortalitymodel. Next, we plan to analyse the fitting
performance of different population groups below. For
mainland China, the Lee–Carter model gets the lowest MAPE
value, while the Li–Lee model under the TSWLS method has
the highest in all the years from 1995 to 2014. However, inmost
of the five-year periods, the Li–Lee model does better than the
Lee–Carter model on fitting performance. For example, the
Li–Leemodel with TSSVDmethod has the best performance in
the years of 1995∼2000 and 2006∼2010. By contrast, the
Lee–Carter model only shows a surprisingly lowest MAPE
value in the years of 2011∼2014, which brings about the best
fitting performance in the whole historical period. In Hong
Kong (China), the Li–Lee model with TSSVD method always
displays the lowest MAPE value during 1995 and 2014, and
only in 1995∼2000, it gets slightly higher value than the TSWLS
method. As for Japan, the last population group, the Li–Lee
model with TSSVD method is the one that has the best per-
formance among any periods of years. In terms of numerical
values, Japan’s MAPE value ranges from 5% to 9%, while that
in mainland China is from 27% to 49% and 18% to 25% in

Hong Kong (China). From the above analysis, we can assume a
preliminary conclusion that when the higher the smoothness is,
the better fitting performance the mortality model will have.

&en, we use the two-dimensional beta kernel density
method, aiming to derive mortality with higher smoothness
in the dimension of the period, to graduate the data in
mainland China. Although the mortality from the HMD
database is graduated, the method is constrained within the
dimension of age, which ignores the impact of the period
trend. To not only test the robustness of the estimation but
also explain whether the smoother populationmortality data
can improve the fitting performance of the model, we use the
two-dimensional smoothing method for the population
mortality in mainland China.

Table 2 shows the MAPE values of three methods in
mainland China, Hong Kong (China), and Japan, respectively.
From Table 2, we notice that the fitting mortality model based
on the graduated data makes a considerable positive impact on
mainland China, which reduces the MAPE value range from
the 27%∼49% to 9%∼15% but has less effect on the fitting
performance of Japan and Hong Kong (China). It means that
the smoothness of the data can significantly improve the fitting
effect of the Li–lee model, with both methods, and the
Lee–Carter model. At the same time, we can observe that the
three methods show a stable estimation effect in all pop-
ulations. Consistent with Table 1, the Li–Lee model with
TSSVD method gets the lowest MAPE value, while the
Lee–Carter model has the highest MAPE value. Consequently,
we can make advancement in model fitting performance by
using the graduated mortality data and solving the multiple
population mortality models with the TSSVD method, espe-
cially for forecasting of mortality in mainland China.

5. Quantitative Comparison of
Forecasting Performance

According to equation (11), we can obtain the numerical values
of out-of-sample mortality from 2015 to 2050. In this paper, we
take the 30-year-old population as an example and then display
the values in Table 3. All three types of methods could show a
decreasing trend of population mortality in the future, but there
are some differences in detail. From the perspective of different
population groups, the mortality of the Lee–Carter model in
mainland China declines rapidly from 0.97‰ in 2015 to 0.28‰
in 2050, while the forecasting values of the other two methods
are very close to each otherwhich decline from1.00‰ in 2015 to
0.50‰ in 2050 together. For Hong Kong (China), the mortality
forecasting results by all methods are similar, except the Li–Lee
model with TSWLS, which has slightly higher values. Compared
with that in mainland China, the future values of population
mortality in Japan is also close under the two methods of the
Li–Lee model, but the Lee–Carter model has higher forecasting
values. &e reason for the above situation is that the multiple
population mortality model is systematic, which can consider
the interrelationship between different population groups and
make the expected results reasonable in the long term. Because
the single population of the Lee–Carter model assumes that the
mortality decreases with a fixed constant, the forecasting values
of mortality among different population groups will cross or

Mathematical Problems in Engineering 5



deviate abnormally in the long term. &erefore, the multiple
population mortality model is more suitable for forecasting
mortality than the single populationmortality model in the long
term, also effectively improves the reliability of the prediction
value.

Next, we use three figures to show the forecasting
performance vividly. From the perspective of different
methods, we further analyse the evidence of rationality of the
population mortality model. Figure 1 shows the trend of
mortality in different populations under the Lee–Carter

Table 2: MAPE values of all the models on graduated mortality data (%).

1995∼2000 2001∼2005 2006∼2010 2011∼2014 All years
Mainland China
Li–Lee model (TSWLS) 7.36 6.26 6.96 13.55 8.39
Li–Lee model (TSSVD) 7.76 6.62 7.41 9.13 7.86
Lee–Carter model 7.35 6.28 6.89 14.39 8.54

Hong Kong (China)
Li–Lee model (TSWLS) 23.39 19.25 20.03 23.30 21.04
Li–Lee model (TSSVD) 23.53 18.68 18.70 22.23 20.38
Lee–Carter model 23.13 19.15 20.21 24.10 21.16

Japan
Li–Lee model (TSWLS) 5.50 4.68 4.71 6.88 5.36
Li–Lee model (TSSVD) 5.55 4.68 4.70 6.98 5.38
Lee–Carter model 6.99 7.59 8.46 8.65 7.95

Sum of above
Li–Lee model (TSWLS) 12.08 10.06 10.57 14.58 11.60
Li–Lee model (TSSVD) 12.28 9.99 10.27 12.78 11.21
Lee–Carter model 12.49 11.01 11.85 15.71 12.55

Table 3: Numerical values of out-of-sample mortality from 2015 to 2050 (‰).

2015 2020 2025 2030 2035 2040 2045 2050
Mainland China
Li–Lee model (TSWLS) 0.98 0.89 0.80 0.72 0.65 0.58 0.52 0.47
Li–Lee model (TSSVD) 1.00 0.91 0.82 0.73 0.66 0.59 0.53 0.48
Lee–Carter model 0.97 0.81 0.68 0.57 0.48 0.40 0.34 0.28

Hong Kong (China)
Li–Lee model (TSWLS) 0.59 0.54 0.49 0.44 0.39 0.35 0.32 0.28
Li–Lee model (TSSVD) 0.58 0.52 0.46 0.42 0.37 0.33 0.30 0.27
Lee–Carter model 0.57 0.51 0.46 0.41 0.37 0.33 0.30 0.27

Japan
Li–Lee model (TSWLS) 0.65 0.56 0.50 0.45 0.40 0.36 0.32 0.29
Li–Lee model (TSSVD) 0.67 0.60 0.53 0.48 0.43 0.39 0.35 0.31
Lee–Carter model 0.68 0.66 0.63 0.61 0.59 0.57 0.56 0.54

Table 1: MAPE values of all the models on crude mortality data (%).

1995∼2000 2001∼2005 2006∼2010 2011∼2014 All years
Mainland China
Li–Lee model (TSWLS) 28.76 27.45 40.76 47.19 35.17
Li–Lee model (TSSVD) 28.75 27.61 40.03 45.91 34.77
Lee–Carter model 29.02 27.99 39.32 44.24 34.42

Hong Kong (China)
Li–Lee model (TSWLS) 23.61 19.21 20.15 23.03 21.05
Li–Lee model (TSSVD) 23.64 18.66 18.75 22.57 20.49
Lee–Carter model 23.13 19.15 20.21 24.10 21.16

Japan
Li–Lee model (TSWLS) 5.52 4.82 5.10 6.93 5.49
Li–Lee model (TSSVD) 5.49 4.70 4.81 6.91 5.39
Lee–Carter model 6.99 7.59 8.46 8.65 7.95

Sum of above
Li–Lee model (TSWLS) 19.30 17.16 22.00 25.72 20.57
Li–Lee model (TSSVD) 19.29 16.99 21.20 25.13 20.22
Lee–Carter model 19.71 18.24 22.66 25.66 21.18
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model in 2015–2050. We can find two unreasonable prob-
lems in Figure 1. Firstly, the curve of mortality trend of
mainland China intersects with Japan in 2038. On the other
hand, it keeps below that of Japan in the following years. &e
reason is that the Lee–Carter model only considers the
velocity of single population mortality decline in historical
data. Due to the higher level of mortality in mainland China,
the velocity of mortality decline rate is faster than that of
Japan, which has finished the historical stage of rapid decline
of mortality. If the mortality rates of the two population
groups continue to fall at the current speed, the life ex-
pectancy in mainland China will surpass that in Japan soon
after, though it is contradicting to the biological law of
human beings. As time goes by, the gap of mortality curves
between Hong Kong (China) and Japan is gradually wid-
ening with a trumpet shape, which is also attributed to the
defects in the hypothesis of a single mortality model.

Figure 2 demonstrates the forecasting values of mortality
based on the Li–Lee model with the TSWLS method, the
above problems in the single mortality model can be fixed
through the multiple mortality model. &e mortality of the
three groups shows a consistent trend from 2015 to 2050 in
Figure 2, similar to the historical experience of decline.
Mortality of mainland China maintains a higher level than
the others, and the gap is narrowing. However, there will be
no crossing in the future. We can tell from Figure 2 that the
mortality gap between Hong Kong (China) and Japan is
relatively small and even overlapped in a short period, which
is not accord with the current mortality relationship between
the two populations.

How to address this issue can be found in Figure 3.
Figure 3 witnesses forecasting values of mortality based on
the Li–Lee model with the TSSVD method from 2015 to
2050, in which the forecasting values of mortality on
mainland China is close to the values in Figure 2. Yet, the
TSSVD method for forecasting the mortality of two pop-
ulation groups in Hong Kong (China) and Japan has more
advantages, as reflecting the mortality gap decreasing over
time but no crossing in the short term. Overall, we conclude
that the multiple population model is better than the single

population model in terms of forecasting of mortality, and
the TSSVD method is more suitable for the multiple pop-
ulation model than the TSWLS method.

6. Conclusion

&is paper reviews the progress of the multiple population
stochastic mortality model and finds some defects in pa-
rameter estimation, so that it proposes an effective method
to improve the parameter estimation. We set up multiple
population groups, using the data of mainland China, Hong
Kong (China), and Japan, to test fitting performance and
forecasting performance, and draw the following conclu-
sions: (1) for the parameter estimation method, TSWLS and
TSSVD methods, in a multiple population stochastic mor-
tality model, can avoid some problems, like maximum
likelihood estimation is not converge, or the result is local
optimal caused by the more parameters. &e two methods
are simple and easy to understand and are the tools for the
application in the multiple population mortality model. (2)
For fitting performance, the multiple population mortality
model is robustness based on TSWLS and TSSVD methods.
Additionally, the fitting performance can be significantly
improved based on graduated data, which illustrates that the
multiple population mortality model is more suitable for
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Figure 1: Trends in mortality based on the Lee–Carter model from
2015 to 2050.
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Figure 2: Trends in mortality based on the Li–Lee model with
TSWLS from 2015 to 2050.
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Figure 3: Trends in mortality based on the Li–Lee model with
TSSVD from 2015 to 2050.
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smooth mortality. (3) For forecasting performance, the
multiple population stochastic mortality model with addi-
tional period effect factors can obtain consistent values
among different population groups, and the mortality ratio
between any two populations can converge to a fixed
constant in a certain period which obeys the regular of
human biological characteristics.
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Computational and Applied Mathematics, vol. 365, Article ID
112377, 2020.

[10] L. R. Carter and R. D. Lee, “Modeling and forecasting US sex
differentials in mortality,” International Journal of Forecast-
ing, vol. 8, no. 3, pp. 393–411, 1992.

[11] N. Li and R. D. Lee, “Coherent mortality forecasts for a group
of populations: an extension of the Lee-Carter method,”
Demography, vol. 42, no. 3, pp. 575–594, 2005.

[12] J. S.-H. Li and M. R. Hardy, “Measuring basis risk in longevity
hedges,” North American Actuarial Journal, vol. 15, no. 2,
pp. 177–200, 2011.

[13] T. Kleinow, “A common age effect model for the mortality of
multiple populations,” Insurance: Mathematics and Eco-
nomics, vol. 63, pp. 147–152, 2015.

[14] V. Enchev, T. Kleinow, and A. J. G. Cairns, “Multi-population
mortality models: fitting, forecasting and comparisons,”
Scandinavian Actuarial Journal, vol. 2017, no. 4, pp. 1–24,
2017.

[15] J. Li and J. Liu, “A logistic two-population mortality pro-
jection model for modelling mortality at advanced ages for
both sexes,” Scandinavian Actuarial Journal, vol. 2019, no. 2,
pp. 97–112, 2019.

[16] C. C. L. Tsai and Y. Zhang, “A multi-dimensional Bühlmann
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