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In mainland China, measles infection reached the lowest level in 2012 but resurged again after that with a seasonally fluctuating
pattern. To investigate the phenomenon of periodic outbreak and identify the crucial parameters that play in the transmission
dynamics of measles, we formulate a mathematical model incorporating periodic transmission rate and asymptomatic in-
fection with waning immunity. We define the basic reproduction number as the threshold value to govern whether measles
infection dies out or not. Fitting the reported measles cases from 2013 to 2016 to our proposed model, we estimate the basic
reproduction number R0 with immunization to be 1.0077. From numerical simulations, we conclude asymptomatic infection
does not cause much new infections and the key parameters affecting the transmission of measles are vaccination rate,
transmission rate, and recovery rate, which suggests the public to enhance vaccination and protection measures to reduce
effective contacts between susceptible and infective individuals and treat infected individuals timely. To minimize the number
of infected individuals at a minimal cost, we formulate an optimal control system to design optimal control strategies.
Numerical simulations show the effectiveness of optimal control strategies and recommend us to implement the control
strategies as soon as possible. In particular, enhancing vaccination is especially effective in lowering the initial outbreak and
making disease recurrence less likely.

1. Introduction

Measles is an acute, viral infectious disease characterized by
high fever, cough, and a maculopapular rash [1]. In 1980, 2.6
million people died from measles. In 2005, the World Health
Organization Western Pacific Region set a goal to eliminate
measles before 2012. For achieving it, China has taken some
immunization measures including continuing a two-dose
routine measles vaccine strategy (first and second dose at 8
and 18–23months) while using supplementary immunization
activities (SIAs) [2]. Because of these measures, the number of
reported measles cases significantly decreased from approx-
imately 140000 in 2008 to 6678 in 2012. However, in 2013,
a resurgence of measles occurred and measles cases obviously
increased to 30000 and retained at around 28000 in 2016 with
obvious periodic feature. Consequently, measles still remains
a serious public health problem in mainland China and how
to eliminate it becomes challenging.

Mathematical models play an essential role in in-
vestigating the transmission dynamics of the infectious

diseases and helping to identifying the key parameters or
process that significantly affect disease spread. A number of
mathematical models have been formulated to study the
transmission and control of measles infection. Hamer in
1906 [3] proposed amodel to study the regular occurrence of
measles in London. +en, a prediction model was developed
which successfully predicted the 1997 measles epidemic of
New Zealand. Roberts and Tobias [4] extended this model by
including age structure to examine optimal timing of vaccine
doses and compare the effects of various potential vaccine
strategies. In 2005, Pang et al. [5] proposed a SEIR model
with vaccination to investigate oscillations of measles and fit
the case data of U.S. from 1951 to 1962 to design a control
strategy. Considering some developing countries with high
measles burden and limited resources, Verguet et al. [6]
proposed a model to estimate optimal scheduling of SIAs
without second routine vaccination. In contrast, for some
countries where measles has been eliminated, Choi et al. [7]
estimated susceptibility to measles by age and Mckee et al.
[8] investigated the optimal age target for two routine dose
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without changing vaccination coverage in order to maintain
elimination. Furthermore, Bai and Liu [9] fitted the model to
the case data in China and Huang et al. [10] investigated the
effect of various interventions on measles infection. +or-
rington et al. [11] attempted to quantify the loss of QALY
(quality-adjusted life years) due to measles at a population
level in England and provided important parameters for
future control interventions. In addition, some researchers
found critical community size and herd immunity influence
the extinction of measles in communities [12–16], and
obtained that human mobility has an impact on the peri-
odicity of measles outbreaks [17].

+ere are studies showing the evidence of waning
immunity in vaccinated individuals [18–20], indicating
individuals with sufficiently low antibody levels are at risk
of mild or subclinical measles infections [21, 22]. Al-
though transmission of virus between such individuals
with asymptomatic infection has not been demonstrated,
serological studies have indicated that this may occur
[23, 24]. In China, measles cases can still be observed in
recent years even if we have initiated enhanced immu-
nization and got high coverage rate of vaccination.
Possible reasons may include mature women with low
antibody can either be infected by their infected children
without showing any symptom and in turn infect others
or have babies who have low antibody and can be in-
fected. Hence, the exploration of the influence of
asymptomatic infection on the transmission of measles
and identification of the key factors or processes that
significantly influence the measles outbreak in mainland
China remain unclear and fall within the scope of this
study.

+e main purpose of this paper is to formulate
a dynamic model incorporating periodic transmission
and asymptomatic infection with waning immunity to
identify the key parameters which influence seasonal
fluctuation of measles and discuss optimal control
measures to minimize the number of infected individuals
and costs. In the next section, a periodic model with
vaccination and asymptomatic infection due to waning
immunity is introduced and then the existence and
stability of periodic solution are discussed. By fitting
monthly measles data in mainland China from 2013 to
2016, we estimate some unknown parameters and cal-
culate the basic reproduction number. We then nu-
merically evaluate effect of asymptomatic infection and
other important parameters on the transmission dy-
namics of measles. In Section 3, we apply optimal control
theory to design optimal control strategies such that the
number of infected individuals and costs are minimum.
Finally, a discussion is presented in Section 4.

2. Periodic Model

2.1. Model Formulation. +e underlying structure of the
model comprises of eight compartments. We assume that
susceptible individuals (S) receive the vaccine and enter
into the compartment V1 at rate of p. +en, the vaccinated

individuals (V1) progress to the class (V2) with waning of
immunity at rate of ω. Susceptible individuals (S) become
infected and enter into the latent undetectable class (E) at
rate of β(t) (I + ξIv), where β(t) is the baseline periodic
transmission rate and ξ (0 ≤ ξ ≤1) quantifies the relative
transmissibility of asymptomatic infections. +en, the
exposed individuals (E) progress to infectious class (I) at
rate of σ and recover with rate of c. Note that most in-
dividuals with waning immunity may not produce
symptoms, once infected again; hence, it is negligible that
latent individuals (E) move to asymptomatic infections
class (Iv). +e individuals in V1 class are those who are
effectively vaccinated with high antibody titer, so we
assume they cannot be infected as mentioned in [19, 20].
But because the antibody titer is low, individuals located
in V2 may be infected and become exposed individuals Ev

at rate of ηβ(t) (I + ξIv) with the modification factor η
(0 ≤ η≤1), denoting these individuals having low proba-
bility to be infected. +en, these latent individuals may
move to symptomatic or asymptomatic infectious class (I)
and (Iv) at rate of θσ or (1− θ)σ, where θ (0 ≤ θ≤1) is the
proportion of latent individuals becoming symptomatic
infections. +e recovery rate from Iv to R is cv. In general,
asymptomatic infections recover faster than symptomatic
infection, which means cv > c. A flow diagram of the
model is described in Figure 1 and the definitions of
variables and parameters are given in Table 1. +e specific
dynamic model is as follows:

dS

dt
� Λ − pS − β(t) I + ξIv( 􏼁S − μS,

dV1

dt
� pS − (μ + ω)V1,

dV2

dt
� ωV1 − ηβ(t) I + ξIv( 􏼁V2 − μV2,

dE

dt
� β(t) I + ξIv( 􏼁S − (σ + μ)E,

dEv

dt
� ηβ(t) I + ξIv( 􏼁V2 − (σ + μ)Ev,

dI

dt
� σE + θσEv − (c + μ)I,

dIv

dt
� (1 − θ)σEv − cv + μ( 􏼁Iv,

dR

dt
� cI + cvIv − μR,
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(1)

where β(t) is nonnegative and periodic function with period
T (T> 0) and Λ and μ are recruitment rate and natural death
rate per unit time. All parameters are assumed to positive
constants.
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2.2. 3reshold Dynamics. It is clear that any solution of this
system from nonnegative initial values is nonnegative. +en,
we first discuss bound of solution of this system.

Proposition 1. 3e solution of system (1) is uniformly and
ultimately bounded, i.e., there exists M > 0, t

⌣
> 0 such that

(S, V1, V2, E, Ev, I, Iv, R)≤ (M, M, M, M, M, M, M, M) for
t> t

⌣
.

Proof. Let S(t) +V1(t) +V2(t) + E(t) +Ev(t) + I(t) + Iv(t) +
R(t)�N; then,

N′ � Λ − μN. (2)

Hence, limt⟶ +∞N(t) � (Λ/μ), which implies for any
ε> 0, there exists t

⌣
> 0 for t> t

⌣
, then N(t)< (Λ/μ) + ε _� M.

Subsequently, We get (S, V1, V2, E, Ev, I, Iv, R)≤ (M, M, M,
M,M, M,M,M), i.e., the solution of system (1) is uniformly
and ultimately bounded. □

2.2.1. Disease-Free Equilibrium. It is easy to obtain that
system (1) has unique disease-free equilibrium E0 � (S,

V1, V2, 0, 0, 0, 0, 0), where S � (Λ/p + μ), V1 � (Λp/(p + μ)

(ω + μ)), V2 � (Λpω/(p + μ)(ω + μ)μ). In the following,
the stability of disease-free equilibrium will be discussed.
First, we define the reproduction number of system (1) on
the basis of [25].

Denote

F(t) �

0 0 β(t)S ξβ(t)S

0 0 ηβ(t)V2 ξηβ(t)V2

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V(t) �

σ + μ 0 0 0

0 σ + μ 0 0

− σ − θσ c + μ 0

0 − (1 − θ)σ 0 cv + μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(3)

Assume Y(t, s), t≥ s is the evolution operator of fol-
lowing linear system:

dy

dt
� − V(t)y. (4)

+at is to say, Y(t, s) satisfies
dY(t, s)

dt
� − V(t)Y(t, s), ∀t≥ s, Y(s, s) � I. (5)

Let Φ− V(t) be the fundamental solution matrix of linear
system (4). Clearly, Φ− V(t) equals to Y(t, 0), t≥ 0.

Define a linear operator L : CT⟶CT by

(Lϕ)(t) � 􏽚
t

− ∞
Y(t, s)F(s)ϕ(s)ds � 􏽚

∞

0
Y(t, t − a)F

· (t − a)ϕ(t − a)da,

(6)

where CT is the ordered Banach space of all T-periodic
function from R to R4 with maximum norm ‖·‖ and positive

Table 1: Interpretation and values of the parameters used in the simulation.

Parameters Description Default value Sources
μ Natural death rate (month− 1) 1.142×10− 3 Calculated
σ Rate of progression to infected stage from the exposed (month− 1) 2.17 [11]
c Recovery rate for the infected stage (month− 1) 3 [11]
Λ Recruitment rate (month− 1) 1589357 [9]
ω Rate of waning immunity (month− 1) 0.0033 [19]
cv Recovery rate for the asymptomatic infected stage (month− 1) 6 LS
η Correction factor 0.01 LS
ξ Correction factor 0.001 LS
θ Proportion of progression to symptomatic infected stage 0.004 LS
p Coverage rate of vaccine for entire population (month− 1) 0.00014 LS
β(t) Periodic transmission rate of symptomatic infection (month− 1) a(1.346 + sin(2πt/12) + 2) Assumed
a Baseline transmission rate (month− 1) 1.9616×10− 9 LS

S(t) E(t) I(t)

R(t)V1(t)

V2(t) Ev(t) Iv(t)

σE

pS

ωV1

γI

γvIv

λ(t)S

ηλ(t)S (1 – θ)σEv

θσEv

Λ

Figure 1: +e flow diagram of the measles transmission.
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cone C+
T :� ϕ ∈ CT : ϕ(t)≥ 0,∀t ∈R􏼈 􏼉. Suppose that ϕ ∈CT is

the initial distribution of infectious individuals in the pe-
riodic environment; then, F(s)ϕ(s) is the distribution of new
infections produced by the infected individuals who were
introduced at time s. Given t (t≥ s), then Y(t, s)F(s)ϕ(s) gives
the distribution of those infected individuals who were
newly infected at time s and remain in the infected com-
partments. Define the spectral radius of L as the basic re-
production number of system (1), i.e.,

R0 � ρ(L). (7)

It can be verified that system (1) satisfies conditions
(A1)–(A7) of periodic system [25]; then, the following
theorem is established.

Lemma 1. Assume that (A1)–(A7) hold [25]. 3en, the
following statements are valid:

(1) R0 �1 if and only if ρ(ΦF− V(T))� 1
(2) R0< 1 if and only if ρ(ΦF− V(T))< 1
(3) R0> 1 if and only if ρ(ΦF− V(T))> 1

Theorem 1. If R0< 1, the disease-free equilibrium E0 is
globally asymptotically stable; if R0> 1, the disease-free
equilibrium E0 is unstable.

Proof. According to Lemma 1, it is easy to get E0 is local
stable if R0< 1. +e following will show the global attractive.

By system (1), we obtain
dS

dt
≤Λ − pS − μS,

dV1

dt
≤pS − (ω + μ)V1,

dV2

dt
≤ωV1 − μV2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

By standard comparison theorem [26], we get for any
ε> 0, there exists t1> 0; if t> t1, then S(t)< S + ε,
V1(t)<V1 + ε, V2(t)<V2 + ε.

Consider auxiliary system

d􏽢E

dt
� β(t) 􏽢I + ξ􏽢Iv􏼐 􏼑(S + ε) − (σ + μ)􏽢E,

d􏽢Ev

dt
� ηβ(t) 􏽢I + ξ􏽢Iv􏼐 􏼑 V2 + ε( 􏼁 − (σ + μ) 􏽢Ev,

d􏽢I

dt
� σ􏽢E + θσ􏽢Ev − (c + μ)􏽢I,

d􏽢Iv

dt
� (1 − θ)σ􏽢Ev − cv + μ( 􏼁􏽢Iv.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

We can write (9) as

dX

dt
� (F(t) − V(t) + εM(t))X, (10)

where X� (Ê, 􏽢Ev, Î, 􏽢Iv), and

M(t) �

0 0 β(t)ε ξβ(t)ε

0 0 ηβ(t)ε ξηβ(t)ε

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11)

Since R0< 1, that is ρ(ΦF(t)− V(t) (T))< 1, then for any
small ε, ρ(ΦF(t)− V(t)+εM(t) (T))< 1 and consequently,
μ1 � (1/T)ln ρ(ΦF(t)− V(t)+εM(t)(T))< 0.

It follows from Lemma 2.1 of [27] that there exists
a positive T-periodic function v(t) � (v1(t), v2(t), v3(t),
v4(t)) such that eμ1tv(t) is a solution of (9). Choose t> t1 and
a small value α> 0 such that X(t)≤ αv(0); then, we can get
X(t) ≤ αv(t − t)eμ1(t− t), t≥ t.

By standard comparison theorem [26], we get

E(t), Ev(t), I(t), Iv(t)( 􏼁≤X(t)≤ αv(t − t)e
μ1(t− t)

. (12)

Hence, limt⟶+∞E(t) � 0, limt⟶+∞Ev(t) � 0,

limt⟶+∞I(t) � 0, limt⟶+∞Iv(t) � 0. By the last four
equations of system (1), considering their limit system, i.e.,

dS

dt
� Λ − pS − μS,

dV1

dt
� pS − (ω + μ)V1,

dV2

dt
� ωV1 − μV2,

dR

dt
� − μR.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

We get limt⟶+∞S(t) � S, limt⟶+∞V1(t) � V1,

limt⟶+∞V2(t) � V2, limt⟶+∞R(t) � 0. +e global attrac-
tivity of E0 has been proved. □

2.2.2. Uniform Persistence of the System. In the following, we
examine the uniform persistence and existence of positive
periodic solutions of system (1).

Theorem 2. If R0> 1, system (1) is uniformly persistent, i.e.,
there is constant η> 0, such that for all initial values
(S0, V0

1, V0
2, E0, E0

v, I0, I0v, R0) ∈ R3
+ × Int(R4

+) × R+, the solu-
tion of system (1) satisfies limt⟶+∞inf (S(t), V1(t), V2
(t), E(t), Ev(t), I(t), Iv(t), R(t))≥ (η, η, η, η, η, η, η, η). And
there exists at least one positive T-periodic solution for system (1).

Proof. Define X� {(S, V1, V2, E, Ev, I, Iv, R) : S, V1, V2, E, Ev,
I, Iv, R≥ 0}, X0 � (S, V1, V2, E, Ev, I, Iv, R) : S, V1, V2, R≥ 0,􏼈

E, Ev, I, Iv > 0}, zX0 �X\X0. Define a Poincaré map
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P : R8
+⟶ R8

+ satisfying P(x0)� u(T, x0), for x0 ∈ R8
+, where

u(t, x0) is the solution of system (1).
First, it is easy to see that X, X0 are positively invariant

and zX0 is relatively closed in X. It follows from the
Proposition 1 that the solution of system (1) is uniformly and
ultimately bounded.+us, the semiflow P is point dissipative
on R8

+ and P : R8
+⟶ R8

+ is compact. By +eorem 3.4.8 of
[28], P admits a global attractor A.

Define Mz � {(S, V1, V2, E, Ev, I, Iv, R) ϵ zX0 : Pm(S, V1,
V2, E, Ev, I, Iv, R) ∈ zX0, ∀m≥ 0}. In the following, we claim
Mz � {(S, V1, V2, 0, 0, 0, 0, 0)}. First, it is obvious that {(S, V1,
V2, 0, 0, 0, 0, 0)} ⊂ Mz. Next, certifyMz ⊂ {(S, V1, V2, 0, 0, 0,
0, 0)}. Assume there exists x0 ∈Mz\{(S, V1, V2, 0, 0, 0, 0, 0)}.
For example, let E0 > 0, E0

v � I0 � I0v � 0; then, I′(0)� σ
E0> 0, which implies there exists t2> 0; when 0< t< t2, we
get I(t)> 0 and E(t)> 0. For 0< t< t2, we obtain from
equations of (1)

Ev(t) � e
− (σ+μ)t

E
0
v + 􏽚

t

0
ηβ(s) I + ξIv( 􏼁(s)V2(s)e

(σ+μ)sds􏼠 􏼡> 0,

Iv(t) � e
− cv+μ( )t

I
0
v + 􏽚

t

0
(1 − θ)σEv(s)e

cv+μ( )sds􏼠 􏼡> 0.

(14)

It indicates that (E(t), Ev(t), I(t), Iv(t), S(t), V1(t), V2(t),
R(t)) ∉ zX0, for t ∈ (0, t2), which is a contradiction. Hence,
we verify Mz � {(S, V1, V2, 0, 0, 0, 0, 0)}.

Obviously, E0 is one fixed point of P in Mz. For any x0 ϵ
Mz\E0, limm⟶+∞P

m(x0)� E0, which means E0 is isolated in
Mz and then isolated in zX0. Hence, we get E0 is acyclic
covering in Mz.

+e following shows Ws(E0)∩X0 �∅. First, by the
continuity of solutions with respect to initial values, for any
ε> 0, there exists δ0> 0; if ‖x0 − E0‖≤ δ0, it follows ‖u(t, x0) −

u(t, E0)‖≤ ϵ, for all t ∈ [0, T]. In the following, we first claim
limm⟶+∞sup d(Pm(x0), E0)≥ δ0.

If not, there exists x0 ∈X0, such that limm⟶+∞sup
d(Pm(x0), E0)< δ0. Without loss of generality, assuming
d(Pm(x0), E0)< δ0, ∀m> 0. For any t> 0, t � mT + 􏽢t, then

u t, x
0

􏼐 􏼑 − u t, E0( 􏼁
�����

����� � u 􏽢t, P
m

x
0

􏼐 􏼑􏼐 􏼑 − u 􏽢t, E0( 􏼁
�����

�����< ε, ∀t≥ 0.

(15)

Let (S(t), V1(t), V2(t), E(t), Ev(t), I(t), Iv(t), R(t))� u(t,
x0); then, we get S − ε< S(t)< S + ε, V1 − ε<V1(t)<V1 + ε,
V2 − ε<V2(t)<V2 + ε, 0<E(t), Ev(t), I(t), Iv(t)< ε.

Hence, from system (1), we obtain

dE

dt
> β(t) I + ξIv( 􏼁(S − ε) − (σ + μ)E,

dEv

dt
> ηβ(t) I + ξIv( 􏼁 V2 − ε( 􏼁 − (σ + μ)Ev.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

Consider auxiliary system

d􏽢E

dt
� β(t) 􏽢I + ξ􏽢Iv􏼐 􏼑(S − ε) − (σ + μ)E,

d􏽢Ev

dt
� ηβ(t) 􏽢I + ξ􏽢Iv􏼐 􏼑 V2 − ε( 􏼁 − (σ + μ)􏽢Ev,

d􏽢I

dt
� σ􏽢E + θσ􏽢Ev − (c + μ)􏽢I,

d􏽢Iv

dt
� (1 − θ)σ􏽢Ev − cv + μ( 􏼁􏽢Iv.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

For convenience, it can be rewritten as
du

dt
� (F(t) − V(t))u − εM(t)u, (18)

where u� (Ê(t), 􏽢Ev(t), Î(t), 􏽢Iv(t)) and

M(t) �

0 0 β(t)ε ξβ(t)ε

0 0 ηβ(t)ε ξηβ(t)ε

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19)

By Lemma 2.1 of [27], there exists a positive T-periodic
function v(t) such that eμ2tv(t) is the solution of (18), where
μ2 � (1/T)ln ρ(ΦF(·)− V(·)− εM(·)(T)). Since R0> 1, that is,
ρ(ΦF(·)− V(·) (T))> 1, we can choose ε small enough such that
ρ(ΦF(·)− V(·)− εM(·) (T))> 1, and thus μ2> 0. Choose α> 0, t> 0
such that u(t)> αv(0); then, u(t)> αv(t − t)eμ2(t− t).

By standard comparison theorem [26], we get

E(t), Ev(t), I(t), Iv(t)( 􏼁≥ u(t)≥ αv(t − t)e
μ2(t− t)

. (20)

Hence,
lim

m⟶+∞
E(t) �∞,

lim
m⟶+∞

Ev(t) �∞,

lim
m⟶+∞

I(t) �∞,

lim
m⟶+∞

Iv(t) �∞.

(21)

+is is contradiction to E(t), Ev(t), I(t), Iv(t)< ε. +us, we
get Ws(E0)∩X0 �ϕ and E0 is isolated in X.

Above all, by +eorem 3.11 [29], we get P is uniformly
persistent with respect to (X0, zX0).

Next, prove that for R0> 1, there is a positive periodic
solution of system (1). It follows from+eorem 1.3.6 of [29]
that the Poincaré map P has a fixed point X∗ � (S∗(0),

V∗1(0), V∗2(0), E∗(0), E∗v (0), I∗(0), I∗v (0), R∗(0)) ∈ X0. +e
following shows that S∗(0)> 0, V∗1(0)> 0, V∗2(0)> 0, R∗ > 0.
Suppose not assuming S∗(0)� 0, then the solution 􏽥S(t)

through initial point S∗(0) satisfies equation

d􏽥S(t)

dt
� Λ − p􏽥S(t) − β(t) 􏽥I(t) + ξ􏽥Iv(t)( 􏼁􏽥S(t) − μ􏽥S(t).

(22)
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We get 􏽥S(t) � e
− 􏽒

t

0
(μ+p+β(s)(􏽥I(s)+ξ􏽥Iv(s)))ds

(S∗(0) +

􏽒
t

0 Λe
􏽒

s

0
(μ+p+β(τ)(􏽥I(τ)+ξ􏽥Iv(τ)))dτds). Since X∗ is a fixed point

of P, we can obtain 􏽥S(T) � Λe− 􏽒
T

0
μ+p+β(s)(􏽥I(s)+ξ􏽥Iv(s))ds

􏽒
T

0 e
􏽒

s

0
μ+p+β(τ)(􏽥I(τ)+ξ􏽥Iv(τ))dτds � S∗(0)> 0, which is contra-

diction with S∗(0)� 0. It also denotes that the fixed point X∗
is positive.

Let 􏽥X(t) � (􏽥S(t), 􏽥V1(t), 􏽥V2(t), 􏽥E(t), 􏽥Ev(t), 􏽥I(t), 􏽥Iv(t),
􏽥R(t)) be a periodic solution through X∗. the uniform per-
sistence of the solution with respect to (X0, zX0),
i.e., limm⟶+∞inf(S(t), V1(t),V2(t),E(t),Ev(t), I(t), Iv(t),

R(t))>(η,η,η,η,η,η,η,η), we get Ω( 􏽥X(t)) � 􏽥X(t)>0,

∀t≥0. □

2.3. Numerical Simulation. In this section, we will numeri-
cally analyze model (1) and identify the effects of some pa-
rameters we are interested in on the outbreak of measles.
According to reference [9], we obtain the recruitment rate
Λ� 1589357 per month. Assuming the current average life
expectancy of Chinese people is 73 years, then we calculate the
natural death rate μ� 0.001142 per month. From [11], we
derive that the exposed and infectious periods are about 13.8
and 10 days, which indicates σ � 2.17month− 1, c � 3month− 1.
We let the number of initial infectious individuals be the sum
of the numbers of reported measles cases for last 10 days (one
infectious period) in December of 2012, that is, I(0)� 300. By
fitting model (1) to the monthly reported measles data from
2013 to 2016, we estimate some unknown parameters, which
are listed in Table 1. Figure 2 shows a high goodness of fit
(R2 � 0.8378) which demonstrates that the model can capture
main trends of measles outbreak events between 2013 and
2016. Note that the recovery rate cv is estimated as 6 month− 1,
that is, 5 days, which means symptomatic patients will take
twice the time to recover than asymptomatic infectious in-
dividuals. Furthermore, the estimated value of θ is small,
demonstrating that most individuals in group Ev move into
the class Iv. In other words, individuals in V2 class, once
infected, mainly become asymptomatic. Using the estimated
parameter values, we calculate the basic reproduction number
R0 as 1.0077, which indicates measles will persist.

It is worth noting that two routine immunizations are
objected to children under 2 years old in mainland China;
hence, the vaccinated individuals in ourmodel actually belong
to this age group. Let S1 be the number of susceptible children
younger than 2 years old and pc be the effective coverage rate
corresponding these children, while parameter p in the model
(1) represents the coverage rate of vaccination for general
population; then, we actually have pS� pcS1, and in the fol-
lowing simulations, we mainly use pc to investigate the impact
of vaccination on disease outbreak and make discussion.

To determine the influence of asymptomatic infection
and other important parameters on themeasles infection, we
investigate how the basic reproduction number and the
number of symptomatic infections vary with parameters. It
follows from Figures 3(a) and 4(a)–4(c) that reducing
baseline transmission rate (a) or increasing coverage rate

(pc) and recovery rate (c) significantly decreases the basic
reproduction number and consequently the number of
symptomatic infections declines. +is indicates limited
contact, extensive vaccination, and timely treatment can
effectively mitigate the outbreak and transmission of mea-
sles. +en, considering parameters θ, ξ, η relating to
asymptomatic infection, we find that decreasing the values of
θ, ξ, η has slight impact on reducing the new infections and
controlling the transmission of measles except for minutely
decreasing the peak size of symptomatic infections, as shown
in Figures 3(b) and 4(d)–4(f ). It indicates that asymptomatic
measles infection in population does not cause much new
infections.

Further, in order to access the dependence of R0 on
parameter variations, we perform sensitivity analysis using
the Latin hypercube sampling (LHS) method and calculate
partial rank correlation coefficients (PRCCs) [30, 31] for
various input parameters against the basic reproduction
number. We choose uniform distribution in all parameters
as listed in Table 2 since there is limited information on the
distribution of each parameter. Figure 5 shows that, in
contrast to parameters relative to asymptomatic infection,
coverage rate pc, the baseline transmission rate a, and re-
covery rate c are the first three parameters that mostly
influence R0. +ese results indicate that reducing trans-
mission rate via limiting contacts (e.g., personal protective
and social distancing), treating infected individuals timely,
and enhancing vaccination greatly lead to decline in new
infections.

3. Optimal Control Strategies

In this section, we extend the basic model (1) by including
some feasible controls and formulate the optimal control
system, which is defined by the following model:
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Figure 2: Fitting to reported measles cases from 2013 to 2016. +e
initial values are (S(0), V1(0), V2(0), E(0), Ev(0), I(0), Iv(0),
R(0))� (1.1439×109, 9.9395×107, 3.23×107, 599, 1851, 300, 7316,
3.2652×107).
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Figure 4: Continued.
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Figure 3: Change of the basic reproduction number with varying values of rate k. (a)We decrease baseline transmission rate (represented by
(1 − k)a) and increase coverage rate of children under 2 years old and recovery rate (represented by (1 + k) pc, (1 + k)0, 0≤ k)≤ 0.04). (b) We
decrease parameters related to asymptomatic infection (represented by (1 − k)ξ, (1 − k)η, (1 − k)θ, 0≤ k)≤ 0.9).
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Table 2: Basic reproduction number for PRCCs.

Parameter Distribution PRCC p value
a U(1.16∗10− 9, 2∗10− 9) 0.6142 0
c U(2.9, 4) − 0.4493 0
pc U(0.002, 0.9) − 0.6904 0
ξ U(0.0005, 0.0015) 0.0195 0.7866
η U(0.009, 0.015) 0.0528 0.4633
θ U(0.004, 0.0055) 0.0604 0.4013
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Figure 4: Plots of the number of measles against time at varying parameter value: (a) the baseline transmission rate a; (b) recovery rate c for
the symptomatic infected; (c) coverage rate pc of children under 2 years old; (d) proportion θ of population from Ev to I; (e, f ) correction
factors ξ and η of asymptomatic infection.
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dS

dt
� Λ − 1 + u3(t)( 􏼁pS − 1 − u1(t)( 􏼁β(t) I + ξIv( 􏼁S − μS,

dV1

dt
� 1 + u3(t)( 􏼁pS − (μ + ω)V1,

dV2

dt
� ωV1 − η 1 − u1(t)( 􏼁β(t) I + ξIv( 􏼁V2 − μV2,

dE

dt
� 1 − u1(t)( 􏼁β(t) I + ξIv( 􏼁S − (σ + μ)E,

dEv

dt
� η 1 − u1(t)( 􏼁β(t) I + ξIv( 􏼁V2 − (σ + μ)Ev,

dI

dt
� σE + θσEv − 1 + u2(t)( 􏼁cI − μI,

dIv

dt
� (1 − θ)σEv − cv + μ( 􏼁Iv,

dR

dt
� 1 + u2(t)( 􏼁cI + cvIv − μR.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

+e control function u1(t) represents reducing contact
between susceptible and infective individuals on the basis of
personal protection (e.g., wearing masks and enhancing
awareness about measles) or social distancing (e.g., Feng-
xiao) measures. +e control functions u2(t) and u3(t) rep-
resent the enhanced treatment and vaccination, respectively.

Our goal is to minimize the number of infectious in-
dividuals over a time interval [0, T] at a minimal cost. +en,
the objective function J is defined as

J u1, u2, u3( 􏼁 � 􏽚
T

0
I(t) +

1
2

W1u
2
1(t) + W2u

2
2(t) + W3u

2
3(t)􏼐 􏼑dt,

(24)

where W1, W2, and W3 are the weight constants for the
control functions. +e optimal control strategies can be
obtained by finding an optimal pair (U∗, Y∗) such that

J U
∗

( 􏼁 � min
Ω

J(U(t)), (25)

whereΩ� {U(t)� (u1, u2, u3) ε L3(0,T)3|0≤ u1(t)≤ b1, 0≤ u2(t)≤
b2, 0≤ u3(t)≤ b3} with positive constants bi (i� 1, 2, 3) and
Y∗ � (S∗, V∗1 , V∗2 , E∗, E∗v , I∗, I∗v , R∗).

3.1. Optimality System. +e existence of optimal controls
follows from Corollary 4.1 of [32] since the state system
satisfies the Lipschitz property with respect to the state
variables and is a linear function ofU, while the integrand of
J is a convex function for u1(t), u2(t) and u3(t).

Theorem 3. 3ere exist optimal controls U∗(t) and corre-
sponding solutions Y∗(t) that minimize J(U(t)) over Ω. In
order for the above statement to be true, it is necessary that
there exist continuous functions λi(t) such that

λ1′(t) � λ1 − λ4( 􏼁 1 − u1(t)( 􏼁β I + ξIv( 􏼁 + λ1 − λ2( 􏼁

· 1 + u3(t)( 􏼁p1 + μλ1,

λ2′(t) � λ2 − λ3( 􏼁ω + μλ2,

λ3′(t) � λ3 − λ5( 􏼁 1 − u1(t)( 􏼁ηβ I + ξIv( 􏼁 + μλ3,

λ4′(t) � λ4 − λ6( 􏼁σ + μλ4,

λ5′(t) � λ7 − λ6( 􏼁θσ + λ5 − λ7( 􏼁σ + μλ5,

λ6′(t) � − 1 + λ1 − λ4( 􏼁 1 − u1(t)( 􏼁βS + λ3 − λ5( 􏼁η

· 1 − u1(t)( 􏼁βV2 + λ6 − λ8( 􏼁 1 +u2(t)􏼁c + μλ6( 􏼁,

λ7′(t) � λ1 − λ4( 􏼁 1 − u1(t)( 􏼁ξβS + λ3 − λ5( 􏼁 1 − u1(t)( 􏼁

·ξηβV2 + λ7 − λ8( 􏼁cv + μλ7,

λ8′(t) � μλ8,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

with the transversality conditions

λ1(T) � λ2(T) � λ3(T) � λ4(T) � λ5(T) � λ6(T) � λ7(T)

� λ8(T) � 0.

(27)

Furthermore, the optimal control is given as follows:

u∗1(t) � max min
λ4 − λ1( 􏼁β I∗ + ξI∗v( 􏼁S∗ + λ5 − λ3( 􏼁ηβ I∗ + ξI∗v( 􏼁V∗2

W1
, b1􏼨 􏼩, 0􏼨 􏼩,

u∗2(t) � max min
λ6 − λ8( 􏼁cI∗

W2
, b2􏼨 􏼩, 0􏼨 􏼩,

u∗3(t) � max min
λ1 − λ2( 􏼁pS∗

W3
, b3􏼨 􏼩, 0􏼨 􏼩.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)
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Proof. +e necessary conditions satisfied by optimal con-
trols can be derived from Pontryagin’s maximum principles.
Let Hamilton function be

H � I +
1
2

W1u
2
1 +

1
2
W2u

2
2 + W3u

2
3􏼒 􏼓 + λ1

dS

dt
+ λ2

dV1

dt

+ λ3
dV2

dt
+ λ4

dE

dt
+ λ5

dEv

dt
+ λ6

dI

dt
+ λ7

dIv

dt
+ λ8

dR

dt
.

(29)

+en, the adjoint equations with transversality satisfy
λ1′ � − (zH/zS), λ2′ � − (zH/zVk), λ3′ � − (zH/zV2), λ4′ � −

(zH/zE), λ5′ � − (zH/zEv), λ6′ � − (zH/zI), λ7′ � − (zH/zIv),

λ8′ � − (zH/zR), with λ1(T)� λ2(T)� λ3(T)� λ4(T)� λ5(T)�

λ6(T)� λ7(T)� λ8(T)� 0.
+e Hamilton function H is minimized with respect to

the controls by differentiating H with respect to u1, u2, u3 on
the set Ω, respectively, and then gives the following optimal
conditions:

zH

zu1
� 0,

zH

zu2
� 0,

zH

zu3
� 0.

(30)

Solving for u∗1 , u∗2 , u∗3 yields

u
∗
1 �

λ4 − λ1( 􏼁β I∗ + ξI∗v( 􏼁S∗ + λ5 − λ3( 􏼁ηβ I∗ + ξI∗v( 􏼁V∗2
W1

,

u
∗
2 �

λ6 − λ8( 􏼁cI∗

W2
,

u
∗
3 �

λ1 − λ2( 􏼁p1S
∗

W3
.

(31)

By using the bounds 0≤ u1(t)≤ b1, 0≤ u2≤ b2, 0≤ u3≤ b3,
we have the properties as +eorem 3. □

3.2. Numerical Simulations. As mentioned in Section 2.3,
based on relationship between pc and p, we initially define
the control function u3c(t) as the enhanced vaccination rate
for children under 2 years old to replace u3(t) for general
population and numerically explore the effects of optimal
control measures on measles outbreak. +e optimality
system is solved by using the forward-backward sweep
method. With an initial guess for the control variables, the
state system and adjoint system are solved forward and
backward, separately. +e control variables are updated by
using optimality condition, and this process is repeated until
the system is converged. In the numerical simulations, we
use parameter values given in Table 1. To balance the
population and control functions in the objective functions,
we choose weight constants values W1 � 20, W2 � 200, and

W3 � 0.2 and the upper bound of controls b1 � 0.2, b2 � 0.2,
and b3 � 5 for illustration.

To study the effect of optimal control strategies on the
transmission of measles infection, we initially plot the time
series of the number of symptomatic infected individuals
and corresponding optimal functions, as shown in Figure 6.
It follows from Figure 6(a) that the optimal control strategies
significantly mitigate the outbreak of disease and decrease
the number of symptomatic infections. Figures 6(b)–6(d)
give the optimal control measures u∗1(t), u∗2(t) and u∗3c(t),
which monotonically decrease after a period time of
implementation with high intensity. +is indicates we
should enhance vaccination as soon as possible when
measles begin outbreak, while measures such as personal
protection and treatment should be implemented as much as
possible throughout the whole epidemic.

To further specify the extent of each control measure in
reducing the outbreak of measles, we compare the number of
symptomatic individuals with only one control measure and
without any control measure, as shown in Figure 7. +e
results illustrate each optimal control measure has great
impact on decreasing the measles infections. In particular,
the optimal enhanced vaccination for children u∗3c(t), which
has limited impact on lowering the first outbreak, results in
a low probability of occurrence of repeated outbreaks via
decreasing the susceptibility to measles.

+e timing of implementation of control measures is
always a critical issue. +erefore, we study the optimal
control functions and their influences on the reduction of
infected individual under three different starting times:
(1) the time when the number of infective individuals is at
the lowest level, (2) the time when the number of in-
fections increases but is relatively small, and (3) the time
when measles spreads fast with severe level. Here, we can
choose the 10th, 13th, and 15th month from January of
2013. Figure 8(a) demonstrates that the relatively late
implementation of control measures leads to a great in-
crease in the number of infectious individuals. Comparing
optimal control functions u∗1(t), u∗2(t), and u∗3c(t) with
different starting times of control measure as shown in
Figures 8(b)–8(d), we obtained that as the starting time is
delayed, the optimal control strategy u∗1(t) has no obvious
changes, while the optimal control function u∗2(t) must be
implemented with maximum level for a long period.
Different from u∗1(t) and u∗2(t), Figure 8(d) shows that the
optimal enhanced vaccination for children u∗3c(t) should
be implemented with more maximum level (shown in
green curves) and then be implemented with relatively low
maximum level (shown in black curves) as the initiation
time is delayed. +ese results indicate the earlier the
control measures are implemented, the lower the outbreak
is and the less (period or intensity) the optimal controls
are needed.

4. Discussion

In mainland China, measles reached its lowest level in 2012
and then resurged again with seasonal transmission since
2013. +ese outbreaks have led to an interest in
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understanding the underlying biological mechanisms and
public concern of effective control. To investigate the phe-
nomenon of seasonal outbreak in China and identify the
crucial parameters played in the transmission dynamics of
measles, we propose a mathematical model with periodic
transmission rate. In this system, we extend the existing
dynamic model [9, 10] by considering asymptomatic

infection due to vaccinated populations with low antibodies
level being infected. We investigate the threshold dynamics
by defining the basic reproduction number. Further, based
on the baseline model (1), we propose three types of feasible
control measures and formulate a optimal control system to
discuss how to design the optimal measures to control
epidemic outbreak.
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Figure 7: +e number of infected individuals with symptoms under the two scenarios: without control and with only one type of control
(top row). +e time series of each optimal control function. u∗1(t), u∗2(t), u ∗3c(t).
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Figure 6: (a)+e number of infected individuals with symptoms under the two situations: no control is used and three types of controls are
implemented simultaneously; (b)–(d) +e time series of corresponding optimal control functions u∗1(t), u∗2(t), u∗3(t).
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We theoretically analyze dynamic behavior of the periodic
system by defining the threshold R0. We prove the disease-free
equilibrium E0 is globally asymptotically stable for R0< 1,
meaning the measles can be eliminated. If R0> 1, the disease-
free equilibrium E0 is unstable and system (1) is uniformly
persistent, which indicates the disease cannot be effectively
eliminated.+en, by fitting our proposedmodel to the reported
cases in mainland China from year 2013 to 2016, we estimate
some unknown parameters and calculate the basic re-
production number R0 with immunization as 1.0077. Com-
pared with original basic reproduction number of measles
(R0�12.8) [4], this result implies that current vaccination
policies have dramatically reduced the spread of disease.
Numerical simulations indicate that asymptomatic infection
has slight impact on the repeated outbreaks of measles and the
crucial factors that significantly affect new infections are

vaccination rate, transmission rate, and recovery rate. Further,
we propose three types of control measures (limiting contacts
between susceptible and infective individuals and enhancing
treatment and vaccination) and determine the optimal control
strategies to minimize the number of infected individuals at
minimum costs. It has been illustrated numerically that the
optimal control measures have a very attractive effect on re-
ducing the number of infected individuals and the in-
terventions should be implemented as soon as possible. We
further observed that enhancing vaccination is especially ef-
fective in lowering the initial outbreak and making disease
recurrence less likely.

Note that due to lack of data on measles cases as for
different ages, we formulate a measles transmission model
without considering age structure. However, the vaccination
of measles mostly is implemented among children, and we
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Figure 8: +e effect of controls’ starting time on the number of infected individuals and the optimal control functions u∗1(t), u∗2(t), u∗3c(t)

under three cases: starting at 10th, 13th, and 15th month from January of 2013.
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shall formulate the dynamic model with age structure,
conduct cost-effectiveness assessment, and explore the op-
timal vaccination age in near future.
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