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-e integration of variable-speed pumped storage unit (VS-PSU) guarantees an efficient peak regulation and frequency
modulation of the power grid. -e present research analyzes the active power flow of the VS-PSU under synchronous, sub-
synchronous, and supersynchronous speed in both generation and pumpingmodes.-e control strategy of the VS-PSU is realized
by the dq-axis vector control method. Furthermore, the control of the VS-PSU integrated with wind power has been conducted
using DIgSILENTplatformwith the VS-PSU of 300 kW capacity. Results show that the fluctuation of the power output of the wind
power plant can be reduced effectively. -e safe, economical, and stable operation of power system integrated with wind power
can be achieved by the significant contribution of the VS-PSU.

1. Introduction

-e intensified integration of intermittent renewable energy
sources such as wind, tidal, and solar power puts higher
demands to the grid frequency control [1–3]. -e refined
frequency control approach is urgently desired in power
network operation [3]. -e pumped hydro storage (PHS) is
known as the most reliable way for realization of peak load
regulation, frequency modulation, and phase modulation,
emergency reserve [4–9]. -e traditional power generator-
motor operates in the constant speed and frequency mode so
that the pump-turbine operating condition is determined by
the water head and load. -e lack of power regulating the
ability of the traditional constant-speed pumped storage
units under pumping mode causes a significant impact on
the absorption level of new energy in the regional power grid
[10]. -e variable-speed pumped storage unit (VS-PSU)
responds faster under generation mode and adjusts the grid
power under pumpingmodemore flexibly [10, 11]. For PHS,
the development of variable-speed operation was firstly
reported in Japan in the 1990s [12], and results showed that
the transient response characteristics were quite satisfactory.

Up to now, Japan and Europe possess the largest installed
capacity of VS-PSU plants in the world [13] and have carried
out in-depth work in the research and application of VS-
PSU [14–16], while in China, the growing tendency for the
development of the PHS [17] indicates the tremendous
potential to integrate the variable-speed technology in the
near future.

PHS has the ability of spatial-temporal translation of
energy. As an auxiliary peak-regulating power source for
traditional power units, variable-speed pumped storage
power station is of great significance to relieve the peak-
regulating pressure of power grid [18]. -e active power is
controlled by adjusting the rotor speed especially during the
pumping mode [19–21]. A doubly fed induction machine-
based variable-speed pumped storage (VSPS) system was
established to investigate the performances in generating
mode based on a comparison of phasor model and detailed
model simulations [22]. -e reactive/active power responses
in a very short time for voltage and frequency control en-
ables more dynamic tracking of the load variation because
the power of the pump-turbine is proportional to the third
power of the unit speed [21, 23, 24]. -e variable-speed
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pumped storage power generator can operate within a
certain speed range according to the change of water head to
meet the optimal unit speed. -us, cavitation and sediment
wear of turbine blades can be reduced and the pump-turbine
adapts to a wider head variation [18, 25, 26]. Despite all the
advantages in installation of the VS-PSU, the economic and
efficiency analysis is significant for practical industrial ap-
plication. -e economic benefits of converting an existing
fixed-speed pumped storage hydropower plant to adjustable
speed were estimated and they concluded that the final
revenue is increased by 58% [27]. Filipe et al. [28] presented
an architecture of the optimized bidding strategy for VS-
PSU participated power plant.

Despite the various researches on the VS-PSU, there are
still some problems to be solved in the aspects of partici-
pation of VS-PSU in the grid security and stability control
strategy, economic dispatch, and the coordination control
strategy with new energy. -e present research analyzes
power flow of the VS-PSU under both generation and
pumping modes to provide the principle of VS-PSU inte-
gration. -e mathematical models of the VS-PSU have been
derived for the realization of doubly fed induction machine
(DFIM) power control. Studies on the coordinated opera-
tion of the VS-PSU and wind power have been conducted by
a systematic simulation. Two schemes are proposed to
demonstrate the coordinated dispatch between VS-PSU and
wind power.

2. Operation Principle of the Variable-Speed
Pumped Storage Unit (VS-PSU)

2.1. Active Power Flow for the VS-PSU. -e PHS power
station operates under two main operating conditions:
pumping and generation mode, which are used to regulate
the peak and trough periods of power consumption, re-
spectively. -e stator of the doubly fed induction machine
(DFIM) is connected to the grid, and the rotor adopts the
three-phase symmetrical excitation winding. -e excitation
is provided by the frequency inverter with arbitrary ad-
justable amplitude, frequency, phase, and phase sequence.
When the rotor windings of DFIM are fed with symmetrical
alternating current, the rotation of the magnetic field relative
to the rotor will be generated in the air gap with a speed of
Nr. -e relationship between the speed and the current
frequency of the inverter is as follows:

Nr �
60f2

p
, (1)

in which Nr, f2, and p represent the rotation speed of the
magnetic field relative to rotor, the current frequency of the
rotor, and the pole number of DFIM, respectively.

In order to achieve stable electromechanical energy
conversion, the rotating magnetic fields of the stator and
rotor must remain relatively static.

N1 + Nr � N2, (2)

in which N1 and N2 represent rotor mechanical speed and
the rotation speed of the magnetic field relative to stator.-e

positive or negative Nr depends on the direction of N1.
When N1 changes, Nr is controlled by adjusting the rotor
current frequency to maintain the speed balance.
According to the variation of the rotor speed, the op-
eration conditions of the DFIM can further be divided
into three modes, namely synchronous, subsynchronous,
and supersynchronous operation mode. In the syn-
chronous operation mode, the unit outputs active power
to the grid and the inverter provides DC excitation to the
rotor winding under generation, whereas the grid feeds
active power to the unit and the inverter provides DC
excitation to the rotor winding under pumping mode.
-e active power flow during subsynchronous and
supersynchronous operation is given in Figures 1 and 2.
In the subsynchronous operation mode, the unit outputs
active power to the grid, and the grid feeds to the rotor
winding through the inverter under the power generation
condition (see Figure 1(a)), whereas the grid feeds active
power to the unit, and the rotor winding outputs active
power to the grid through the inverter under the pumping
condition (see Figure 1(b)), while, in supersynchronous
operation mode, the unit outputs active power to the
power grid, and the rotor winding feeds it to the grid
through the converter under the power generation
condition (see Figure 2(a)), whereas the power grid feeds
it to the generator, and the grid feeds active power to the
rotor winding through the converter under the pumping
condition (see Figure 2(b)).

-e VS-PSU is excited through tailoring the current
(or voltage) of slip frequency in the rotor of the DFIM.
-e constant frequency and constant voltage output of
the stator are realized by adjusting the amplitude, fre-
quency, and phase of excitation voltage. -e rotor of the
VS-PSU is excited by two “back-to-back” voltage-mode
PWM converters which play a significant role in the
electrical control system. -e two-way flow of energy can
thus be ensured with the rotor excitation frequency
converter. Additionally, the voltage frequency, active
power (generator-motor speed), and reactive power of
the stator can be controlled by the realization of con-
tinuous adjustment of the amplitude, frequency, and
phase of the output current. -e output frequency range
will meet the requirements of the DFIM including the
speed regulation in a range of 90% to 110% synchronous
speed and slip frequency adjustment in a range of ±10%
synchronous speed.

2.2. Control Strategy of VS-PSU. -e target control object of
the two PWM converters is a DFIM. Because of the magnetic
coupling in the circuit of the DFIM, the mathematical model
of the DFIM in the three-phase coordinate system is non-
linear and time-varying high order system. -e general
control diagram of the DFIM is designed in Figure 3, and
detailed process has been provided in the following.

-e dq-axis vector control technology is adopted to
achieve decoupling control. -e basic principle is to de-
compose three-phase current of the stator into DC excitation
current component and torque current component by d-q
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rotation coordinate transformation. In the process of speed
regulation, the excitation current component remains un-
changed. At this time, the torque control law of dc motor can
be simulated, and the electromagnetic torque moment can

be controlled by adjusting the torque current component.
Let the d-q axis rotate at the synchronous rotation speed, and
the motor voltage and flux linkage equation of both the rotor
and stator can be obtained as follows:
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Figure 1: Active power flow of VS-PSU under subsynchronous operation: (a) generation mode; (b) pumping mode.
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Figure 2: Active power flow of VS-PSU under supersynchronous operation: (a) generation mode; (b) pumping mode.

PI PI

Coordinate
transformation

f (Qs)∗
i∗dr u∗

dr 

i∗qr u∗

qr 

u∗

ar 

u∗

br 
u∗

cr 

PI

ωr
∗

Qs
∗

ωr

– –
iqr 

idr 
– –

PWM

Current
measurement

and coordinate
transformation

Code discDifferential

Differential
Calculation
of flux angle

3/2
transformation

ωr

ω1

θr

θ1

θs

idr

iqr

ωs (Lr – L2
m/L)idr + (Lmψs/Ls)ωs

u

Connected to the
power grid

ωs (Lr – L2
m/L)iqr

Figure 3: Control diagram of variable-speed constant-frequency DFIM.
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uds � Rsids + pψds − ω1ψqs,

uqs � Rsiqs + pψqs + ω1ψds,

udr � Rridr + pψdr − ωsψqr,

uqr � Rriqr + pψqr + ωsψdr,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψds � Lsids + Lmidr,

ψqs � Lsiqs + Lmiqr,

ψdr � Lridr + Lmids,

ψqr � Lriqr + Lmiqs.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

-e variables referred above (and below) have been
summarized in Nomenclature section (presented at the
beginning of the paper), while full voltage equation can be
derived as follows:

uds

uqs

udr

uqr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Rs + Lsp − ω1Ls Lmp − ω1Lm

ω1Ls Rs + Lsp ω1Lm Lmp

Lmp − ωsLm Rr + Lrp − ωsLr

ωsLm Lmp ωsLr Rr + Lrp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ids

iqs

idr

iqr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)

-e torque and motion equations is as follows:

Te � npLm iqsidr − idsiqr ,

Te − Tl �
J

np

dω
dt

.

(5)

Generally, the vector control system of the asynchro-
nous motor takes rotor flux as a reference, and then the
direction of rotor flux is determined as d axis of the
synchronous coordinate system. However, if the doubly fed
system with variable-speed and constant frequency is still
oriented by rotor flux or air gap flux, the calculation of
stator active power and reactive power will be complex,
which will affect the real-time processing of the control
system.-erefore, when the stator flux is oriented on axis d,
the following equations can be obtained:

ψds � ψs � Lsids + Lmidr⇒ ids �
ψs − Lmidr

Ls

,

ψqs � 0 � Lsiqs + Lmiqr⇒ iqs � −
Lm

Ls

iqr.

(6)

Since the stator side of the DFIM always runs at a
fixed frequency, 50 Hz is considered for this research. In
this case, the voltage drop of stator resistance is much
smaller than the inverse potential of the motor. -ere-
fore, the stator winding resistance of the motor can
usually be ignored, and the stator voltage equation can be
simplified as

uds � 0,

uqs � ω1ψds � Us,

udr � Rridr + Lr −
L2

m

Ls

 
didr

dt
− Lr −

L2
m

Ls

 ωsiqr,

uqr � Rriqr + Lr −
L2

m

Ls

 
diqr

dt
+ Lr −

L2
m

Ls

 ωsidr +
Lmψs

Ls

ωs.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Corresponding torque equation is

Te � −
npLm

Ls

ψsiqr. (8)

-e active and reactive power of the rotor side can be
obtained as

Ps � Teω1 � − np

Lmψs

Ls

ω1iqr, (9)

Qs � npω1ψds

ψds − Lmidr

Ls

. (10)

It can be derived from equations (9) and (10) that the
active power and reactive power of the generator stator have
a linear relationship with the torque component and exci-
tation component of the rotor current, respectively. -e
active power and reactive power of stator can be indepen-
dently controlled by adjusting the two current components,
and, thus, the power decoupling control is realized in the
stator side.

Similarly, the rotor voltage equation can be obtained:

udr � Rridr + Lr −
L2

m

Ls

 
didr

dt
− Lr −

L2
m

Ls

 ωsiqr. (11)

Let

udr
′ � Rridr + Lr −

L2
m

Ls

 
didr

dt
, (12)

and we can obtain

udr
′ (s)

idr(s)
� Rr + Lr −

L2
m

Ls

 s, (13)

where the transfer functions of udr
′ and idr are linear. As can

be seen from Figure 4, we can obtain udr
′ from idr after the PI

regulation. udr
∗ can be calculated by the full compensation of

voltage based on idr (Figure 4).
uqr
∗ is obtained from the closed-loop of rotor current in q

axial from Figure 5, which can be expressed as

uqr � Rriqr + Lr −
L2

m

Ls

 
diqr

dt
+ Lr −

L2
m

Ls

 ωsidr +
Lmψs

Ls

ωs.

(14)
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According to the characteristics of the reactive power on
the stator side, the total copper consumption of the system is
minimized in the generating process of the DFIM. -e
copper loss equation of the DFIM is

PCu � i
2
qs + i

2
ds Rs + i

2
qr + i

2
dr Rr. (15)

Transforming equation (13) into a function of stator
current in d-axis,

PCu � f ids(  � Rs +
L2

s

L2
m

Rr i
2
ds −

ψdsLsRr

L2
m

ids

+
ψ2

ds

L2
m

Rr + Rs +
L2

s

L2
m

Rr i
2
qs.

(16)

And let
dPCu

dids

� 0⇒ ids �
LsRrψds

RsL
2
m + RrL

2
s

�
ψs − Lmidr

Ls

, (17)

where

Q
∗
s � npω1

LsRrψ2
ds

RsL
2
m + RrL

2
s

. (18)

-e preset reactive power is given according to the
system power factor requirements. Combining equations
(14) and (15), the preset reactive current can be calculated.
Stator flux linkage is the key to rotation transformation in
vector control technology. In the static coordinate system,
the stator voltage equation ignoring the stator resistance is
given as

uα �
dψα

dt
,

uβ �
dψβ

dt
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

As can be seen from the voltage equation in the static
coordinate system, the stator voltage synthesis vector is 90°

ahead of the stator flux vector. -e observed three-phase
voltage of stator is transformed by 3/2, and the stator
voltages uα, uβ of the stationary coordinate system are ob-
tained. -en let θ be the stator voltage vector position, and
stator flux vector position can be expressed as θ1 � θ − 90° to
locate the position of the d axis of the coordinate system.-e
rotor position θr can be measured directly through the code
disc. -e position of d axis refers to the rotor position being
θs � θ1 − θr. Assuming that the rotor voltage in d-q axis is
given, the three-phase voltage on the rotor side u∗ar, u∗br, u∗cr

can be obtained through rotation transformation and 2/3
transformation (see Figure 6). -e power control scheme
can thus be summarized as shown in Figure 3, from which
the decoupling control of the active and reactive power of
the variable-speed and constant frequency DFIM system is
realized.

3. Control of VS-PSU for Regulating Wind
Power Fluctuations

3.1. VS-PSU for Stable Wind Power Generation. -e great
fluctuation exists in wind power since the output of the wind
turbine changes with the variation of the wind speed. In a
short time-scale, the wind power cannot be kept steady by
the wind turbine generator due to its small inertia. -e fast
fluctuation of wind power will inevitably affect the power
flow, voltage, and frequency of the regional power grid.
Typical characteristics of randomness and unpredictability
of wind power plants are recorded in Figure 7. As can be seen
in Figure 8, the active power of VS-PSU increases non-
linearly with the increase of wind power, which indicates
that the fluctuation of wind speed will lead to the frequent
fluctuation of active power at low wind speed and cause the
frequent change of network power flow eventually. Mean-
while, the VS-PSU will not be connected to the grid for
power generation when the wind speed is too high (safe
consideration) or too low.

3.2. Wind Turbine Model. -e relationship between the
mechanical energy, Pw, output by the wind turbine, and the
wind speed, Vw, corresponding to the captured wind energy
is presented in the following:

Pw �
1
2
ρAV

3
w · Cp(λ, B), (20)

in which the power coefficient Cp is the function of tip speed
ratio ωs and pitch angle sωs � ωs − ωr:

Cp(λ, B) � 0.22
116
λ′

− 0.4β − 5.0 e
− (12.5)/λ′( ),

1
λ′

�
1

λ + 0.08β
−
0.035
β3 + 1

.

(21)

-e mechanical torque output of the wind turbine Tw

can be expressed as

Tw �
Pw

ωw

�
Pw

ωm/G
. (22)
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–

–
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qr 
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q′r 

ωs (Lr – L2
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Figure 5: Closed-loop control of rotor current in q axis.
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Maximum mechanical power can be obtained by
adjusting the pitch angle of a wind turbine according to
the alternation of wind speed. Cp and Pw characteristic
curve of a wind turbine is shown in Figures 9 and 10,
respectively. It can be seen from Figure 9 that there is only
one value of ψs that enables Cp to achieve its maximum
when the pitch angle is fixed, and the corresponding tip
velocity ratio is called the optimal tip velocity ratio of wind
turbines.

3.3. Control of VS-PSU Integrated System. -e idea of using
VS-PSU to control the fluctuation of output of wind power
plant is similar to the function of the low-pass filter.
-erefore, the low-pass filter can be used to filter out the
low-frequency components, and then the medium-fre-
quency and high-frequency signals of wind power regulation
needed by the VS-PSU can be obtained. -is section is
dedicated to present the operation characteristics of the
above proposed control strategy based on the DIgSILENT,
and the corresponding schematic diagram is provided in
Figure 11. -e simulation model equipped with a set of
300MW VS-PSU connected to the local power grid in the
region with high permeability of new energy is designed and
connected to the 220 kV ac power grid through the step-up
transformer. As shown in Figure 12, two control schemes of
the VS-PSU integrated with wind power are proposed
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Figure 9: Mechanical power characteristic of the wind turbine.
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according to different input signals. -e input signal of real-
time or forecasted power is superimposed on the reference
power through the restrain fluctuate module. In scheme one,
the real-time power output of the wind power plant is
considered as an input signal (see Figure 13), Pin. Figure 14
shows the active power output of wind turbines obtained
from numerical simulation based on different low-pass
filtering time constants (T1� 5 s, T2�10 s, T3�15 s). Results
show that the variation range of the active power output and
frequency of the wind turbine in the near region have been
effectively reduced, which relieves partial pressure in the
power regulation by the conventional unit. Besides, regu-
lating the speed of VS-PSU is faster with increase in low-pass
filtering time constants. On the other hand, the output
waveform of the controller is delayed compared with the
input waveform due to the lag effect of the low-pass filter,

which is not conducive to power system dispatching. -e
wind power plants are generally equipped with wind power
prediction system, which can forecast wind power in
advance. -erefore, scheme two adopts the method based
on the predicted wind power data of the power plants as
the input signal, Pin. Two control schemes are compared
in Figure 15 and the negative power output is obtained

Figure 10: Mechanical energy characteristic of the wind turbine.
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Figure 11: Systematic diagram of the power system integrated with
VS-PSU in which a 200MW wind power and a 80MW photo-
voltaic power station are connected to the bus (here we focused
only on the integrated operation characteristics of the wind power).
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from the perspective of grid side under pumping mode.
-e power output of the VS-PSU without integration of
the wind power is constant (red one) as labeled with no
additional control. It can be concluded that the fluctuation
of wind power can be effectively suppressed based on the
VS-PSU with both the schemes proposed in this study.
However, the “delay” effect of the low-pass filter has been
effectively compensated based on the predicted power
data in the second scheme. It indicates the better effect of
scheme two in stabilizing the power output fluctuation of
wind energy integration when compared with scheme
one. Based on the wind power curve in Figure 7, the
frequency responses of the VS-PSU integrated wind
power generation system under different filtering time
constants (no additional control, T �15 s, T � 50 s) are
given in Figure 16. -e system frequency fluctuation is
obviously reduced after the VS-PSU is adopted, and the
frequency fluctuation of the system decreased signifi-
cantly in the case of T � 50 s.

4. Conclusions

In the present research, the control over the VS-PSU in-
tegrated wind power generation system is analyzed primarily

using the dq-axis vector control strategy. -e operation
characteristics of wind power after the integration of VS-
PSU is simulated based on DIgSILENTplatform considering
different filtering time. Results show that the VS-PSU can
effectively reduce the regulation pressure of the conventional
power unit, especially when taking the predicted power data
of the wind power plant as the input signal because of the
delay effect of real-time power output. Additionally, the
frequency fluctuation of the wind power generation system
is obviously reduced after the VS-PSU is adopted, and the
frequency stabilization effect is better with the increase of the
filter time constant.-e coordinated operation of VS-PSU in
wind power grid provides more safe and effective regulation
approaches for the peak regulation and frequency
modulation.

Nomenclature

idr: Reactive current
iqr: Measured current
u∗dr: Rotor voltage in d axial
Pw: Mechanical energy captured by wind turbines
ρ: Air density
λ: Tip velocity ratio of wind turbine
β: Pitch angle
A: Area swept by the impeller of a wind turbine
Vw: Wind speed
Cp: Conversion factor of the wind turbine
Tw: Output of wind turbine torque
ωw: Mechanical speed of a wind turbine
ωm: Mechanical angular velocity of a motor
G: Gear ratio.
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