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In this paper, we study a dynamic auction for allocating a single indivisible project while different participants have different bid
values for the project. When the price rises continuously, the bidders can retreat the auction and obtain the compensation by the
difference between the price at retreating time and the previous bid price.*e final successful bidder achieves the project and pays
compensations to others. We show that the auction of bidders with constant relative risk aversion (CRRA) has a unique
equilibrium. While the relative risk aversion coefficient approaches to zero, the equilibrium with CRRA bidders would approach
to the equilibrium with risk-neutral bidders.

1. Introduction

When we need to distribute an indivisible project or in-
heritance to multiple people (such as a house to divorced
couples or heirs), a financial problem arises. Cramton
et al.[1] propose that the results of allocation depend on the
bidder’s attitude towards risk. When bidders are risk neutral
and their personal wealths are independent random vari-
ables, the necessary and sufficient conditions for effective
allocation among many partners are proved. Moreover, they
prove that the only equilibrium partnership is solvable as the
number of bidders increases dramatically. Under the
framework of homogeneous prospectives, Morgan [2]
studies the fairness of dissolving the partnership between
two people. Athanassoglou et al. [3] consider how to divide
the project so as to minimize the maximum loss of bidders.
McAfee [4] introduces a simple mechanism ([5, 6] also study
the mechanism) to describe dissolvable partnerships without
considering the utility function of bidders or their value
distribution. Assuming that the participants are risk averse
and that both bidders tend to have constant absolute risk
aversion (CARA) coefficients, McAfee studies the dissolv-
able partnership problem and solves the bidding function
under equilibrium. *e second best mechanism for given
initial ownership is described in [7]. In order to maximize

the sum of weighted social surplus and income, the optimal
dissolution mechanism for arbitrary initial ownership is
demonstrated in [8]. In addition, similar to [9], most existing
studies have been established under the assumption that
bidders are risk neutral or the number of bidders is only two.

In order to ensure fair distribution, we need to find an
appropriate allocation mechanism to allocate indivisible
projects or legacies. Matt and John [10] show a dynamic
auction. In the auction, the price goes up from 0 to the value
that M − 1 bidders withdraw from bidding, and the last
bidder who does not withdraw from the auction wins the
project. In return, the winner pays the previous bidders a
compensation equal to the difference between his/her exiting
price and that of the previous bidder. Let pk be the price, at
which the kth withdrawer exits the auction. We assume that
p0 � 0. Matt and John [10] describe the necessary and
sufficient conditions for the bidding function at the case that
equilibrium is symmetric equilibrium and there are M≥ 2
risk neutral or CARA bidders. *ey prove that when ab-
solute risk aversion coefficient tends to zero, CARA equi-
librium strategy tends to risk neutral equilibrium strategy.

In the same type of research, the literature studies mostly
choose two bidders to study the relationship of dissolution.
However, in practical cases, dissolution problems usually
occur when there are more bidders. *erefore, the balancing
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strategy of two bidders has great limitations, which cannot
solve the complex situation when there are more bidders. In
addition, the risk preference of bidders in the relevant lit-
erature is mainly risk neutral. *is is inconsistent with the
diversified risk preferences of bidders in real life. In view of
this, this paper synthesizes the two shortcomings above by
assuming that bidders with different project value have
different risk aversion levels, and the risk aversion level is
negatively correlated with the project value of bidders.
Furthermore, we mainly consider the impact of the project
value of two or more bidders on their risk tolerance.
Moreover, this paper chooses exponential utility function
with constant relative risk aversion coefficient to discuss the
properties of equilibrium strategy, which is different from
the absolute risk aversion coefficient selected in [10]. Ab-
solute risk aversion coefficient cannot reflect the impact of
bidders’ project value on their risk tolerance. When each
bidder has the same relative risk aversion coefficient, we
obtain their equilibrium strategy in each round and study
the relationship between the equilibrium price of multiple
bidders and their relative risk aversion coefficient.

In Section 2, we briefly review the models in [10]. Be-
cause bidders with different project values usually have
different risk aversion degree, we introduce the utility
function of relative aversion coefficient to solve equilibrium
strategy, which makes the use of equilibrium strategy more
widely. In Section 3, we describe the equilibrium bidding
function when there are more than two CRRA bidders and
prove that when their relative risk aversion coefficient tends
to zero, their strategies tend to be risk neutral equilibrium.

2. The Mathematical Model

Assume that there areM≥ 2 bidders to bid an indivisible and
single project and their bidding values on the project follow
an identically and independently distribution. Let F be their
cumulative distribution function on [0, x], where x is the
upper bound of bidding values with x< +∞. For simplicity,
we assume that f ≡ F′ is a probability density and f(x)> 0
on x ∈ [0, x]. Let X1, . . . , XM be the bidding values to the
project. We sort them in the ascending order and denote
them as Z

(M)
1 , . . . , Z

(M)
M . Let G

(M)
k and g

(M)
k be the cumu-

lative distribution function and the probability density of
Z

(M)
k , respectively. *en, the conditional density of Z

(M)
k+1

under given Z
(M)
1 � z1, . . . , Z

(M)
k � zk is

g
(M)
k+1 Z

(M)
k+1 � zk+1 | Z

(M)
k � zk􏼐 􏼑

� (M − k)f zk+1( 􏼁
1 − F zk+1( 􏼁􏼂 􏼃

M− (k+1)

1 − F zk( 􏼁􏼂 􏼃
M− k

,

(1)

and the bidder’s instantaneous probability is (see [10])

λM
k (z) :� g

(M)
k+1 Z

(M)
k+1 � z

􏼌􏼌􏼌􏼌􏼌 Z
(M)
k � z􏼒 􏼓 � (M − k)

f(z)

1 − F(z)
.

(2)

In an auction, the price rises continuously from 0 to
M − 1 bidders retreating from it.*e last bidder who stays in

the auction wins the project. Let p0 � 0 and pk be the price of
the kth retreating from the auction. In return, the kth round
bidder retreating from the auction will receive the com-
pensation which equals to (pk − pk− 1) from the winner, for
any k ∈ 1, . . . , M − 1{ }. *us, the winner will pay pM− 1 for
the project.

We denote ξ � (ξ1, . . . , ξM− 1), where ξk(x; pk− 1) is the
price of retreating from the auction in the kth round of a
bidder whose value is x, when the previous prices of
retreating from the auction are p1, p2, . . . , pk− 1 which satisfy
p1 <p2 < · · · <pk− 1. Here, pk− 1: � (p1, . . . , pk− 1).

3. Equilibrium Strategies

We denote the utility function of bidders by

u
c
(x) �

1
1 − c

x
1− c

, (3)

where c (c> 0 and c≠ 1) is the index of the relative risk
aversion coefficient.

As the utility function of bidders is uc(x), the bidder
who wins the project will gain the payoff uc(xi − pM− 1) �

(1/(1 − c))(xi − pM− 1)
1− c (xi is his value) and retreating

from the auction in the kth round will gain the payoff
uc(ξk(x; pk− 1) − pk− 1) � (1/(1 − c))(ξk(x; pk− 1)− pk− 1)

1− c.
*e term ξc

k(x, pk− 1) denotes the equilibrium price retreating
from the auction in the round k when their relative risk
aversion coefficient is c.

Before we provide and verify a useful proposition, we
review two lemmas as follows. It will be used in the con-
sequent proposition.

Lemma 1.
(i) Any increasing and differentiable symmetric equilib-

rium ξ satisfies the differential equation:

u′ ξM− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁ξM− 1′ x; pM− 2( 􏼁

� u ξM− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁 − u x − ξM− 1 x; pM− 2( 􏼁( 􏼁􏼂 􏼃λM
M− 1(x),

(4)

and for k ∈ 1, 2, . . . , M − 2{ } we have that

u′ ξk x; pk− 1( 􏼁 − pk− 1( 􏼁ξk
′ x; pk− 1( 􏼁

� u ξk x; pk− 1( 􏼁 − pk− 1( 􏼁 − u ξk+1 x; ξk x; pk− 1( 􏼁,pk− 1( 􏼁(􏼂

− ξk x; pk− 1( 􏼁􏼃λM
k (x).

(5)

(ii) If ξ � (ξ1, . . . , ξM− 1) is a solution to the system of
differential equations in (i), then it is an equilibrium.

Lemma 2. When bidders are risk neutral, the unique sym-
metric equilibrium satisfies

ξ0k x; pk− 1( 􏼁 �
M − k

M − k + 1
pk− 1 +

1
M − k + 1

E Z
(M)
M− 1

􏼌􏼌􏼌􏼌􏼌 Z
(M)
k > x>Z

(M)
k− 1􏼔 􏼕.

(6)
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Lemma 2 shows the unique symmetric equilibrium when
bidders are risk neutral.

Proposition 1. Suppose that bidders are CRRA with the
relative risk aversion coefficient c> 0. 5e unique symmetric
equilibrium with increasing and differentiable strategies is
given by

ξc
M− 1 x, pM− 2( 􏼁 � pM− 2 + 􏽚

x

x
ξM− 1 z; pM− 2( 􏼁 − pM− 2( 􏼁

1− c
J

M
M− 1(z)dz + 􏽚

x

x
z − ξM− 1 z; pM− 2( 􏼁( 􏼁

1− c
J

M
M− 1(z)dz􏼢 􏼣

1/(1− c)

,

(7)

and for k � 1, . . . , M − 2,

ξc

k x, pk− 1( 􏼁 � pk− 1 + 􏽚
x

x
ξk z; pk− 1( 􏼁 − pk− 1( 􏼁

1− c
J

M
k (z)dz +(M − k) 􏽚

x

x
ξk+1 z; pk( 􏼁 − ξk z; pk− 1( 􏼁( 􏼁

1− c
J

M
k (z)dz􏼢 􏼣

1/(1− c)

,

(8)

where JM
k (z) � ((1 − F(z))M− kf(z))/((1 − F(x))M− k+1).

Proof. For u(x) � x1− c/((1 − c)(c> 0, c≠ 1)) and c ∈ (0, 1)

or (1, +∞), we have

z

zx

1
1 − c

ξc

M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁
1− c

(1 − F(x))
2

􏼠 􏼡

� ξc

M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁
− c

(1 − F(x))
zξx

M− 1 x; pM− 2( 􏼁

zx

−
1

1 − c
2(1 − F(x))f(x) ξc

M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁
1− c

.

(9)

Using Lemma 1, we obtain

ξc
M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁

− c
(1 − F(x))

zξx
M− 1 x; pM− 2( 􏼁

zx

�
1

1 − c
ξc

M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁
1− c

􏼢

−
1

1 − c
x − ξc

M− 1 x; pM− 2( 􏼁( 􏼁
1− c

􏼣f(x).

(10)

Multiplying both sides of equation (10) by (1 − F(x)),
we obtain

ξc
M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁

− c
(1 − F(x))

2zξ
x
M− 1 x; pM− 2( 􏼁

zx

�
1

1 − c
ξc

M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁
1− c

􏼢

−
1

1 − c
ξc

M− 1 x; pM− 2( 􏼁( 􏼁
1− c

􏼣(1 − F(x))f(x).

(11)

Substituting equation (11) into equation (9), it follows
that

z

zx

1
1 − c

ξc
M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁

1− c
(1 − F(x))

2
􏼠 􏼡

� −
1

1 − c
ξc

M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁
1− c

(1 − F(x))f(x)

−
1

1 − c
x − ξc

M− 1 x; pM− 2( 􏼁( 􏼁
1− c

(1 − F(x))f(x).

(12)

In addition, we have that

ξc
M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁

1− c
(1 − F(x))

2

� − 􏽚
x

0
ξc

M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁
1− c

(1 − F(z))f(z)􏽨

+ z − ξc
M− 1 z; pM− 2( 􏼁( 􏼁

1− c
(1 − F(z))f(z)􏽩dz + C,

(13)

where C is independent of x ∈ [0, x).
From F(x) � 1, the following equality holds:
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C � 􏽚
x

0
ξc

M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁
1− c

(1 − F(z))f(z)􏽨

+ z − ξc
M− 1 z; pM− 2( 􏼁( 􏼁

1− c
(1 − F(z))f(z)􏽩dz.

(14)

*en, it follows that

ξc

M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁
1− c

(1 − F(x))
2

� 􏽚
x

x
ξc

M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁
1− c

(1 − F(z))f(z)􏽨

+ z − ξc

M− 1 z; pM− 2( 􏼁( 􏼁
1− c

(1 − F(z))f(z)􏽩dz.

(15)

*at is,

ξc

M− 1 x; pM− 2( 􏼁 � pM− 2 + 􏽚
x

x
ξc

M− 1 x; pM− 2( 􏼁 − pM− 2( 􏼁
1− cf(z)(1 − F(z))

(1 − F(x))2
dz􏼢

+ 􏽚
x

x
z − ξc

M− 1 x; pM− 2( 􏼁( 􏼁
1− cf(z)(1 − F(z))

(1 − F(x))2
dz􏼣

1/(1− c)

⎤⎦.

(16)

We have proved that, at the round M − 1, bid function
satisfies equation (7). We shall prove that, at the round
k<M − 1, bid function satisfies equation (8) when the round
k + 1 bid function satisfies equation (8).

Using the same way as round M − 1, the k round satisfies
that

z

zx

1
1 − c

ξc

k x; pk− 1( 􏼁 − pk− 1􏼐 􏼑
1− c

(1 − F(x))
M− k+1

􏼠 􏼡

� ξc

k x; pk− 1( 􏼁 − pk− 1􏼐 􏼑
− c

(1 − F(x))
M− k+1zξ

x
k x; pk− 1( 􏼁

zx

−
1

1 − c
(M − k + 1)(1 − F(x))

M− k
f(x)

· ξc

k x; pk− 1( 􏼁 − pk− 1􏼐 􏼑
1− c

.

(17)

Using Lemma 1, we have

ξc

k x; pk− 1( 􏼁 − pk− 1􏼐 􏼑
− c

(1 − F(x))
zξc

k x; pk− 1( 􏼁

zx

�
1

1 − c
ξc

k x; pk− 1( 􏼁 − pk− 1􏼐 􏼑
1− c

(M − k)f(x)

−
1

1 − c
ξc

k+1 x; pk( 􏼁 − ξc

k x; pk− 1( 􏼁􏼐 􏼑
1− c

(M − k)f(x).

(18)

Multiplying both sides of equation (18) by
((M − k + 1)/(M − k))(1 − F(x))M− k, we obtain

ξc

k x; pk− 1( 􏼁 − pk− 1􏼐 􏼑
− c

(1 − F(x))
M− k+1zξ

x
k x; pk− 1( 􏼁

zx

�
1

1 − c
ξc

k x; pk− 1( 􏼁 − pk− 1􏼐 􏼑
1− c

(M − k + 1)(1 − F(x))
M− k

f(x)

−
1

1 − c
ξc

k
x; pk− 1( 􏼁 − ξξc

k
x; pk− 1( 􏼁􏼐 􏼑

1− c

· (M − k + 1)(1 − F(x))
M− k

f(x).

(19)

Substituting equation (19) into equation (17), we have
z

zx

1
1 − c

ξc

k x; pk− 1( 􏼁 − pk− 1􏼐 􏼑
1− c

(1 − F(x))
M− k+1

􏼠 􏼡

� −
1

1 − c
ξc

k x; pk− 1( 􏼁 − pk− 1􏼐 􏼑
1− c

(1 − F(x))
M− k

f(x)

−
1

1 − c
ξc

k x; pk− 1( 􏼁 − ξc

k+1 x; pk− 1( 􏼁􏼐 􏼑
1− c

· (1 − F(x))
M− k

f(x).

(20)

Consequently,

ξc

k x; pk− 1( 􏼁 − pk− 1􏼐 􏼑
1− c

(1 − F(x))
M− k+1

� − 􏽚
x

0
ξc

k z; pk− 1( 􏼁 − pk− 1􏼐 􏼑
1− c

(1 − F(z))
M− k

f(z)

+ ξc

k z; pk− 1( 􏼁 − ξc

k+1 z; pk− 1( 􏼁􏼐 􏼑
1− c

(1 − F(z))
M− k

f(z)dz + C.

(21)

Using F(x) � 1, we have

C � 􏽚
x

0
ξc

k z; pk− 1( 􏼁 − pk− 1􏼐 􏼑
1− c

(1 − F(z))
M− k

f(z) +(M − k) ξc

k z; pk− 1( 􏼁 − ξc

k+1 z; pk− 1( 􏼁􏼐 􏼑
1− c

(1 − F(z))
M− k

f(z)dz.

(22)
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*en, it follows that

ξc

k x; pk− 1( 􏼁 − pk− 1􏼐 􏼑
1− c

(1 − F(x))
M− k+1

� 􏽚
x

x
ξc

k z; pk− 1( 􏼁 − pk− 1􏼐 􏼑
1− c

(1 − F(z))
M− k

f(z) +(M − k) ξc

k z; pk− 1( 􏼁 − ξc

k+1 z; pk− 1( 􏼁􏼐 􏼑
1− c

(1 − F(z))
M− k

f(z)dz.

(23)

*at is,

ξc

k x; pk− 1( 􏼁 � pk− 1 + 􏽚
x

x
ξc

k x; pk− 1( 􏼁 − pk− 1􏼐 􏼑
1− cf(z)(1 − F(z))M− k

(1 − F(x))M− k+1 dz􏼢

+ M 􏽚
x

x
ξc

k+1 x; pk( 􏼁 − ξc

k x; pk− 1( 􏼁􏼐 􏼑
1− cf(z)(1 − F(z))M− k

(1 − F(x))M− k+1 dz

− k 􏽚
x

x
ξc

k+1 x; pk( 􏼁 − ξc

k x; pk− 1( 􏼁􏼐 􏼑
1− cf(z)(1 − F(z))M− k

(1 − F(x))M− k+1 dz􏼣

1/(1− c)

,

(24)

which is the desired result.
Proposition 1 characterizes the equilibrium price

retreating from the auction in the round k. We know that the
equilibrium price is related only to the relative risk aversion
coefficient c, the retreating prices of previous k − 1 rounds
pk− 1, the value x, and M − k from Proposition 1. Let M, k,
M′, and k′ satisfy M′ − k′ � M − k≥ 1.*en, we obtain that
the dropout price in the k round when there are M bidder
equals the dropout price in the k′ round when there are M′
bidders. *us, we have Corollary 1. □

Corollary 1. If M′− k′ � M − k and bidders are CRRA, it
holds that

ξc

k′,M′ x; pk′− 1( 􏼁 � ξc

k,M x; pk− 1( 􏼁, (25)

when pk′− 1 � pk− 1.

Example 1. *ere are two auctions, for simplicity, we as-
sume that M � 10, k � 9, M′ � 8, and k′ � 7, respectively.
*e conditions in Corollary 1 are met, that is, c � c′, x � x′,
pk− 1 � pk′− 1′ , and M′ − k′ � M − k. Based on Proposition 1,
we obtain

ξc

k′,M′ x; pk′− 1( 􏼁 � ξc
7,8 x; p6( 􏼁 � p6′ + 􏽚

x

x
ξ7 z; p6( 􏼁 − p6′( 􏼁

1− c
J
8
7(z)dz + 􏽚

x

x
z − ξ7 z; p6( 􏼁( 􏼁

1− c
J
8
7(z)dz􏼢 􏼣

1/(1− c)

,

ξc

k,M x; pk− 1( 􏼁 � ξc
9,10 x; p8( 􏼁 � p8 + 􏽚

x

x
ξ9 z; p8( 􏼁 − p8( 􏼁

1− c
J
10
9 (z)dz + 􏽚

x

x
z − ξ9 z; p8( 􏼁( 􏼁

1− c
J
10
9 (z)dz􏼢 􏼣

1/(1− c)

.

(26)

When the existence and uniqueness of solutions are
satisfied, it is easy to prove that the two equations are equal.

To present an important proposition, the following
useful lemma is listed firstly.

Lemma 3. 5e identity

􏽚
x

x

(M − k + 1)[1 − F(t)]M− kf(t)

[1 − F(x)]M− k+1

· E Z
(M)
M− 1

􏼌􏼌􏼌􏼌􏼌 Z
(M)
k+1 > t>Z

(M)
k􏼔 􏼕dt

� Z
(M)
M− 1

􏼌􏼌􏼌􏼌􏼌 Z
(M)
k+1 > x>Z

(M)
k􏼔 􏼕

(27)

holds.
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Proposition 2. For any c ∈ (0, 1) or c ∈ (1, +∞), we assume
that the following functions

z − ξM− 1 z; pM− 2( 􏼁( 􏼁
1− c

J
M
M− 1(z),

ξM− 1 z; pM− 2( 􏼁 − pM− 2( 􏼁
1− c

J
M
M− 1(z),

ξk z; pk− 1( 􏼁 − pk− 1( 􏼁
1− c

J
M
k (z),

ξk+1 z; pk( 􏼁 − ξk z; pk− 1( 􏼁( 􏼁
1− c

J
M
k (z),

(28)

are continuous and uniformly convergent if
z ∈ [x, x], 0≤ x≤x, and k ∈ 1, . . . , M − 2{ }. Suppose that
bidders are CRRA with the relative risk aversion c. 5en, for
k � 1, . . . , M − 1 and pk− 1, it has

limc⟶0+ξc

k x; pk− 1( 􏼁 � ξ0k x; pk− 1( 􏼁. (29)

Proof. At first, we prove that the round M − 1 satisfies
equation (29). Namely,
lim

c⟶0+
ξc

M− 1 x; pM− 2( 􏼁 � lim
c⟶0+

􏽚
x

x
ξc

M− 1 z; pM− 2( 􏼁 − pM− 2( 􏼁
1− cf(z)(1 − F(z))

(1 − F(x))2
dz􏼢

+ 􏽚
x

x
z − ξc

M− 1 z; pM− 2( 􏼁( 􏼁
1− cf(z)(1 − F(z))

(1 − F(x))2
dz􏼣

1/1− c

+pM− 2.

(30)

From assumptions of this proposition, we have

lim
c⟶0+

ξc
M− 1 x; pM− 2( 􏼁 � pM− 2

+ 􏽚
x

x
lim

c⟶0+
ξc

M− 1 z; pM− 2( 􏼁 − pM− 2􏼠 􏼡
f(z)(1 − F(z))

(1 − F(x))2
dz􏼢

+ z − lim
c⟶0+

ξc
M− 1 z; pM− 2( 􏼁􏼠 􏼡

f(z)(1 − F(z))

(1 − F(x))2
dz􏼣,

lim
c⟶0+

ξc
M− 1 x; pM− 2( 􏼁 � pM− 2

+ 􏽚
x

x
z − pM− 2( 􏼁

f(z)(1 − F(z))

(1 − F(x))2
dz􏼢 􏼣

�
1
2
pM− 2 + 􏽚

x

x
z

f(z)(1 − F(z))

(1 − F(x))2
dz.

(31)

Using the conditional probability density
p

(M)
M− 1 ZM− 1 � zM− 1

􏼌􏼌􏼌􏼌 Z
M
k >x>Z

M
k− 1􏼐 􏼑

�
(M − k + 1)(M − k) F zM− 1( 􏼁 − F(x)( 􏼁

M− k− 1 1 − F zM− 1( 􏼁( 􏼁f zM− 1( 􏼁

(1 − F(x))M− k+1 ,

(32)

where x< zM− 1 <x, we obtain that the conditional expec-
tation is

E Z
(M)
M− 1 Z

(M)
M− 1

􏼌􏼌􏼌􏼌􏼌 >x>Z
(M)
M− 2􏼔 􏼕 � 􏽚

x

x
2z

f(z)(1 − F(z))

(1 − F(x))2
dz.

(33)

*us,

lim
c⟶0+

ξc
M− 1 x; pM− 2( 􏼁 �

1
2
pM− 2 + 􏽚

x

x
z

f(z)(1 − F(z))

(1 − F(x))2
dz

�
1
2
pM− 2 +

1
2

E Z
(M)
M− 1 Z

(M)
M− 1 >x>Z

(M)
M− 2

􏼌􏼌􏼌􏼌􏼌􏼔 􏼕.

(34)

*at is,

lim
c⟶0+

ξc
M− 1 x; pM− 2( 􏼁 � ξ0M− 1 x; pM− 2( 􏼁. (35)

From the above, we have proved that the round M − 1
bid function satisfies equation (29). We shall prove that for
the round k with k<M − 1 the bid function also satisfies
equation (29) if the round k + 1 bid function satisfies it. *at
is,
lim

c⟶0+
ξc

k+1 x; pk( 􏼁

�
M − k − 1

M − k
lim

c⟶0+
ξc

k x; pk+1( 􏼁 +
1

M − k
E Z

(M)
M− 1

􏼌􏼌􏼌􏼌􏼌 Z
(M)
k+1 >x>Z

(M)
k􏼔 􏼕.

(36)

Using equation (8), we have

lim
c⟶0+

ξc

k x; pk− 1( 􏼁 � pk− 1 + lim
c⟶0+

􏽚
x

x
ξc

k z; pk− 1( 􏼁 − pk􏼐 􏼑
1− cf(z)(1 − F(z))M− k

(1 − F(x))M− k+1 dz􏼢

+ 􏽚
x

x
(M − k) ξc

k+1 z; ξc

k z; pk− 1( 􏼁􏼐 ,pk− 1􏼐 􏼑− ξc

k z; pk− 1( 􏼁􏼑
1− cf(z)(1 − F(z))M− k

(1 − F(x))M− k+1 dz􏼣

1/(1− c)

.

(37)
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Substituting equation (23) into equation (37), we have

lim
c⟶0+

ξc

k x; pk− 1( 􏼁 � pk− 1 + lim
c⟶0+

􏽚
x

x
ξc

k z; pk− 1( 􏼁 − pk􏼐 􏼑
1− cf(z)(1 − F(z))M− k

(1 − F(x))M− k+1 dz􏼢

+ 􏽚
x

x
(M − k)

M − k − 1
M − k

lim
c⟶0+

ξc

k x; pk− 1( 􏼁 +
1

M − k
E Z

(M)
M− 1

􏼌􏼌􏼌􏼌􏼌 Z
(M)
k+1 >x>Z

(M)
k􏼔 􏼕 − ξc

k z; pk− 1( 􏼁􏼑
1− cf(z)(1 − F(z))M− k

(1 − F(x))M− k+1􏼠􏼨 􏼩dz􏼣

1/1− c

.

(38)

We simplify equation (38) and get that

lim
c⟶0+

ξc

k x; pk− 1( 􏼁 � pk− 1 − 􏽚
x

x
pk− 1

f(z)(1 − F(z))M− k

(1 − F(x))M− k+1 dz

+ 􏽚
x

x
E Z

(M)
M− 1

􏼌􏼌􏼌􏼌􏼌 Z
(M)
k+1 > z>Z

(M)
k􏼔 􏼕

f(z)(1 − F(z))M− k

(1 − F(x))M− k+1 dz

�
M − k

M − k + 1
pk− 1

+ 􏽚
x

x
E Z

(M)
M− 1

􏼌􏼌􏼌􏼌􏼌 Z
(M)
k+1 > z>Z

(M)
k􏼔 􏼕

f(z)(1 − F(z))M− k

(1 − F(x))M− k+1 dz.

(39)

Using Lemma 3, we obtain

􏽚
x

x
E Z

(M)
M− 1

􏼌􏼌􏼌􏼌􏼌 Z
(M)
k+1 > z>Z

(M)
k􏼔 􏼕􏼚 􏼛

f(z)(1 − F(z))M− k

(1 − F(x))M− k+1 dz

�
1

M − k + 1
E Z

(M)
M− 1

􏼌􏼌􏼌􏼌􏼌 Z
(M)
k+1 > z>Z

(M)
k􏼔 􏼕,

lim
c⟶0+

ξc

k x; pk− 1( 􏼁 � ξ0k x; pk− 1( 􏼁, (k<M − 1).

(40)

*erefore, we obtain

lim
c⟶0+

ξc

k x; pk− 1( 􏼁 � ξ0k x; pk− 1( 􏼁, (k≤M − 1). (41)

Proposition 2 characterizes the limit property of equi-
librium bid functions. □

4. Conclusions

In this paper, we have demonstrated that the bidders’ equi-
librium strategies with the power utility function. We have
proved that the equilibrium is unique when they have the
equal relative risk aversion coefficient and we have shown that
the integral equations about the bidders’ equilibrium prices
retreating from the auction. We have shown that the property
of the equilibrium prices is that the equilibrium prices tend to
the risk neutral equilibrium prices when their absolution risk
aversion coefficients tend to zero. In future, we need to solve
the integral equations about the equilibrium strategies and
explore the relations between the equilibrium prices and the
bidders’ relative risk aversion coefficient.
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