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Research on liveable cities has received increased attention in recent years because of the complexity and diversity of liveability
standards. Evaluating the liveable environment is a multiple criteria decision-making (MCDM) problem, and the results can be
used to control environmental pollution and protect human health. However, different evaluation methods can lead to different
results; hence, determining how to effectively to obtain the consistent results is a main consideration of this study.'e objective of
this work is to design an optimal method based on the difference ratio concept. A hopfield neural network is selected to validate
the experimental results. Referring to the liveable city rankings established by the Economist Intelligence Unit, thirteen large cities
in China are used to illustrate the application of the model, evaluate the liveable urban environment, and demonstrate the
effectiveness and feasibility of the proposed model. 'e results show that Hangzhou is the most liveable city and Beijing has the
worst liveable urban environment.'erefore, a common policy should be strengthening environmental governance, with a special
focus on the development of low-carbon cities, for which both the local and global environmental impacts could be mitigated.

1. Introduction

In recent years, due to the complexity and diversity of
liveable city standards, the development of liveable cities has
gained increased attention [1]. Urban development seeks to
increase or to maintain the quality of life in urban areas by
mapping urban structures and building liveable cities with a
sustainable development system [2, 3]. 'e concept of
liveability was first introduced at the United Nation’s
Habitat Conference in 1996, and it stated that every city
should be habitable. One key characteristic of liveable cities
is their ability to attract a disproportionate amount of the
globally mobile resources (such as talents, high net worth
individuals, investors, innovators, entrepreneurs, and cap-
ital), which are recognised to make positive contributions to
economic growth, economic resilience, global political in-
fluence, world agenda-setting power, socio-cultural inno-
vation, and international lifestyle [4]. Moreover, it was
shown in [5] that the quality of living survey can be used to
help governments and major corporations place personnel
on international assignments. 'e survey is used to rank

cities based on an evaluation of 39 factors, including po-
litical, economic, environmental, personal safety, health,
education, transportation, and other public service factors. It
has been acknowledged that the environmental pollution has
become a major issue and urban populations are expanding
and increasing [6]. In practice, these conditions of the
liveable environment cannot meet people’s living require-
ments. 'erefore, the purpose of this paper is to establish a
system to analyse the liveable classes in different cities.

To effectively address the liveable city concept at several
spatial scales, liveable urban environment modelling is of the
utmost relevance for evaluation. 'e relevant literature has
mainly focused on the urban development status [7], live-
ability of cities [8], urban quality of life [9], and sustainable
development and optimization of the liveable environment
of cities [10, 11]. 'e definitions of a livability system can be
used to assess the livability of cities. 'e conceptual model
includes social and economic factors, as well as the principles
of environmental sustainability [12]. Giap et al. proposed a
new liveability system measure called “the Global Liveable
Cities Index” to rank 64 major global cities. 'e system
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advances the measurement of the liveability construct by
considering the multidimensional sensibility of diverse
groups [4]. In addition, many studies, including a study by
the Economist Intelligence Unit [13] and analyses in Europe
[12], the UK [14], and the USA [15], have only evaluated the
livability of a system by ranking and comparison livability
metrics.

As an active research area, many MCDM methods have
been proposed. For example, a novel hybrid fuzzy MCDM
model combined with the technique for order preference by
similarity to an ideal solution (TOPSIS) model and the
analytical network process (ANP) was used to evaluate green
suppliers [16]; this approach defines green supplier evalu-
ation criteria and formulates a new evaluation model. Some
research has suggested that the integration of the TOPSIS
model can solve the truck selection problem encountered by
land transportation companies [17]. Similarly, a novel
conjunctive MCDM approach is combined the analytical
hierarchy process (AHP) and TOPSIS to develop an inno-
vation support system that considers the interdependence of
higher education institutions to comprehensively evaluate
their innovation performance [18].

MCDM is widely used in many evaluation problems and
is used to evaluate liveable cities in our research. 'ere are
many MCDM methods applied to assess liveable cities; for
example, an AHP method was used to develop a liveable city
index and determine the long-term trend of city livability
[19]. A fuzzy AHP method was applied to determine the
relative weights of the evaluation criteria in a sustainable city
liveable problem [20]. TOPSIS was used to evaluate sus-
tainable development in livable city [21], and the results
suggested that the social, economic, and environmental
factors have important influences on liveable cities. Refer-
ence [22] presented a multicriteria evaluation for the se-
lection of the optimal configuration of an air quality model.
Additionally, some scholars developed support methods to
explore the strengths and weaknesses of various alternatives
and identified the preferred result based on the integration of
Bayesian networks and fuzzy logic to rank and evaluate
suppliers [23].

Generally, most of the criteria required in MCDM
cannot be accurately evaluated because it is not feasible to
obtain precise data for decision-making assessments.
Moreover, the use of certain subjective criteria can lead to
incorrect results. In these cases, the difference ratio can be
used to select the most suitable multiple evaluation method
for a liveable city MCDMproblem.'is approach is not only
suitable for the evaluation of liveable urban environments
but also solves problems related to city pollution and en-
vironmental management. Moreover, economic develop-
ment will potentially drive pollutant emissions in the future
[24]. To address the aforementioned concerns, the different
ratio is used to select the most suitable model among the
TOPSIS [25], Gini [26], fuzzy Borda [27], principle com-
ponent analysis (PCA) [28], and TS fuzzy neural network
[29, 30] models.

MCDM and integrated machine learning algorithms
have been developed in recent years, and some hybrid
techniques have been effectively applied in multiattribute

inventory analysis. For instance, Näıve Bayes, Bayesian
network, artificial neural network (ANN), and support
vector machine (SVM) algorithms [31] have successfully
been used in inventory classification problems. Similarly,
some machine learning approaches have been used in
supplier selection problems, and they displayed better
predictive performance than individual algorithms [32]. In
some research, a score, such as the financial risk prediction
score, which is used by MCDM methods (e.g., TOPSIS), has
been used to measure the performance of algorithms and
develop a two-step approach for evaluating classification
algorithms [33]. 'eir results show that MCDM methods
integrated with machine learning (e.g., linear logistic and
neural network) can improve the accuracy of this model.'e
Hopfield neural network model based on the factor analysis
method is used in water quality evaluation, and the corre-
sponding results indicate that the factor analysis technique
can effectively identify important water quality parameters
[34].

'e main motivation of this study is the selection of a
suitable MCDM model for evaluating the liveable envi-
ronment of cities. Section 2 presents the methodology of
study and introduces characteristics of each MCDM
method. 'e results and discussion are given in Section 3,
and the potential improvements of the proposed method-
ology are discussed. Some conclusions of this study are
summarized in Section 4.

2. Methods

In order to address the aforementioned concerns, the dif-
ference ratio is used to select the most suitable evaluation
method among the Gini, TS fuzzy neural network, TOPSIS,
fuzzy Borda, and PCA methods, as shown in Figure 1.
Figure 1 indicates that the framework consists of other key
phases, including indicator preprocessing, evaluation model
training, and simulation and verification of the results [35].
'e main contribution of this work is the selection of the
most suitable result from multiple model evaluations based
on the difference ratio. It is observed from Figure 1 that to
create a liveable city evaluation platform, first, some relative
factors of liveable city are selected. 'en, the max-minimum
method is applied to normalized data to avoid negative
effects via different sizes of indicators. Data preprocessing is
followed by descriptions, and then model training and
validation are followed. 'e most suitable model is selected
according to the difference ratio. After that, the Hopfield
neural network is used to verify the ranking results. 'en,
the results are obtained.

2.1. Difference Ratio. 'e traditional difference ratio (DR) is
a measure of the quality of test questions [36, 37], and the DR
can be used to measure the relative differences among
evaluation strategies in this paper. Obviously, the greater the
relative difference is, the less impactful the evaluation
method. For m evaluation objects, various evaluation
methods are ranked in the descending order according to the
evaluation result V. 'en, each score is numbered N, where
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function V � f(N) is a monotonous decreasing function.
'e coordinates of the best evaluation result are (V1, 1), and
the coordinates of the worst results are (Vm, m). 'e DR
equation is given as follows:

D �


m−1
i�1

�����������������������

Vi+1 − V1( 
2

+ Ni+1 − Ni( 
2



Vm − V1( 
2

+ Nm − N1( 
2 . (1)

In general, D≤ 1 indicates that the larger the distance
between adjacent two points is in eachmethod, the better the
evaluation result. 'erefore, an excellent DR is robust in the
interpretation of different evaluation results. Because the
value ranges of various types of evaluation methods result
are different, the results must be standardized to compare
different model results; for example, the TOPSIS values
range between 0 and 1, those of the factor analysis method
range between −1 and 1, and those of the Delphi method
range from 0 to 100. After standardization, the value range is
0-1. However, this value range can lead to ineffective DRs
because the D value is too small; therefore, the range of all
values after normalization is set between 0 andm, where the
coordinates of the maximum point are (m, 1) and those of
the minimum point are (0, m). 'e other points are pro-
cessed as shown in equation (2) according to the difference
between the original value and the maximum value:

Vi � m × 1 −
Vi
′ − V1′




V1′ − Vm
′ , (2)

where V′ is the original value and Vi is the standardized
value. 'e distribution of the evaluation result does not

change because simple linear transformation is applied.
'en, a simplified DR can be obtained, as shown in the
following equation:

D �


m−1
i�1
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2

+ 12


(m − 0)2 +(m − 0)2
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m−1
i�1
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2

+ 1


2m2 − 2m − 1
.

(3)

2.2. Evaluation Model. Five MCDM models are chosen to
evaluate liveable cities in this study since they are common
and representative. Based on the surveys of overviews on
MCDMmethods [38, 39], TOPSIS and PCA are widely used
in MCDM problems. 'e Gini coefficient has been widely
used in MCDM problem in recent years. Fuzzy Borda and
fuzzy TS neural network are evaluated in MCDM problems
with the development of other fields, such as fuzzy and
machine learning.

2.2.1. Evaluation Based on Gini Coefficient. 'e Gini coef-
ficient was first proposed by Gini [40] in 1912, which is a
quantitative limit that objectively reflects the heterogenous
distribution of income [41]. It has been developed much in
MCDM fields. Also, it is widely used in the selection site of
surface water [42], coherency identification of generators
[43], and water resource evaluation [44]. 'is paper eval-
uates liveable cities based on the Gini coefficient. 'is co-
efficient considers the fairness of indicators and efficiency,
which is conducive to evaluating liveable environmental
cities. 'e Gini coefficient evaluation steps are as follows:

Create an evaluation platform of city liveable environment

Define strategies and factor for evaluation of the liveable indicator selection

Selection indicator Max-minimum method

Gini PCA Fuzzy Borda TS fuzzy neural
network TOPSIS

Selected a most suitable group by different ratio

Hopfield simulation verifying result

Result summaryFinal

Simulation

Training model
and validation

Preprocessing

Start

Figure 1: Our proposed learning framework.
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Step 1: calculate the Gini coefficient of a single indi-
cator. First, the economic comprehensive competi-
tiveness index (ECCI) is compared with each indicator;
then, the resulting values are sorted in the ascending
order. Next, the cumulative value and cumulative
percentage of each indicator are calculated. Finally, a
Lorentz curve is drawn according to the coordinates
(0, 0), . . ., (1, 1), and so on.
Step 2: regression fitting is performed according to the
formula G � 1 − 

J
j�1(Xj − Xj−1)(Yj + Yj−1), where X

is an indicator and Y is the cumulative percentage of
comprehensive economic competitiveness; for exam-
ple, when i � 1, (Xj−1, Yj−1) are the origin coordinates
(0, 0).
Step 3: calculate the Gini coefficient of a single indicator
for a city. First, we calculate the cumulative Gini co-
efficient AGij � Gj × APi, where Gj is the overall Gini
coefficient of a single indicator and APi is the cumu-
lative percentage associated with a single indicator for
the ith city in the ascending order. 'en, we calculated
the single Gini coefficient Gij � AGi+1,j − AGi,j, where j
is an indicator and i is a sample of city.
Step 4: calculate the comprehensive Gini coefficient
CG � 

J
jWjGj, where Wj is the weight of jth and Gj is

the Gini coefficient of jth.
Step 5: conduct a comprehensive evaluation based on
the final values, and analyse the results. 'e evaluation
is divided into two parts. One part involves using the
overall Gini coefficient in a high-level evaluation, and
the other part involves using the product of the Gini
coefficient and the weights of all indicators in a certain
city to perform between-city evaluation.

2.2.2. Evaluation Based on PCA. Principal component
analysis (PCA) is an objective evaluation method that can
reduce redundancy [45]. 'e original information is re-
flected in the variance contribution of each indicator. 'ese
contributions represent the weights for comprehensive
evaluation and reduce the subjectivity of analyses. 'e PCA
evaluation steps are as follows:

Step 1: standardize the initial data
Step 2: calculate the correlation coefficient matrix R
Step 3: calculate the feature value and the feature vector,
i.e., the eigenvalue (λj, j � 1, 2, . . . , J) of R and the
corresponding eigenvector
Step 4: calculate the variance contribution (λj/

J
j�1λj),

of the principal components and the cumulative var-
iance contribution (

k
j�1(λj/

J
j�1λj), k ∈ [1, J])

Step 5: calculate the principal component coefficients

2.2.3. Evaluation Based on the Fuzzy Borda Method. 'e
Borda method is used to compare the relative positional
relationships of m objects to be evaluated by comparing n

types of single evaluation method [46]. 'en, the Borda
value of each object is determined, and values are sorted
from high to low. Because the Borda method only uses the
ordered relationship of each evaluated object and does not
consider the qualitative results associated with the ordered
relationships, it is possible to obtain inaccurate results.
'erefore, Yang Jimei and Shi Benshan made some im-
provements to the Borda method and developed the fuzzy
Borda method [27]. 'e evaluation steps of the fuzzy Borda
method are as follows:

Step 1: calculate the membership degree according to
u∗ij � (yij/yopt)

Step 2: find themodulus of the ith object in the hth position
and frequency f∗ih based on μi � diag(μi1, μi2, . . . , μim)

and f∗i � δiμiE � (f∗i1, f∗i2, . . . , f∗im)
T
1×m.

Step 3: determine the corresponding valueQ∗h � m + h + 1,
where h ∈ [1, m]

Step 4: calculate the improved fuzzy Borda value F∗i �


m
h�1f
∗
ihQ∗h for the ith evaluated object

Step 5: sort the results from high to low according to F∗i .

2.2.4. Evaluation Based on a TS Fuzzy Neural Network.
Lotfi Aliasker Zadeh, an American cybernetics expert at the
University of California, pioneered the concept of fuzzy
sets in 1965 [47]. Fuzzy theory has captured the charac-
teristics of the ambiguity of human thinking and can thus
be used to solve conventional problems. Conventional
fuzzy pattern recognition problems and complex mea-
surement problems are often difficult to solve. 'e fuzzy
comprehensive evaluation method considers the fuzzy
transformation and maximum subordination degree
principles to evaluate the relevant factors. 'e corre-
sponding formula is as follows:

A · R � B, (4)

where A represents the evaluation weights in a 1 × m nor-
malized matrix, R represents each evaluation indicator in an
m × n fuzzy relation matrix, and B is the result of com-
prehensive evaluation.

TS fuzzy systems have very strong self-adaptive abilities,
and they can automatically update and modify the mem-
bership function of fuzzy subsets. 'erefore, the error of a
model is slowly reduced in the running process, and the
result correspondingly improves. A TS fuzzy system has set
of “if-then” rules that must be defined. Concerning the rules
for R, the fuzzy reasoning strategy is as follows:

R
i
: If x1 isA

i
1, x2 isA

i
2, . . . , xn isA

i
n, then

yi � p
i
0 + p

i
1x1 + · · · + p

i
nxn,

(5)

where i � 1, 2, 3, . . . , m; j � 1, 2, 3, . . . , n; and so on.
Hereinafter, Ai

j represents the fuzzy sets for fuzzy systems,
pi

j represents the parameters of the fuzzy system, and yi is
the output according to the fuzzy rules. If the input part
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(i.e., If ) is fuzzy, the output part (i.e., THEN) is
determined.

For an input value x � [x1, x2, . . . , xn], the membership
of each input variable is xj according to the fuzzy rules as
follows:

μA
i
j � e

− ( (xj−ci
j
)2/bi

j, (6)

where ci
j and bi

j represent membership function center and
width, respectively; n is the input parameters; and m is the
number of fuzzy subsets.

'e calculation of the fuzzy degree of membership with
a fuzzy operator for the multiplication operator is as
follows:

w
i

� μA
i
j x1(  × μA

i
j x2(  × · · · × μA

i
j xn( . (7)

According to the fuzzy results, the following equation is
used to compute the model output value y:

y �


m
i�1w

iyi


m
i�1w

i
. (8)

'e TS fuzzy neural network method is an iterative
process, and the total error function of each iteration
changes with the relevant parameters. 'e network pa-
rameters are constantly modified until the value of the total
error function is minimized [35].

'e TS fuzzy neural network is divided into an input
layer, a fuzzy classification layer based on fuzzy pro-
gramming, and an output layer. 'e input layer is con-
nected to the input vector xi, which has the same number of
nodes and dimension as the input vector. 'e fuzzy clas-
sification layer uses the fuzzy degree values of the mem-
bership functions of input values to obtain the fuzzy
membership values. 'e layers of fuzzy rules are based on
the fuzzy multiplication formula. 'e output layer uses the
formula to calculate the output of the fuzzy neural network.
'e learning algorithm of the fuzzy neural network is as
follows:

(1) 'e error is computed as follows:

e �
1
2

yd − yc( 
2
, (9)

where yd is the expected network output, yc is the actual
output of the network, and e is the actual error of the
output.

(2) 'e modification coefficient is expressed as follows:

p
i
j(k) � p

i
j(k − 1) − α

ze

zci
j

,

ze

zpi
j

�
yd − ye( 

2
wi


m
i�1w

i
xj,

(10)

where pi
j(k) is a coefficient of the neural network, α is

the network learning rate, xy is the network input parameter,

and wi is the product of the degree of membership of the
input parameters.

(3) 'e modification parameter is expressed as follows:

c
i
j(k) � c

i
j(k − 1) − β

ze

zci
j

,

b
i
j(k) � b

i
j(k − 1) − β

ze

zbi
j

,

(11)

where ci
j and bi

j represent the membership function center
and width, respectively.

2.2.5. Evaluation Based on TOPSIS. TOPSIS was first pro-
posed by Hwang and Yoon in 1981, and developments were
expanded by Chen and Hwang in 1992 [48]. 'e TOPSIS
model was used to evaluate the characteristics of the
comprehensive evaluation index systems of liveable cities in
this paper. 'e basic concept of the TOPSIS method is to
calculate the distance between the best scheme and the worst
scheme based on continuous time series of samples and use
the relative degree of the ideal solution as the standard for
comprehensive evaluation. 'e TOPSIS method determines
the distance between the evaluation object and the optimal
solution, and these values are sorted to identify the worst
solution. If the evaluation object is close to the optimal
solution and far from the worst solution, it may be an
optimal solution.

First, the original data sets were standardized. 'en, Y �

(y1, y2, y3, . . . , yj) � yij was normalized as a dimensionless
data matrix, where yij � (xij/

������


n
i�1x

2
ij


), i � 1, 2, . . . m;

j � 1, 2, . . . , n.
Second, the optimal and worst samples for each indi-

cator were determined. 'e optimal samples were deter-
mined using the maximum value of each indicator for all
samples.'eminimum samples for each index were used to
form the worst sample sets; these sets were represented as
Y+ andY− :

Y
+

� y
+
1 , y

+
2 , . . . , y

+
i( ,

Y
−

� y
−
1 , y

−
2 , . . . , y

−
i( ,

(12)

where Y+ � max1≤i≤myij and Y− � min1≤i≤myij, j � 1, 2,

. . . n.
'ird, we determined the relative proximity of each

sample point to the optimal sampling point:

Ci �
D−

i

D+
i + D−

i

, (13)

where D+
i and D−

i are the distances from each sample point
to the optimum and the worst sample points, respectively.
Specifically, D+

i �
�������������


n
j�1(yij − y+

i )2


and

D−
i �

�������������


n
j�1(yij − y−

i )2


, where i � 1, 2, . . . m. 'e larger Ci

is, the closer the sample is to the optimal sample point.
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Finally, in this paper, the improved entropy method was
used to determine the weights of the indicators; more details
are shown in Reference [49].

2.3.EvaluationBasedonHopfieldNeuralNetworkSimulation.
'e Hopfield neural network was proposed by J. J. Hopfield
in 1982 and has a symmetric connected structure in which
any two neurons are connected. 'is network has been
successfully used to solve real-world problems, including
assignment, scheduling, shortest-path, travelling salesman,
and vehicle routing problems [50]. Based on the form of the
output function, Hopfield networks can be classified into
one of two popular forms: discrete and continuous-time
models. In this work, a discrete Hopfield neural network was
chosen to classify the liveable environment of cities. 'e
discrete Hopfield neural network is a single-layer and bi-
nary-type feedback neural network. All the nodes are
connected to each other, and the connection weights of
nodes accept information feedback from the other nodes.
'erefore, the output of any neuron is controlled by the
other neurons, meaning that the output of each neuron can
restrict that of other neurons. As a result, each neuron has a
threshold value that controls the input of noise [51]. 'e
network is shown in Figure 2.

For a binary neuron, uij � iwijyj + xj, where xj is the
outside input. If uj ≥ θ, then yj � 1; otherwise, yj � −1. 'e
output of the discrete neural network is a set of neuron
information, and the state at time t is a n-dimensional vector
Y(t) � [y1(t), y2(t), . . . , yn(t)]T. Considering the general
node state of a discrete Hopfield neural network, yj(t)

represents the jth neuron, and the state of the next node
(t + 1) can be obtained by using the second neuron:

yj(t + 1) � f uj(t) 
1, uj ≥ 0,

−1, uj ≤ 0,

⎧⎨

⎩

uij � 
i

wijyj(t) + xj − θj.

(14)

If wij � 0 and i � j, then the output of a neuron cannot
feedback to its input, which indicates that a discrete Hopfield
neural network does not provide self-feedback. In other
cases, a discrete Hopfield neural network can be designed as
a self-feedback network.

'is paper uses a binaryHopfield network to evaluate the
liveable environmental competitiveness of cities, and the
rationality of previous learning evaluation methods is ver-
ified. According to the data size and comprehensive indi-
cator, the liveable competitiveness of a city is divided into
four levels: excellent (I), good (II), general (III), and poor
(IV). With the associative memory ability of discrete
Hopfield neural networks, this paper establishes an evalu-
ation model of city liveable environment competitiveness
based on a discrete Hopfield network. First, the Hopfield
neural network equilibrium point based on traditional
classification levels is established. 'en, the learning result is

treated as an evaluation index corresponding to each clas-
sification level and stored in memory. A Hopfield neural
network classifies the index values according to the stored
equilibrium points.

3. Case Study

Numerical experiments have been performed to assess
liveable environments. MCDM is a comprehensive method
that can be applied to build and analyse structural models
involving the causal relationships among liveable city fac-
tors. 'e liveable city indicators and the corresponding
relationships are given in Section 3.1. 'e common evalu-
ation model results are shown in Section 3.2, and difference
ratio results are given in Section 3.3. We analyse the key
findings from the multiple evaluation results in Section 3.4.
Finally, the Hopfield neural network is used to verify the
result of the difference ratio evaluation in Section 3.5.

3.1. Selected Indicators of the Liveable Environment of a City.
'e environmental system is a complex system; therefore,
evaluations of city liveable environments must be the result
of multifactor interactions. 'is process involves collecting
data for different action factors, analysing the data, and
introducing a quantification index to evaluate the degree of
influence of each factor. According to this quantitative in-
dex, we can determine the indicator value of the liveable
environment.

'e evaluation indices were determined according to
environment protection standards of the European Envi-
ronment Agency [52] and the Technical Criterion for
Ecosystem Status Evaluation of PRC [53] and included the
average temperature, urban greening coverage, population
density, sewage treatment rate, equivalent sound level, days
of good air quality, per capita urban road area, and per capita
GDP.

'e study area included four cities with municipalities
directly under the central government and nine cities with
representative provincial capitals, including Jinan (JN),
Tianjin (TJ), Guizhou (GZ), Wuhan (WH), Nanjing (NJ),
Changsha (CS), Shenyang (SY), Chengdu (CD), Hangzhou

ωij

Layer 0

x1 x2 xi Layer 1

Figure 2: Structure of Hopfield neural network.
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(HZ), Shanghai (SH), Beijing (BJ), Zhengzhou (ZZ), and
Chongqing (CQ). 'e 13 large cities from China and eight
indicators were selected to measure city liveability.

'e IBM SPSS 22 software and Matlab R2013a software
are used in this platform. For example, PCA is computed by
using SPSS, and TS fuzzy neural network is computed by
using Matlab.

3.2. Evaluation Results of Every Model. Combined with the
actual and related research on the liveable cities, the
TOPSIS method ranks city liveability based on the dif-
ference between the evaluation object and the idealized
target. 'e Gini coefficient method is not limited by the
data range and can maximize or minimize the difference
between indicators; thus, the results can be compared with
those of other data standardization evaluation methods.
'e PCA is based on the proportion of each indicator to
determine the corresponding weights; then, the results are
ranked to select the best evaluation result. In addition, the
TS fuzzy neural network uses the training sample di-
mension to determine the number of fuzzy neural network
inputs and output nodes for a specific evaluation scenario.
'is paper introduces the TS fuzzy neural network to evaluate
the liveable environment of cities. 'e final rankings and
values for the five models are shown in Table 1. Notably, the
rankings and results are inconsistent among the five MCDM
models.

3.3. Difference Ratio Comparison. Similarly, the rankings
and results of the five methods considering the difference
ratio are shown in Table 2 after equation (2) is standardized.
'e difference ratio values are shown in Table 3 according to
equation (3).

'e TS fuzzy neural network displays the best evaluation
effect in the comprehensive evaluation of city liveable en-
vironment competitiveness. 'e identification and dis-
crimination results indicate that the TS fuzzy neural network
has a notable advantage over the traditional evaluation
methods, and that the evaluation results are better than those
of other methods. 'erefore, the paper uses the evaluation
results of the TS fuzzy neural network to rank the liveable
environment competitiveness in the 13 studied cities. 'e
specific evaluation results are shown in Table 4.

3.4.ComparisonofMultipleEvaluationResults. 'e TS fuzzy
neural network yields the highest discrimination score
among those of the five evaluation methods, which indi-
cates that the TS fuzzy neural network method has a large
degree of discrimination in the city liveable environment
rankings. Moreover, the misjudgements in the evaluation
rankings may be relatively small, and the ranking results
are stable and reliable. 'e range of the Gini coefficient
method is [0, 1], and few extreme values occur; thus, the
degree of discrimination is not obvious. However, after the
weighting of indicators, the numerical gap is gradually
widened, which makes the differentiation advantage more
prominent. 'e TOPSIS method has the lowest difference

ratio because it is mainly used to assess the relative
closeness among evaluation objects and does not reflect the
relative proximity to the ideal optimal solution. PCA uses
standardized data, but the calculations and evaluation are
based entirely on indicator data and do not consider the
status or effect of each indicator in real life (i.e., practical
considerations based on the situation are not included in
the analysis, and only the cumulative contribution variance
of each indicator is considered). 'erefore, the evaluation
results deviate from the actual situation, which leads to a
low difference ratio.

It should be noted that a variety of evaluation methods
can be used to evaluate and analyse specific problems. 'e
advantages and disadvantages of each evaluation method
in this study are compared, and the most reasonable
evaluation results are obtained. 'rough tests bases on the
Gini coefficient, fuzzy Borda, TOPSIS, PCA, and TS fuzzy
neural network methods, the TS fuzzy neural network
evaluation method is found to be the most suitable for
liveable city evaluation in this work. Note that in specific
analyses of various problems, because different indicators,
data, and evaluation indexes are used, the final advantages
and disadvantages of the above evaluation methods will be
different.

3.5. Verifying the Difference Ratio Evaluation Results with
Hopfield Neural Network. 'e city liveable environment
simulations were classified into four levels. 'e normalized
data, as training samples, were trained by the Hopfield
neural network to evaluate the liveable environment of cities,
and the results and rankings are shown in Table 5. Cities are
classified into four levels according to Table 6. After Hopfield
neural network training, the results of the simulation are
shown in Figure 3.

Based on a comparison of the simulation results in
Figure 3, the accuracy of the model is 80%, which indicates
reasonable performance. 'e first layer is the default layer,
which is classified according to the ideal indicator. When a
city belongs to a specific level, the column in which it is
located is given as a solid point (black). 'e second and
third layers are the actual layer and the training layer,
respectively. 'e actual layer is the result of the TS fuzzy
neural network, and the training layer is the result of the
Hopfield training. 'e training layer is compared with the
actual level, and the Hopfield training results are basically
consistent with the actual distribution of the actual layer;
that is, the two results are highly consistent. After com-
parison, the evaluation results of the Hopfield network and
TS fuzzy neural network are similar, suggesting that the
evaluation results of the TS fuzzy neural network are
reasonable.

3.6. Discussion. In summary, many aspects of human lives
are embraced by the concept of the liveable urban envi-
ronment. Exploring different aspects of the liveable urban
environment can broaden our understanding of the patterns
and major driving factors of liveability. 'e best liveable
urban environment is Hangzhou, and the worst liveable
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urban environment is Beijing according to the final ranking
results of the TS fuzzy neural network. Notably, Hangzhou is
a “paradise on Earth” city with beautiful West Lake, which
attracts many people. Additionally, this city has thousands of
years in its history, and it is also famous for the classical
elegance of the Jiangnan Waterfront and the cutting-edge
international fashion industry. Beijing has an unsuitable
living environment in many areas, such as, high housing
prices and serious environmental pollutions.

Moreover, it is shown that equivalent sound level, per
capita urban road area, urban greening coverage, and days
of good air quality are important and top-four indicators
from ranking results, which means that to develop them
firstly is beneficial for building liveable city. For example,
the protection and renewal of vegetation to increase veg-
etation coverage can improve air quality on ecological

environment construction. Moreover, air quality has been
greatly improved by limiting the number of vehicles and
issuing license plates.

'ere no approach can achieve the best performance on
all measurements for any data set, and it is necessary to utilize
more than one single performance measure to evaluate al-
gorithms. 'e experimental study indicates that the most

Table 1: Ranking value based on different models.

City
Gini Fuzzy Borda TOPSIS PCA TS fuzzy neural

network
Value Ranking Value Ranking Value Ranking Value Ranking Value Ranking

BJ 0.0251 11 6.2158 3 0.3360 11 0.4715 2 0.4208 13
TJ 0.0280 2 5.3277 5 0.4196 7 0.1297 5 1.6089 2
SY 0.0262 6 3.7102 6 0.4516 3 0.2895 4 1.6011 7
SH 0.0255 9 1.9391 11 0.3913 10 0.1224 6 0.8072 12
NJ 0.0267 5 5.3422 4 0.3914 8 −0.2305 11 1.5273 10
HZ 0.0255 9 1.9959 10 0.4271 5 −0.0023 7 1.6090 1
JN 0.0293 1 2.3179 8 0.5194 1 −0.0626 9 1.5992 8
ZZ 0.0248 12 1.0047 12 0.3360 13 −1.313 13 1.6024 6
WH 0.0275 4 3.1492 7 0.4197 6 −0.088 10 1.6087 5
CS 0.0262 6 10.8861 2 0.4468 4 0.4072 3 1.5981 9
GZ 0.0279 3 18.8123 1 0.4626 2 0.6470 1 1.6088 3
CQ 0.0208 13 0.6597 13 0.3586 12 −0.3259 12 1.6088 3
CD 0.0256 8 2.2143 9 0.3921 9 −0.0440 8 1.3059 11

Table 2: Difference ratio value for five methods.

Gini
City JN TJ GZ WH NJ CS SY CD HZ SH BJ ZZ CQ

Value 13.0000 11.0118 10.8588 10.2471 9.0235 8.2588 8.2588 7.3412 7.1882 7.1882 6.5765 6.1176 1
Ranking 1 2 3 4 5 6 7 8 9 10 11 12 13

Fuzzy Borda
City GZ CS BJ NJ TJ SY WH JN CD HZ SH ZZ CQ

Value 13 7.3236 3.979 3.3534 3.343 2.1846 1.7829 1.1875 1.1133 0.9569 0.9162 0.2471 1
Ranking 1 2 3 4 5 6 7 8 9 10 11 12 13

TOPSIS
City JN GZ SY CS HZ WH TJ NJ CD SH BJ CC ZZ

Value 13 8.9715 8.1901 7.8504 6.4556 5.9299 5.9229 3.9969 3.9752 3.9202 2.0146 1.6018 1
Ranking 1 2 3 4 5 6 7 8 9 10 11 12 13

PCA
City GZ BJ CS SY TJ SH HZ CD JN WH NJ CQ ZZ

Value 13 11.8372 11.4103 10.6307 9.5713 9.5229 8.695 8.4192 8.2952 8.1262 7.1828 6.5504 1
Ranking 1 2 3 4 5 6 7 8 9 10 11 12 13

TS fuzzy neural
network

City HZ TJ GZ CQ WH ZZ SY JN CS NJ CD SH BJ
Value 13 8.7721 3.3156 1.894 1.1184 1.1066 1.0863 1.0715 1.0027 1.0013 1.0012 1.0002 1
Ranking 1 2 3 4 5 6 7 8 9 10 11 12 13

Table 3: Difference ratio values.

Gini Borda TOPSIS PCA TS fuzzy neural
network

Difference
ratio 1.1355 1.1562 1.1087 1.1242 1.2876

Table 4: Rankings based on the TS fuzzy neural network.

City Value Ranking
HZ 1.6091 1
TJ 1.6090 2
GZ 1.6089 3
CQ 1.6089 4
WH 1.6087 5
ZZ 1.6024 6
SY 1.6011 7
JN 1.5992 8
CS 1.5982 9
NJ 1.5273 10
CD 1.3060 11
SH 0.8073 12
BJ 0.4209 13
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suitable method on the city liveable data sets can be selected
using the difference ratio. 'erefore, a more accurate method
could potentially be employed in future studies.

4. Conclusions
'e optimal model configuration in a liveable environ-
ment using MCDM was investigated in this paper. By
comparing five types of evaluation methods, we found that
the results of different evaluation methods varied for the
same sample. 'erefore, the most suitable method must be
selected from various evaluation methods, and the dif-
ference ratio can solve this selection problem. 'is paper

combined the TOPSIS, Gini, PCA, fuzzy Borda, and TS
fuzzy neural network methods to evaluate the liveable
environment of cities. Meanwhile, the other MCDM
methods, such as AHP, will be investigated in our work in
the future work. Moreover, the Hopfield neural network
method was introduced to assess the TS fuzzy neural
network evaluation results for city liveability, and the
evaluation results passed the test.

'e purpose of this work was to evaluate city liveability
and potentially improve environmental quality in the future.
According to the evaluation results of liveable environment
quality, we hope that the government can establish

Table 6: Four classification levels.

Level Average
temperature

Urban
greening
coverage

Population
density

Sewage
treatment rate

Equivalent
sound level

Days of good
air quality

Per capita
urban road area

Per capita
GDP

1 0.007920 0.006147 0.00495 0.005696 0.023775 0.011009 0.012954 0.009764
2 0.004212 0.007273 0.005442 0.005404 0.033285 0.005411 0.016006 0.005759
3 0.006421 0.011321 0.005697 0.003965 0.011888 0.005919 0.030083 0.008289
4 0.006365 0.011812 0.003424 0.004309 0.00634 0.010194 0.005123 0.009775

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13

Presim 1 Presim 2 Presim 3 Presim 4 Presim 5 Presim 6 Presim 7 Presim 8 Presim 9 Presim 10 Presim 11 Presim 12 Presim 13

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6 Sim 7 Sim 8 Sim 9 Sim 10 Sim 11 Sim 12 Sim 13

Figure 3: Simulation evaluation results for city liveability.

Table 5: Liveable city level ranking.

City Average
temperature

Urban
greening
coverage

Population
density

Sewage
treatment rate

Equivalent
sound level

Days of good
air quality

Per capita
urban road

area

Per capita
GDP Level

HZ 0.007274 0.002158 0.006426 0.005264 0.015454 0.009776 0.010926 0.010374 1
TJ 0.004020 0.000001 0.004950 0.006397 0.028530 0.006099 0.021465 0.011787 1
GZ 0.011307 0.011162 0.003926 0.006160 0.011888 0.015695 0.019424 0.016895 1
CQ 0.009078 0.011266 0.004497 0.004964 0.039229 0.012466 0.000000 0.000000 1
WH 0.007072 0.008141 0.005068 0.005103 0.008321 0.006278 0.025262 0.009755 2
ZZ 0.005565 0.008885 0.005018 0.005637 0.091535 0.002511 0.000930 0.001186 2
SY 0.000001 0.004792 0.006239 0.005473 0.000001 0.007444 0.021826 0.0063351 2
JN 0.005353 0.008438 0.005796 0.005534 0.002378 0.000001 0.037815 0.006250 3
CS 0.007412 0.011430 0.006258 0.006360 0.001189 0.010493 0.018003 0.010757 3
NJ 0.006498 0.014094 0.005038 0.000001 0.032097 0.007264 0.034431 0.007861 3
CD 0.008532 0.011117 0.005382 0.004589 0.008321 0.009776 0.013586 0.006763 4
SH 0.006984 0.005164 0.000001 0.004511 0.001189 0.015336 0.000594 0.011399 4
BJ 0.003579 0.019154 0.004890 0.003827 0.009510 0.005471 0.001188 0.011163 4
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countermeasures for the management of environmental
quality in the future. Furthermore, based on the compati-
bility issues identified between the compliance assessments
and the practical environmental quality evaluation, a
compatible grading evaluation and management scheme
should be developed for improved private and public de-
cision-making.
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