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Power exchange option is an exotic option which combines power option and exchange option. In this paper, we consider the
pricing of the power exchange option under exchange rate volatility risk and issuing company bankruptcy risk. Meanwhile,
considering the major events between the two countries, we add the Poisson jump process to the option model in order to reflect
the impact of sudden factors on the price of transnational derivatives in the international market. According to the no-arbitrage
principle, a mathematical model for pricing such problems is established, and explicit solutions are obtained. ,e numerical
examples show that the model established in this paper is effective.

1. Introduction

As the influence of fierce market competition and ho-
mogenization of financial products, the traditional European
option or American option can no longer meet the needs of
investors. Various types of overseas derivatives and risk
management financial products have been designed bymany
financial institutions. Some of them are customized products
which can cater to the special risk hedging needs of insti-
tutional investors. Power exchange option is an exotic op-
tion which is derived from exchange option and power
option; both of them are powerful financial instruments for
hedging nonlinear risks or incentive design of the executive
stock option [1, 2], which are mainly traded in the OTC
market. Compared with the traditional options, the appli-
cation scenarios of power exchange options are more di-
versified, with better flexibility, innovation, and
practicability. As the option is trade in the OTC market, the
power exchange option is typically nonstandardized con-
tracts.,e elements are designed and adjusted on the basis of
the specific needs of both parties, and there is no unified and
standardized standard. On the one hand, the OTC option
meets the needs of both buyers and sellers, so the volume of

trading and the volume of trading far exceed the OTC
option. On the other hand, different security firms or future
companies have different pricing standards for royalties, and
only the contracting parties can understand the content of
the contract, let alone obtain market data, which leads to the
almost opaque phenomenon of the OTC option. Because the
exchange could not monitor whether the parties to the
contract have fulfilled their obligations, when the issuing
company is in bankruptcy, liquidation, etc., the counterparty
would not be able to complete the payment according to the
contract when the option expires; thus, a breach of contract
occurred.

Many scholars have conducted in-depth research on the
power exchange option and jump risk.

Margrabe [3] introduced the definition of exchange
option firstly, which was a new option whose underlying
assets are two risky assets. It allowed option holders to
exchange the two risky assets at the maturity date. At the
same time, Margrabe proposed that the value of American
exchange options with short-term maturity was consistent
with that of European exchange options with standard
conditions. ,at is to say, American exchange options with
early exercise rights were not superior to the European
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exchange options. Fischer [4] studied the pricing of an
exchange option and explained that the exercise price was
the price of untranslated assets.

Blenman and Clark [5] summarized the exchange option
of Fischer-Margrabe [3, 4] and Tompkins [1] as the power
exchange option, whose payoffs were
(λ1S

α1
1 (T) − λ2S

α2
2 (T))+. Under the risk-neutral probability,

assumed that the values of underlying assets were controlled

by geometric Brownian motion, they found the pricing
formula of the European power exchange option:

PE t, S1, S2, ξ; T( 􏼁 � c1 t, S1, ξ; T( 􏼁N d1( 􏼁 − c2 t, S2, ξ; T( 􏼁N d2( 􏼁,

(1)
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σ21
2

􏼢 􏼣(T − t)􏼨 􏼩,

(2)

where N(·) denotes the cumulative normal density function.
With this formula, they proved that perfect hedging could

be achieved by holding multiple positions of asset S1 value
α1N(d1)Υ1, short positions of asset S2 value α2N(d2)Υ2, and
buying or selling portfolios of riskless assets.

Blenman and Clark also proved the equivalence of
American power exchange option and European power
exchange option under certain conditions. For the American
power exchange option with parameters
ξ � (r, α1, α2, λ1, λ2, δ1, δ2), if α2 ≤ 1, α1(r − δ1)≥ r and
α2(r − δ2)≤ r, it is not optimal to exercise option rights
early, and its value is the same as that of European options.

,e appearance of new information in option pricing is
likely to bring about discontinuous changes in asset prices.
In order to capture discontinuous asset prices, Merton [6]
based on Black–Scholes model by using underlying assets
included a compound Poisson process to simulate discon-
tinuous changes in stock prices. ,e pricing formulas of
several kinds of exotic options in the jump process were
given, which laid a foundation for further research.

By using the jump-diffusion model, Tian et al. [7] as-
sumed that the dynamics of asset prices are controlled by
jump-diffusion and that the two assets were interrelated, and
a closed valuation formula for the fragile European option
was calculated. It was proved that the price of the fragile call
option was fragile. If there was no consideration of jump
risk, the value of fragile options and stocks were calculated.
Price may run counter to reality.

Wang [8] incorporated the discontinuous change of
risky asset prices into the power-exchange option model.
,e jump-diffusion process was used to describe the dy-
namic change of asset prices. Not only the common jump
time but also the jump strength and the difference of the
impact of common jump components on asset prices were
considered. ,e total jump risk was divided into special

components and general jump risk, and the differences
between special jump risk and general jump risk are con-
sidered. In addition, the correlation between two kinds of
risky assets was included in both the continuous part and the
discontinuous part, while the correlation between the dis-
continuous part was linked through a common jump pro-
cess, which improved the pricing framework of the power
exchange option of Blenman and Clark [5] and obtained a
clear pricing formula of the power exchange option.

Owing to the fact that the exchange does not assume the
responsibility of the over-the-counter (OTC) parties to fulfill
their obligations, the holders of over-the-counter (OTC) con-
tracts are vulnerable to the risk of counterparties, that is, the risk
that one counterparty in a financial contract fails to meet the
agreed terms. Hull and White [9] calculated the pricing for-
mulas of defaultable European option and compared the pricing
analytic formulas of defaultable European option, American
option, and ordinary European option by numerical methods.
Klein [10] put forward amore realistic assumption that the final
payment of default depended on the final market value of assets
and other companies with the same level of liability. Brigo and
Mercurio [11] showed how to consider the event that coun-
terparties may default in a risk-neutral valuation of financial
returns.

Wang et al. [12] proposed a power-exchange option
pricing model including default risk and jump risk. In their
model, they not only included jump components in all asset
price processes but also made these processes interrelated. In
the calculation process, the pricing formulas of the power
exchange option under counterparty risk and jump risk are
obtained by using measure transformation technology.

Xu et al. [13] studied the pricing of power exchange
options with default risk. ,ey considered the possibility of
bankruptcy and liquidation of the company at any time
before the expiration of the option. ,at is to say, the time
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when the counterparty actually defaults was uncertain.
Furthermore, the pricing formula of the power exchange
option with uncertain default risk was given.

With the integration of the international financial envi-
ronment, cross-trading of various types of asset securities is
frequent, and various pricing problems between the two kinds
of currency transactions have been considered. Reiner [14]
linked foreign stock and currency risk on the premise that both
underlying asset value and exchange rate fluctuations met the
B-S equation. For the first time, the pricing model of dual-
currency stock options in four cases was proposed, which
progressively progressed according to the degree of complexity.

At present, the research on foreign exchange options has
formed a relatively complete theoretical structure, while the
deeper level of dual-currency options is still under continuous
research. Kwok andWong [15] gave the pricing formula of the
singular option with dual-currency assets. Li and Zhou [16]
studied the pricing of the power exchange option under the
influence of exchange rate fluctuations. Gao and Wang [17],
under the dual-currency model, used the method of measure
transformation to give the European option pricing formula of
asset price with jump process. Huang and He [18] studied the
pricing theory of dual-currency European option and reset
option under jump risk related to floating exchange rate.
Furthermore, underlying asset can be considered drived by
Lévy process. Yu et al. [19]modeled the price of the found by an
exponential Lévy process. Zhang et al. [20] linked to the
performance of the underlying asset, which is modeled by an
exponential Lévy process.

According to the research path of the above literature
studies, this paper comprehensively considers the power
exchange option with the dual risk of exchange rate and
default. Also, the Poisson jump process is added into the
option to analyze the pricing of the power exchange options
with dual currency with jump process.

2. Model Building

In recent years, financial market emergencies and important
policies occur frequently, and the release of suchmajor financial

events and important policies has a seismic impact on the entire
financial market. In order to reflect the unexpected and un-
predictable major events in the market, we add the Poisson
jump process to the basic assets, company value, and exchange
rate, based on which we analyze the dual-currency power-ex-
change option model with default risk.

Assume that the probability space (Ω, F, Ρ) represents an
economic environment with uncertainty, where P is the risk-
neutral probabilitymeasure.We define themarket environment
that includes two risky assets. At the expiration date T, the
payoffs of European power exchange options are as follows:

V S1(T), S2(T), T( 􏼁 � λ1S
α1
1 (T) − λ2S

α2
2 (T)( 􏼁

+
, (3)

where λi(i � 1, 2) and αi(i � 1, 2) are positive constants.
Especially, for λ1 � λ2 � 1 and α1 � α2 � 1, it simplifies to
the standard exchange option.

According to Merton’s [6] assumption, the jump risks
common to the underlying assets are diversified in the
market, and the risk premium is 0. We use the method of
partial differential equation to research the pricing of dual-
currency power exchange options with jump process.

With the risk-neutral probability measure P, according
to the different combinations of stocks that investors hold,
we divide the dual-currency power exchange options with
jump process into two types for discussion.

Type 1. A domestic investor invests in a foreign stock and a
domestic stock at the same time. Over the life of the in-
vestment, he will sell foreign stocks and buy domestic ones if
they outperform the foreign ones. So, to reduce the trans-
action cost of switching the underlying asset, he bought a
power exchange option that would exchange the two assets
at maturity time.

Assume the underlying assets Si(t), i � 1, 2 and the ex-
change rate X(t) follow the following equations; each of these
equations contains a jump representing a major event N(t).

dS1(t) � rf − ρ1Xσ1σX − k1λ􏼐 􏼑S1(t)dt + σ1S1(t)dW1(t) + e
Z1(t− )

− 1􏼐 􏼑S1(t)dN(t),

dS2(t) � rd − k2λ( 􏼁S2(t)dt + σ2S2(t)dW2(t) + e
Z2(t− )

− 1􏼐 􏼑S2(t)dN(t),

dX(t) � rd − rf􏼐 􏼑X(t)dt + σXX(t)dWX(t) + e
ZX(t− )

− 1􏼐 􏼑X(t)dN(t),

(4)

where rf is the foreign risk-free interest rate; rd is the risk-free
interest rate of the country; σ1 and σ2 are the instantaneous
standard deviations of foreign stock return volatility and do-
mestic stock return, respectively; σX is the instantaneous
standard deviation of the exchange rate; ρ1X � Cov
(dW1(t), dWX(t)) represents the instantaneous covariance of
foreign stocks and exchange rates; and W1(t), W2(t), and
WX(t) are standard Brownian motion under the measure,
which meet dW1(t) · dW2(t) � ρ12dt, dW1(t) · dWX(t) �

ρ1Xdt, and dW2(t) · dWX(t) � ρ2Xdt. In addition, as

described by Merton [6], N(t) is a Poisson process with an
intensity of λ, and it is independent of other Brownianmotions.
It is used to simulate the discontinuous changes of asset prices
and affect the general changes of asset prices. If the general jump
occurs at time t, then the jump of the asset is Si(t), i � 1, 2
controlled byZi(t), whereZi(t) is the normal distribution with
mean μi and standard deviation ci > 0.

Type 2. A domestic investor is interested in two foreign
stocks, so he buys foreign power exchange options which use
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the two stocks as the underlying asset. Since he buys in his
own currency, he should exchange the option at the ex-
change rate. In this case, assume that the price of the

underlying asset Si(t), i � 1, 2 and the exchange rate X(t)

follow the following equations, where the parameters have
the same meaning as those of Type 1.

dS1(t) � rf − ρ1Xσ1σX − k1λ􏼐 􏼑S1(t)dt + σ1S1(t)dW1(t) + e
Z1(t− )

− 1􏼐 􏼑S1(t)dN(t),

dS2(t) � rf − ρ2Xσ2σX − k2λ􏼐 􏼑S2(t)dt + σ2S2(t)dW2(t) + e
Z2(t− )

− 1􏼐 􏼑S2(t)dN(t),

dX(t) � rd − rf − kXλ􏼐 􏼑X(t)dt + σXX(t)dWX(t) + e
ZX(t− )

− 1􏼐 􏼑X(t)dN(t).

(5)

3. Explicit Solution of the Model

3.1. Solution of the PricingModel of Type 1. According to the
principle of no arbitrage and using ITO’s lemma, we get the
following conclusions for the first kind of the dual-currency
power exchange option model.

Theorem 1. Pricing formula of dual-currency power ex-
change options under the first kind of jump risk is

C
∗

� e
− rdT

E λ2S
α2
2 (Τ)􏼂 􏼃 · 􏽘

∞

n�0

λQT􏼐 􏼑
n
e− λQT

n!
K1 − K2 + K3 − K4( 􏼁

� λ2e
− rdT

· S
α2
2 (0) · exp α2 rd −

σ22
2

− k2λ􏼠 􏼡 +
α22σ

2
2

2
􏼠 􏼡T􏼢 􏼣 · exp λ e

α2μ2+(1/2)α22c22 − 1􏼒 􏼓T􏼔 􏼕 · 􏽘

∞

n�0

λQT􏼐 􏼑
n
e− λQT

n!
K1 − K2 + K3 − K4( 􏼁,

(6)

where

K1 �
λ1
λ2

e
M1+(1/2)H1N2

M1 − ln λ2/λ1( 􏼁 + H1���
H1
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���
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􏽰
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(1 − α)

L
· e
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��
H1

√ ��
H2

√
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·
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􏽰
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(1 − α)

L
e

M2+(1/2)H2N2
M1 − ln λ2/λ1( 􏼁 + ρ

���
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H2

􏽰

���
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M2 − ln L∗ + H2���

H2
􏽰 , − ρ􏼠 􏼡.

(7)

Proof. Let G(t) � X(t) · S1(t), so G(t) satisfy the following
random process:

dG(t) � dX(t)S1(t) � X(t)dS1(t) + S1(t)dX(t) + dS1(t)dX(t) + X(t)S1(t) − X(t− )S1(t− )( 􏼁dN(t)

� X(t)S1(t) rf − ρ1Xσ1σX − k1λ􏼐 􏼑dt + σ1dW1(t)􏽨 􏽩 + S1(t)X(t) rd − rf − kXλ􏼐 􏼑dt + σXdWX(t)􏽨 􏽩 + σ1S1(t)σXX(t)dW1

· (t)dWX(t) + e
ZX(t− )

− 1􏼐 􏼑X(t− ) + X(t− )􏼐 􏼑 · e
Z1(t− )

− 1􏼐 􏼑S1(t− ) + S1(t− )􏼐 􏼑 − X(t− )S1(t− )􏽨 􏽩dN(t)

� G(t) rd − k1λ − kXλ( 􏼁dt + G(t) σ1dW1(t) + σXdWX(t)􏼂 􏼃 + e
ZX(t− )+Z1(t− )

− 1􏼐 􏼑G(t− )dN(t)

� rd − k1λ − kXλ( 􏼁G(t)dt + σGG(t)dWG(t) + e
ZG(t− )

− 1􏼐 􏼑G(t− )dN(t),

(8)
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where WG(t) is the Brownian motion under risk-neutral
measure and σ2G � σ21 + σ2X − 2σ1σXρ1X.

According to σGρ2G � σ1ρ12 + σXρ2X, we have
ρ2G � ((σ1ρ12 + σXρ2X)/σG). In the same way, according to
σGρGV � σ1ρ1V + σXρVX, we have

ρGV � ((σ1ρ1V + σXρVX)/σG). On the contrary, N(t) is still a
Poisson process with intensity λ, and ZG(t) � ZX(t) + Z1(t)

is a normal distribution with mean μX + μ1 and variance
c2

X + c2
1.

By using the orthogonal transformation, we have

dG(t) � rd − k1λ − kXλ( 􏼁G(t)dt + σGG(t)dWG(t) + eZG(t− ) − 1( 􏼁G(t− )dN(t),

dV(t) � rd − kVλ( 􏼁V(t)dt + σVρGVV(t)dBG(t) + σV

�������
1 − ρ2GV

􏽱
V(t)dBV(t) + eZV(t− ) − 1( 􏼁V(t− )dN(t),

dS2(t) � rd − k2λ( 􏼁S2(t)dt + σ2ρ2VS2(t) ρGVdBG(t) +
�������
1 − ρ2GV

􏽱
dBV(t)􏼒 􏼓 + σ2

������
1 − ρ22V

􏽱
S2(t)dB2(t) + eZ2(t− ) − 1( 􏼁S2(t− )dN(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

where dBG(t), dB2(t), and dBV(t) are independent Brow-
nian motions under the risk-neutral probability measure P.

Define a new probability measure Q, which is equivalent
to a probability measure P.

Δ(t) �
dQ

dP
�

E
p
t S

α2
2 (T)􏼂 􏼃

E S
α2
2 (T)􏼂 􏼃

. (10)

From the driving equation of risk assets S2(t) (9), the
following equation can be obtained by transformation:

d ln S2(t) �
dS2(t)

S2(t)
−
1
2

1
S22(t)

dS2(t) · dS2(t) + ln S2(t) − ln S2(t− )( 􏼁dN(t)
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2
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�������
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􏽱

· dBV(t) + σ2
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To integrate directly, we have

S
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α2
2 (0) · exp α2 rd −

σ22
2

− k2λ􏼠 􏼡t + α2σ2ρ2vρGVBG(t)􏼨

+ α2σ2ρ2v

�������
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􏽱
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+ α2 􏽘

N(t)

k
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,en, to calculate its expectation, we have

E
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α22σ
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α2μ2+(1/2)α22c22 − 1􏼒 􏼓⎤⎦T.

(13)

,erefore, the new probability measure can be obtained:
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p
t S

α2
2 (T)􏼂 􏼃

E S
α2
2 (T)􏼂 􏼃

� E
P S

α2
2 (T)

E S
α2
2 (T)􏼂 􏼃

| Ft􏼢 􏼣

� E exp −
α2σ22
2

T + α2σ2ρ2v · ρGV · BG(T)􏼢􏼨

+ α2σ2ρ2v

�������

1 − ρ2GV

􏽱

· BV(T) + α2σ2
������
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􏽱

B2(T)

+ α2 􏽘

N(T)

k

Z2(τ(k)) − λ e
α2μ2+(1/2)α22c22 − 1􏼒 􏼓T⎤⎦ Ft

􏼌􏼌􏼌􏼌
⎫⎬

⎭.

(14)

According to Girsanov theorem, B
Q
G(t), B

Q
2 (t), and

B
Q
V(t) are Brownian motions under the probability measure

Q, and
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B
Q
G(t) � BG(t) − α2σ2ρ2VρGVt,

B
Q
2 (t) � B2(t) − α2σ2

������

1 − ρ22V

􏽱

t,

B
Q
V(t) � BV(t) − α2σ2ρ2V

�������
1 − ρ2GV

􏽱
t.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

On the contrary, after measure transformation, the
discontinuity term also changes correspondingly, where

NQ(t) is also the Poisson process, but its strength is
λQ � λeα2μ2+(1/2)α22c22 , Z

Q
2,k is normal distribution which has

mean μ2 + α2c2
2 and variance c2

2, and Z
Q
G,k and Z

Q
V,k are

normal distribution whose parameters are unchanged.
,e value equation of the dual-currency power exchange

options is

C
∗

� e
− rT

E λ1G
α1(T) − λ2S

α2
2 (T)( 􏼁

+
I V(T)≥L∗{ } +(1 − α)

V(T)

L
I V(T)<L∗{ }􏼠 􏼡􏼢 􏼣

� e
− rT

E λ2S
α2
2 (T)􏼂 􏼃E

λ2S
α2
2 (T)

E λ2S
α2
2 (T)􏼂 􏼃

λ1Gα1(T)

λ2S
α2
2 (T)

− 1􏼠 􏼡

+

I V(T)≥L∗{ } +
(1 − α)V(T)

L
I V(T)<L∗{ }􏼠 􏼡􏼢 􏼣.

(16)

,at is to say,

C
∗

� e
− rT

E λ2S
α2
2 (T)􏼂 􏼃 · E

Q λ1Gα1(T)

λ2S
α2
2 (T)

− 1􏼠 􏼡

+

I V(T)≥L∗{ } +(1 − α)
V(T)

L
I V(T)<L∗{ }􏼠 􏼡􏼢 􏼣

� e
− rT

E λ2S
α2
2 (T)􏼂 􏼃 · 􏽘

∞

n�0
E

Q λ1Gα1(T)

λ2S
α2
2 (T)

− 1􏼠 􏼡

+

I V(T)≥L∗{ } +(1 − α)
V(T)

L
I V(T)<L∗{ }􏼠 􏼡 N

Q
(t) � n

􏼌􏼌􏼌􏼌􏼌􏼢 􏼣 · P N
Q

(t) � n􏽮 􏽯

� e
− rT

E λ2S
α2
2 (T)􏼂 􏼃 · 􏽘

∞

n�0

(􏽢λT)ne− λ􏽢T

n!
E

Q λ1Gα1(T)

λ2S
α2
2 (T)

− 1􏼠 􏼡

+

· I V(T)≥L∗{ } +(1 − α)
V(T)

L
I V(T)<L∗{ }􏼠 􏼡 Z

(n)
􏼌􏼌􏼌􏼌􏼌􏼢 􏼣

� e
− rT

E λ2S
α2
2 (T)􏼂 􏼃 · 􏽘

∞

n�0

(􏽢λT)ne− λ􏽢T

n!
· Cn,

(17)

where Cn satisfy

Cn � E
Q λ1Gα1(T, n)

λ2S
α2
2 (Τ, n)

− 1􏼠 􏼡 I λ1Gα1(T,n)/λ2S
α2
2 (Τ,n)( )≥ 1,V(T,n)≥L∗{ } +(1 − α)

V(T, n)

L
I λ1Gα1(T,n)/λ2S

α2
2 (Τ,n)( )≥ 1,V(T,n)< L∗{ }􏼠 􏼡􏼢 􏼣

� E
Q λ1Gα1(T, n)

λ2S
α2
2 (Τ, n)

· I λ1Gα1(T,n)/λ2S
α2
2 (Τ,n)( )≥ 1,V(T,n) ≥L∗{ }􏼢 􏼣 − E

Q
I λ1Gα1(T,n)/λ2S

α2
2 (Τ,n)( )≥ 1,V(T,n)≥ L∗{ }􏼔 􏼕

+
(1 − α)

L
E

Q λ1Gα1(T, n)

λ2S
α2
2 (Τ, n)

· V(T, n) · I λ1Gα1(T,n)/λ2S
α2
2 (Τ,n)( )≥ 1,V(T,n)< L∗{ }􏼢 􏼣

−
(1 − α)

L
E

Q
V(T, n) · I λ1Gα1(T,n)/λ2S

α2
2 (Τ,n)( )≥ 1,V(T,n) <L∗{ }􏼔 􏼕.

(18)

Next, the solutions of the three stochastic differential
equations in (9) are calculated. According to the Girsanov
theorem, the correlation between the B

Q
G(t), B

Q
2 (t), and

BQ
V(t) with the new probability measure Q and BG(t), B2(t),

and BV(t) with the risk-neutral measure P is equation (15).
By using the logarithmic transformation, we have
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lnG(t, n) � ln G(0) + rd −
σ2G
2

− k1λ − kXλ + α2σ2σGρ2VρGV􏼠 􏼡t + σGB
Q
G(t) + 􏽘

n

k�1
Z

Q
G(τ(k)),

lnV(t, n) � ln V(0) + rd −
σ2V
2

− kVλ + α2σVσ2ρ2V􏼠 􏼡t + σVρGVB
Q
G(t) + σV

�������

1 − ρ2GV

􏽱

B
Q
V(t) + 􏽘

n

k�1
Z

Q
V(τ(k)),

ln S2(t, n) � ln S2(0) + rd −
σ22
2

− k2λ + α2σ
2
2􏼠 􏼡t + σ2ρ2VρGVB

Q
G(t) + σ2ρ2V

�������

1 − ρ2GV

􏽱

B
Q
V(t) + σ2

������

1 − ρ22V

􏽱

B
Q
2 (t) + 􏽘

n

k�1
Z

Q
2 (τ(k)),

ln S2(t, n) � ln S2(0) + rd −
σ22
2

− k2λ + α2σ
2
2􏼠 􏼡t + σ2ρ2VρGVB

Q
G(t) + σ2ρ2V

�������

1 − ρ2GV

􏽱

B
Q
V(t) + σ2

������

1 − ρ22V

􏽱

B
Q
2 (t) + 􏽘

n

k�1
Z

Q
2 (τ(k)),

ln
Gα1(T, n)

S
α2
2 (T, n)

� α1 lnG(0) − α2 ln S2(0) + α1 rd −
σ2G
2

− k1λ − kXλ + α2σ2σGρ2VρGV􏼠 􏼡t − α2 rd −
σ22
2

− k2λ + α2σ
2
2􏼠 􏼡t

+ α1σG − α2σ2ρ2VρGV( 􏼁B
Q
G(t) − α2σ2ρ2V

�������

1 − ρ2GV

􏽱

B
Q
V(t)

− α2σ2
������

1 − ρ22V

􏽱

B
Q
2 (t) + α1 􏽘

n

k�1
Z

Q
G(τ(k)) − α2 􏽘

n

k�1
Z

Q
2 (τ(k)),

(19)

where the mathematical expectations of
ln(Gα1(T, n)/Sα22 (T, n)) and ln V(T, n) are

M1 � E ln
Gα1(T, n)

S
α2
2 (T, n)

􏼢 􏼣 � α1 lnG(0) − α2 ln S2(0) + α1 rd −
σ2G
2

− k1λ − kXλ + α2σ2σGρ2VρGV􏼠 􏼡 · T − α2

· rd −
σ22
2

− k2λ + α2σ
2
2􏼠 􏼡 · T + nα1μG − nα2 μ2 + α2c2

2( 􏼁,

M2 � E[lnV(T, n)] � lnV(0) + rd −
σ2V
2

− kVλ + α2σVσ2ρ2V􏼠 􏼡 · T + nμV.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

Further, the variance and covariance of
ln(Gα1(T, n)/Sα22 (T, n)) and ln V(T, n) are

H1 � Var ln
Gα1(T, n)

S
α2
2 (T, n)

􏼢 􏼣 � α21σ
2
GT + α22σ

2
2T − 2α1α2σGσ2ρ2VρGVT + nα21c

2
G + nα22c

2
2,

H2 � Var[lnV(T, n)] � σ2V · T + nc2
V,

R12 � Cov ln
Gα1(T, n)

S
α2
2 (T, n)

, lnV(T, n)􏼢 􏼣 � α1σGσVρGV − α2σ2σVρ2V( 􏼁 · T.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Since ln(Gα1(T, n)/Sα22 (T, n)) and ln V(T, n) are two
normal random variables with the above properties,

for simplicity, it can be transformed into the following
form:
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ln
Gα1(T, n)

S
α2
2 (T, n)

� M1 +
���
H1

􏽰
ξ1,

ln V(T, n) � M2 +
���
H2

􏽰
ξ2,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22)

where (ξ1, ξ2) is a two-dimensional standard normally
distributed random variable with correlation coefficient
ρ � (R12/

���
H1

􏽰
·

���
H2

􏽰
). As a result,

K1 � E
Q λ1Gα1(T, n)

λ2S
α2
2 (T, n)

· I λ1Gα1(T,n)/λ2S
α2
2 (T,n)( )≥1,V(T,n)≥L∗{ }􏼢 􏼣

�
λ1
λ2

e
M1+(1/2)H1N2

M1 − ln λ2/λ1( 􏼁 + H1���
H1

􏽰 ,
M2 − ln L∗ + ρ

���
H1

􏽰 ���
H2

􏽰

���
H2

􏽰 , ρ􏼠 􏼡,

K2 � E
Q

I λ1Gα1(T,n)/λ2S
α2
2 (T,n)( )≥1,V(T,n)≥L∗{ }􏼔 􏼕 � N2

M1 − ln λ2/λ1( 􏼁
���
H1

􏽰 ,
M2 − ln L∗

���
H2

􏽰 , ρ􏼠 􏼡,

K3 �
(1 − α)

L
E

Q λ1Gα1(T, n)

λ2S
α2
2 (T, n)

· V(T, n) · I λ1Gα1(T,n)/λ2S
α2
2 (T,n)( )≥1,V(T,n)<L∗{ }􏼢 􏼣

�
λ1
λ2

·
(1 − α)

L
· e

M1+M2+(1/2)H1+(1/2)H2+ρ
��
H1

√ ��
H2

√
· N2

M1 − ln λ2/λ1( 􏼁 + H1 + ρ
���
H1

􏽰 ���
H2

􏽰

���
H1

􏽰 , −
ln L∗ − M2 − ρ

���
H1

􏽰 ���
H2

􏽰
− H2���

H2
􏽰 , − ρ􏼠 􏼡.

(23)

Similarly,

K4 �
(1 − α)

L
E

Q
V(T, n) · I λ1Gα1(T,n)/λ2S

α2
2 (T,n)( )≥ 1,V(T,n)< L∗{ }􏼔 􏼕

�
(1 − α)

L
e

M2+(1/2)H2N2
M1 − ln λ2/λ1( 􏼁 + ρ

���
H1

􏽰 ���
H2

􏽰

���
H1

􏽰 ,􏼠

−
M2 − ln L∗ + H2���

H2
􏽰 , − ρ􏼡,

(24)

and finally, we get the pricing formula of the first kind of
dual-currency power exchange options with jump risk. □

3.2. Solution of the Pricing Model of Type 2. For the power-
exchange option model of the second kind of dual currency,
the following conclusions can be obtained by applying the
similar method.

Theorem 2. Power exchange options with double risks of
exchange rate and default under the second kind of jump risk
have the following pricing formula:

C
∗∗

� e
− rdTλ2E X(T)S

α2
2 (T)􏼂 􏼃 · 􏽘

∞

n�0

λQ􏽢T􏼒 􏼓
n

e− λQ􏽢T

n!

· K1′ − K2′ + K3′ − K4′( 􏼁

� λ2e
− rdT

· X(0)S
α2
2 (0) · exp α2 rd −

σ2X
2

−
σ22
2

􏼠􏼨

− ρ2Xσ2σX
⎞⎠T −

1
2
α22 σ2X + 2σXσ2ρ2VρVX + σ22􏼐 􏼑T

+ α2 − kVλ − k2λ( 􏼁T + λ e
μX+(1/2)c2

X − 1􏼒 􏼓T

+ λ e
α2μ2+(1/2)α22c22 − 1􏼒 􏼓T

⎫⎬

⎭

· 􏽘
∞

n�0

λ􏽢QT􏼒 􏼓
n

e− λ􏽢QT

n!
· K1′ − K2′ + K3′ − K4′( 􏼁,

(25)

where
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K1′ �
λ1
λ2

e
M1′+(1/2)H1′N2

M1′ − ln λ2/λ1( 􏼁 + H1′���

H1′
􏽱 ,

M2′ − lnL∗ + ρ′
���

H1′
􏽱 ���

H2′
􏽱

���

H2′
􏽱 , ρ′⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

K2′ � N2
M1′ − ln λ2/λ1( 􏼁

���

H1′
􏽱 ,

M2′ − ln L∗
���

H2′
􏽱 , ρ′

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

K3′ �
λ1
λ2

·
(1 − α)

L
· e

M1′+M2′+(1/2)H1′+(1/2)H2′+􏽢ρ
��
H1′

√ ��
H2′

√

· N2

M1′ − ln λ2/λ1( 􏼁 + H1′ + ρ′
���

H1′
􏽱 ���

H2′
􏽱

���

H1′
􏽱 , −

ln L∗ − M2′ − ρ′
���

H1′
􏽱 ���

H2′
􏽱

− H2′
���

H2′
􏽱 , − ρ′⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

K4′ �
(1 − α)

L
· e

M2′+(1/2)H2′ · N2

M1′ − ln λ2/λ1( 􏼁 + ρ′
���

H1′
􏽱 ���

H2′
􏽱

���

H1′
􏽱 , −

M2′ − ln L∗ + H2′���

H2′
􏽱 , − ρ′⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(26)

4. Numerical Examples

According to the calculation results of two kinds of dual-
currency power exchange options, we assign the related
parameters in the pricing formula and simulate a numerical
case to illustrate how some specific factors affect the price of
power exchange options.

Firstly, we consider the first characteristic of power
exchange options, the exponential factor of magnification,
and analyze how the dual-currency power exchange options
with exchange rate and default risk will react with the change
of option time under the influence of exponential power.
Secondly, in order to explore what kind of influence is taken
by the jump risk, exchange rate risk, and default risk, re-
spectively, we increase the special circumstances as the
comparison sample: no jump risk fragile dual-currency
power exchange option, without the fragility of the exchange
rate risk jumping power exchange option, and without the
risk of default dual-currency bouncing power exchange
options, according to the two differences between them were
analyzed and determine each factor’s influence on power
exchange option price direction and the amplitude of the
influence. Finally, for the basic model of power exchange
options with the dual risk of exchange rate and default with
the jump process studied in this paper, the influence of the
change of important parameters related to the jump process
on the price of options is considered.

As a reference standard for numerical simulation test,
Table 1 summarizes the assignment of selected basic pa-
rameters. ,e values of the following parameters are mainly
derived from those of Wang et al. [12], which are commonly
used in the literature by Bakshi et al. [21] and Christoffersen
et al. [22]. Without loss of generality, we set the initial price
of the underlying asset to be S1(0) � S2(0) � 5.0 and the
domestic risk-free rate to be r � 0.02. Assume that the in-
stantaneous volatility of the underlying asset to be σ1 � σ2 �

0.15 and the jump intensity to be λ � 1. Now, we should
choose the parameters of the option seller’s assets, and we
assume instantaneous volatility σV � 0.15, the limit for a
company to actually default is 3/4 of the initial value of the
seller’s assets V(0); that is to say, in the following example,

the default barrier L∗ � 7.5, and Chen [23] found in the
literature that the bond recovery rate of 9 different states was
about 0.60, so we set the self-weight cost below to be
α � 0.40. Finally, the option expiration date is assumed to be
T � 1.0. In Figures 1 and 2 and Table 1, we will change the
parameter values accordingly to research the impact of
exchange rate risk, counterparty risk, and jump risk on the
option price. Other variables maintain the values listed in
Table 1.

At the same time, to confirm the value of n, we should
analyze the convergence of the series 􏽐

∞
n�0((λQ􏽢T)n/n!). By

using MATLAB, the following calculation is chosen for
accuracy 0.001.

Next, we analyze the exponential sensitivity of power
exchange options.,e basic operations are set the expiration
time as a variable on the premise that the data in the above
parameter table remain unchanged. Change index term of
power exchange options under the triple risk of exchange
rate, volatility risk, counterparty default risk, and jump risk.
Specifically, the exponential coefficients are set to be
α1 � α2 � 1; 1.5; 2; 2.5. ,en, observe the relative position of
the four curves.

Figures 1 and 2, respectively, represent the price changes
of power exchange options with different index terms related
to expiration time T in two types of dual-currency power
exchange options. From the trend, the option price increases
with the expiration time T. However, due to the difference in
the magnification factor of the index term, when the option
α becomes larger, it is more sensitive to the expiration time
T, which is what we understand the function of leverage in
economic terms. In a benign financial environment, index
power changes the structure of returns and effectively hedges
risks. However, in a vicious financial environment, the
higher the leverage, the more losses will be multiplied. If not
timely controlled, the single high-leverage behavior can even
cause irreconcilable harm to the entire financial market.

By comparing Figures 1 and 2, no matter which index
value is selected, we find that, at time 0, the price of the
power exchange option of the first type of dual currency is
higher than the price of the power exchange option of the
second type of dual currency. However, the second kind of
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the dual-currency power exchange option is more sensitive
than the first kind of the dual-currency power exchange
option.

Lines in Figures 3–6, black, green, red, and blue lines,
represent the exchange rate, the risk of default, jumping,
three kinds of standard power exchange option, no jump
risk, power exchange option, without the risk of default
power exchange option, and exchange rate risk of power
exchange option of option value with the changing trend of
related parameters.

Figures 3 and 4, respectively, represent the changing
relationship between the value and expiration time of power
swap options in two types of dual currencies. ,e overall
trend is that, regardless of which of the three risks is re-
moved, the option price increases with the expiration time.

In Figure 3, in the event of a market impact, compared
with no jump risk, green line, black line, and red line, blue
line all had greater growth, which is similar to our con-
jecture. As an example, in March 2018, when the trade war
between China and the United States was launched, the
market sentiment was depressed, and the global stock
market fell, and the Shanghai stock index immediately fell
below 3200. Many asset prices were suddenly impacted.
Adding the same situation to our research when some
unforeseen major events occur, it will not only cause the
price of the underlying assets to soar or plummet but also
take huge fluctuation to the value of the company, even
cause frequent fluctuation of exchange rate. By the com-
bined influence of these risk factors, the option price is
bound to be higher than the option price without jump risk.
A similar conclusion can be drawn from Figure 4, that is, the
occurrence of major unexpected events will lead to the
increase of option price.

Figures 5 and 6 show the impact of jump intensity λ on
the option price. In terms of the overall trend, except for the
nonjump risk model, the jump intensity all influences the
other three models to some extent. However, despite the
positive or negative impact of jump intensity on the option
price, the impact range is almost zero. According to the
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Figure 1: Exponential change of the first kind of dual-currency
power exchange option price and expiration time.
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Figure 2: Exponential change of the second kind of dual-currency
power exchange option price and expiration time.

Table 1: Parameter assignment table.

Parameter Assignment
Initial price S1(0) 5.0
Constant coefficient λ1 1
Index coefficient α1 2
Volatility σ1 0.15
Domestic risk-free rate rd rd 0.02
Initial rate X 1
Initial asset V 10
Deadweight loss α 0.4
Material default limit L∗ 7.5
Creditor’s rights L 7.5
Correlation coefficient ρ1V 0.5
Maturity date T 1
Intensity of jump λ 1
Step of jump μX 0
Standard deviation c1 0.1
Standard deviation c2 0.1
Initial price S2(0) 5.0
Constant coefficient λ2 1
Index coefficient α2 2
Volatility σ2 0.15
Foreign risk-free rate rf 0.03
Volatility σX 0.15
Volatility σV 0.15
Correlation coefficient ρ1X 0.5
Correlation coefficient ρVX 0.2
Correlation coefficient ρ2X 0.5
Correlation coefficient ρ2V 0.5
Step of jump μ1 0
Step of jump μ2 0
Step of jump μV 0
Standard deviation cX 0.1
Standard deviation cV 0.1
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differences in Figures 5 and 6, for the first type of dual-
currency option model, the jump intensity has a negative
impact on the option price due to the change of exchange
rate; for the second kind of dual-currency option model, the
price of the power exchange option increases slightly with
the increase of jump intensity.

To sum up, through numerical examples, we make some
simple verification of the pricing formula and get the fol-
lowing conclusions:

(1) With the change of index term of power exchange
option, the price of the power exchange option can
more sensitively follow the change of relevant factors.

(2) Exchange rate risk, counterparty default risk, and
jump risk all increase the price of power swap op-
tions, but their effects are different. ,e biggest
impact is the jump risk, which is the impact of major
events, which makes the price curve of power ex-
change options rise almost in parallel, which is
consistent with the impact of major international
relation events on cross-border transactions we
analyzed.

(3) When other factors remain unchanged, the jump
intensity makes the power exchange option price
fluctuate up and down, but the fluctuation range is
limited.
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Figure 3: ,e relationship between the expiration time and the
price of the power exchange option of the first kind in dual
currency.
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Figure 4: ,e relationship between the expiration time and the
price of the power exchange option of the second kind in dual
currency.
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Figure 5: ,e relationship between jump strength and power
exchange option price of the first kind in dual currency.
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