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+e aim of this study is to explore the similarity relations of dynamic characteristics of crane flexible truss boom. Combining
perturbation theory with vibration analysis, a calculationmethod of the flexible boom natural frequency undergoing large overall rotary
motion was proposed. According to the similarity theory, in terms of the geometrically similar truss boom, the similarity relations of
their natural frequency and other parameters were derived. Taking the slenderness ratio of the actual product as the reference standard,
two groups of scale-down crane truss boom experiments were designed.+e results showed that, in aspect of the boom section size and
the boom length, by using the similarity relations of the flexible boom, the dynamic characteristics can be predicted well.

1. Introduction

In order to meet the construction requirements of modern
large-scale engineering projects, hoisting machinery is de-
veloping in the direction of towering and softening [1, 2].
However, the flexible deformation of the boom structure
undergoing large overall motion is a difficult problem in
boom design; relevant design specifications do not consider
in depth the influence of the nonlinear dynamic charac-
teristics of the boom on the operation accuracy and reli-
ability [3] and thus lack effective theoretical guidance for
serial design of boom. Similarity theory has the advantages
of generality and rigorous digital derivation process, apply
the similarity theory in the field of crane boom, derive
similarity relations thus guiding boom design will become an
efficiency design method.

Earlier engineering applications of similarity theory
emerged in the analysis of fluid characteristic and geological
experiments. Muller and Robertson [4] studied the similarity
of specific shape objects motion in the wind field and water
flow field. Silva [5] applied similarity theory to seismic tests
under different environmental conditions. Since then, many
scholars have done a great deal of researches in the field of
marine structures, civil engineering structures, and power
equipment through the principle of dynamic similarity

[6–9]. Luo et al. [10] derived the similarity criterion of
geomechanical magnetic model test according to the simi-
larity relations between the magnetic field and the gravity
field. Based on the similarity theory, Nam et al. [11] pro-
posed a theoretical method of constructing a small gearbox
with the same carrying capacity as a large one. Jha and
Sedaghati [12] proposed the simulation quality to com-
pensate the effect of gravity on the similarity relation in a
similar model without considering the gravity. Wang et al.
[13, 14] derived the complex shells dynamic similarity re-
lations of underwater vibrations and the influence of the
boundary effect on the similarity relation based on the
equational analysis method and thus can be used to predict
the vibration response of complex large-scale underwater
structures accurately. Liu et al. [15] applied the moving
boundary similarity method to underwater vibration and
sound radiation research of the ship structure and analyzed
the intrinsic relationship between underwater sound radi-
ation and excitation frequency.

In the respect of crane operation and design, Dai et al.
[16] applied the similarity theory to simulate the welding
process of the swing arm of a large hydraulic excavator and
derived the similarity rule of single-layer welding based on
temperature field in certain conditions. Based on the dynamic
similarity theory, Jin and Wu [17] derived the similarity scale
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factor between the prototype structure and the scale-down
model of quayside container crane analyzed and compared
their respective dynamic characteristics and seismic responses.
Chen and Sun [18, 19] established the dynamic model of
overhead crane and proposed a novel control method by using
the passivity property and the barrier Lyapunov function
technique. Sun et al. [20] proposed a nonlinear motion control
method of dual rotary crane system.

Aiming at the dynamic characteristics of the crane
flexible boom, based on the flexible multibody dynamics
theory, the truss boom of crawler crane is selected as the re-
search object in this article, and the dynamic equation of the
flexible truss boom is established. According to the numerical
calculation results of the equation, the similarity relation of the
dynamic parameters of the truss boom can be obtained based
on the equational analysis method of similarity principle. +e
correctness of the similarity relation is verified by numerical
calculation and similar model experiments.

2. Force Analysis of Crane Boom System

During crawler crane operation, boom actions can be di-
vided into three different types, such as hoisting, luffing with
payload, and rotating with payload; hoisting and luffing with
payload occur in the luffing plane of the boom and rotating
with payload occur in the swing plane of the boom.

As shown in Figure 1, when the force situation of the boom
system is analyzed in the luffing plane, it can be simplified as an
axially compressed simply supported beamwhose base and top
are hinged, where Q is the hoisting load, G is the weight of the
boom structure, Fsh is the tensile force of the hoisting rope, Fg
is the tensile force of the luffing plate,O is the hinge point of the
boom and exterior structure, θ is the elevation angle of the
boom, θsh is the angle between the hoisting rope and the boom
axis, θg is the angle between the luffing rope and the boom axis,
and L is the length of the boom.

When the force situation of the boom system is analyzed
in the rotating plane, according to the restraint conditions, it
can be simplified as a cantilever beam which is fixed at the
base and unrestricted at the top, as shown in Figure 2. At the
same time, the boom is subjected to axial force and lateral
force in the rotating plane.

In this paper, the dynamic model of flexible boom will be
established in the luffing plane and rotating plane.

3. Natural Frequency of Flexible Boom

3.1. Perturbation %eory for Natural Frequency of Flexible
Boom. Whether in the luffing plane or the rotating plane,
the flexible boom performs large overall rotary motion
around the rotary center. For the structure of flexible boom,
which has both large-scale movement and flexible deforma-
tion, the structure itself does not show the natural frequencies
and vibration modes in traditional dynamical modal analysis
[21]. Both the mass matrix and the stiffness matrix of the
system are influenced by the angle of large overall rotary
motion. From a time-varying perspective, system character-
istic matrix is related to instantaneous angular velocity, which
is a time-varying matrix.+erefore, in this paper, according to
large overall rotary motion of the flexible boom, the per-
turbation method in mathematics is used to solve the ap-
proximate solution of its natural frequency.

When the flexible boom only does undamped free vi-
bration in the equilibrium position without large overall
motion, the dynamic equation is expressed as

M
(0)

€q + K
(0)

q � 0, (1)

where q is the state vector in the global coordinate system,
M(0) is the free vibration mass matrix of the flexible boom,
and K(0) is the free vibration stiffness matrix. +e mass
matrix and stiffness matrix are shown in Equations (2) and
(3), respectively:
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Figure 1: +e force analysis in luffing plane.
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Figure 2:+e force analysis in rotating plane. N is the axial force in luffing plane, Fw is the lateral load caused by inertial pendulum, and Fc is
the lateral load caused by wind.
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. (3)

In (2) and (3), c � cos θ and s � sin θ; θ is the angle
between the flexible boom and the global abscissa axis; a

is the gravity acceleration; m is the total mass of the
boom; and l is the total length of the boom. From (1),
according to the vibration theory, the characteristic
equation is

K(0)
− λ(0)

i M
(0)

 A
(0)
i � 0. (4)

In (4), for easy expression, set λ(0)
i � [ω(0)

i ]2, which is the
square of the i-order natural frequency of the flexible boom;
A

(0)
i is the vector of i-order mode shape.+e flexible boom in

crawler cranes or other large cranes has a relatively low
luffing speed; the conclusion of the research in [22] shows
that the natural frequency of the flexible boom is less affected
by the large-scale motion when the boom is rotating at a
relatively slower speed. +erefore, the first-order pertur-
bation solution is used to solve the natural frequency of the
flexible boom. For the mass matrix M and the stiffness
matrix K of the flexible boom undergoing the large overall

rotary motion, its first-order perturbation expansion for-
mula is

K � K(0) + ηK(1),

M � M(0) + ηM(1).

⎧⎨

⎩ (5)

In (5), η, called the small perturbation parameter, is a
positive number. When η⟶ 0+, the mass and stiffness
matrices of large overall rotary motion were equal to their
free vibration. On this basis, replacing the correlation matrix
in (4), we can get the characteristic equation undergoing
large overall rotary motion:

K − λiM( Ai � 0. (6)

Similarly, the natural frequency and the mode shape
vector undergoing large overall rotary motion are first-order
perturbation expanded, so the expansion polynomial is

λi � λ(0)
i + ηλ(1)

i + o η2( ,

Ai � A
(0)
i + ηA

(1)
i + o η2( .

⎧⎨

⎩ (7)
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Substituting (5) and (7) into (6), expanding it according
to ascending powers of the small perturbation parameter,

and omitting the infinitesimal, we can obtain the expression
as follows:

K
(0)

A
(0)
i − λ(0)

i M
(0)

A
(0)
i  + η K

(0)
A

(1)
i + K

(1)
A
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A
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i M
(0)

A
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A
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i 

+ η2 K
(1)

A
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(1)

A
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i M
(1)

A
(1)
i − λ(1)

i M
(0)

A
(1)
i  � 0.

(8)

From the above formula, three equations about the first-
order perturbation vibration and the free vibration pa-
rameters of the flexible boom can be obtained:

K(0)A
(0)
i � λ(0)

i M(0)A
(0)
i ,

K(0)A
(1)
i + K(1)A

(0)
i � λ(0)

i M(1)A
(0)
i + λ(0)

i M(0)A
(1)
i + λ(1)

i M(0)A
(0)
i ,
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i M(0)A
(1)
i .
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(9)

According to the related theory of modal expansion
method [23], the arbitrary mode shape of the first-order
perturbation is written as the linear combination by each
order of the free vibration mode shape vector:

A
(1)
i � a1iA
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1 + a2iA
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2 + · · · + aniA
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n

k�1
akiA

(0)
k ,

(10)

where ani is the undetermined coefficient in the polynomial
and subscripts k and i represent the modes order of the free
vibration and first-order perturbation, respectively. Multi-
plying both sides of the second equation in (9) by the
transpose matrix [A

(0)
k ]T of mode shape vector and

substituting the combination form of (10) into it, we obtain
(11) as follows:
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According to the mode shape orthogonality,

when i � k

A
(0)
k 

T
M(0)A

(0)
i � M

(0)
i ,

A
(0)
k 

T
K(0)A

(0)
i � K

(0)
i ,

⎧⎪⎪⎨

⎪⎪⎩
(12)

when i≠ k
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In the above formula, M
(0)
i and K

(0)
i are the main mass

and the main stiffness of the i-order free vibration of the

flexible boom. According to the conclusions in (12) and (13),
when i � k, (11) can be expressed as
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and when i≠ k, (11) is expressed as
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Combining the above conclusion with (7), we obtain the
expression as follows:

λi � λ(0)
i + η

1
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(17)

So far, an approximate solution to the first-order pertur-
bation of the flexible boom undergoing large overall rotary
motion is given.+rough this method, the free-vibration natural
frequency and mode shape vector can be used to approximately
estimate the time-varying natural frequency of the flexible boom.

3.2. Natural Frequency Calculation of Flexible Boom.
+rough the perturbation theory, we specifically calculate
the natural frequency of the flexible boom undergoing large
overall rotary motion in this section. According to the
perturbation expansion equation of mass matrix and stiff-
ness matrix, we need to determine the small perturbation
parameter and the specific expression of M(1) and K(1).
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Adding the effect of angular velocity of the large overall
rotary motion to the matrix listed in (2), take the element
M

(0)
11,i as an example:

ΔM(0)
11,i � ηM

(1)
11,i �

1
t

mi

3
cos2 θ0,i + φt  − cos2θ0,i 

+
13mi

35
sin2 θ0,i + φt  − sin2θ0,i .

(18)

In (18), set the small perturbation parameter η � 1/t, in
which t is the time of the large overall rotary motion; θ0,i is
the initial angle of the boom; φ is angular velocity of the large
overall rotary motion; and i is the boom unit number.
+rough the derivation of the above formula and adding it to
all the elements in the free vibrationmass matrix, the average
perturbation matrix M

(1)
i of the flexible boom during large

overall rotary motion can be obtained, and the stiffness
matrix can be obtained similarly.

+rough the specific expression of the unit perturbation
matrix, combining the dynamic equations, the perturbation
matrix of the flexible boom can be formed.

+is paper established flexible boom dynamic simulation
models which can be divided into three units. +e model has 21
generalized coordinates. Specific form as shown in Figure 3,
counting up from the bottom, here is the unit 1 to unit 3 in order,
where unit 1 is corresponding to the bottom joint of the boom,
unit 2 is corresponding to the standard joint of the boom, and
unit 3 is corresponding to the top joint of the boom. Each unit
uses a separate floating frame to describe the flexible deformation,
the origin of the floating coordinate systemwhich is related to the
unit 1 overlap with the origin of the global coordinate system.

+e following are the specific values of the natural
frequency of the 48m flexible boom. Define the angular
velocity of large overall rotary motion φ � 1°/s. +e first five-
order modes of the boom-free vibration are listed in Table 1.

+rough the mode shape vector in the above table, the
first five-order natural frequency of the 48m flexible boom
under the large overall rotary motion can be calculated by
(17), as shown in Table 2. From the table, it can be seen that
the relation between first-order perturbation natural frequency
and structure natural frequency is small when the angular
velocity of the large overall rotary motion is low and thus
cannot cause a large change in the natural frequency of the
large overall rotary motion. +e first-order perturbation nat-
ural frequencies are basically the same as the free vibration
natural frequency. As the rotating angular velocity increases,
according to (17), the first-order perturbation natural fre-
quency increases linearly and the natural frequency of the large
overall rotary motion also increases, and the calculation error
of the first-order perturbation is gradually increasing; therefore,
second-order or higher-order perturbation calculation should
be used when the angular velocity is large.

4. Derivation of Similarity Relations of Flexible
Truss Boom

4.1. Derivation of Complete Geometric Similarity Relations.
In terms of the flexible truss boom that satisfied the Lagrange
dynamical equation, its physical quantities involved include

the gravitational acceleration a, the generalized force F,
the boom movement time t, the boom length l, the ma-
terial density ρ, elastic modulus of the boom material E,
structural stress σ, and the boom natural frequency ωn.
+e basic dimensions of each physical quantity are listed
in Table 3.

According to the principle of dimensional homogeneity,
the following expressions are obtained:

LT−2
 

n1 MLT−2
 

n2
(T)

n3(L)
n4 ML−3

 
n5 ML−1T−2

 
n6

ML−1T−2
 

n7 T−1
 

n8
� 1.

(19)

+e equation about the index of each basic dimension is
as follows:

n1 + n2 + 0 + n4 − 3n5 − n6 − n7 + 0 � 0,

0 + n2 + 0 + 0 + n5 + n6 + n7 + 0 � 0,

−2n1 − 2n2 + n3 + 0 − 3n5 − 2n6 − 2n7 − n8 � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

It can be concluded that the rank of the coefficient matrix
of the above equations system is equal to 3, so five inde-
pendent similarity criteria are needed to derivate the sim-
ilarity relation of the truss boom.

Assuming that the values of the independent index in the
above equations system are 1, and according to the same
index, five similarity criteria for the truss boom can be
obtained after recombining as follows:

Y1

Y3

O3

O2

O(O1)

Y2

X1

X2

X3

Y

X

θ3

θ2

θ(θ1)

Figure 3: Division of flexible boom dynamic mode.
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π1 �
at2

l
,

π2 �
F

tl4ρ
,

π3 �
E

tl2ρ
,

π4 �
σ

tl2ρ
,

π5 � tωn.

(21)

+e similarity ratio between physical quantities is de-
fined as

tm

tp
� St,

ωm
n

ωp
n

� Sω,

σm

σp
� Sσ ,

Em

Ep
� SE,

lm

lp
� Sl,

ρm

ρp
� Sρ,

Fm

Fp
� SF.

(22)
For the prototype and the model, through the similarity

criterion in (21), respectively, the similarity relations can be
obtained as follows:

Sω �
1
St

�

������
SE

S2l
· Sρ,



SE � Sσ ,

SF � S2l · SE.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Table 1: Mode shape vector of 48m flexible boom.

First-order mode
A1 (mm)

Second-order mode
A2 (mm)

+ird-order mode
A3 (mm)

Fourth-order mode
A4 (mm)

Fifth-order mode
A5 (mm)

Top node of
bottom joint

Axis X1
direction 7.73 × 10− 17 2.01 × 10− 3 −4.84 × 10− 17 2.32 × 10− 17 1.51 × 10− 16

Axis Y1
direction 5.81 × 10− 3 −1.81 × 10− 16 4.38 × 10− 17 −7.53 × 10− 3 −9.09 × 10− 3

Axis Z1
direction 9.67 × 10− 7 −7.19 × 10− 7 1.06 × 10− 20 −5.75 × 10− 6 3.18 × 10− 6

Top node of
standard joint

Axis X2
direction −1.03 × 10− 16 9.52 × 10− 3 2.56 × 10− 17 −2.39 × 10− 17 −6.39 × 10− 17

Axis Y2
direction −8.51 × 10− 3 4.15 × 10− 17 −1.38 × 10− 16 −2.33 × 10− 4 −8.47 × 10− 3

Axis Z2
direction 5.67 × 10− 7 9.35 × 10− 7 1.19 × 10− 20 −4.51 × 10− 6 −9.35 × 10− 7

Top node of top
joint

Axis X3
direction −4.30 × 10− 17 1.03 × 10− 2 2.49 × 10− 20 6.55 × 10− 17 −2.10 × 10− 16

Axis Y3
direction −3.75 × 10− 3 2.14 × 10− 16 4.75 × 10− 17 7.61 × 10− 3 1.40 × 10− 3

Axis Z3
direction 8.25 × 10− 6 3.18 × 10− 6 5.33 × 10− 20 5.98 × 10− 6 7.56 × 10− 6

Table 2: Natural frequency of 48m flexible boom undergoing large
overall motion.

Modal
order

Free vibration
natural

frequency
(Hz)

First-order
perturbation

natural frequency
(Hz)

Large overall
rotary motion of

natural
frequencies (Hz)

1 0.7039 0.019 0.7042
2 1.3082 0.045 1.3090
3 7.5759 0.055 7.5761
4 9.0312 0.157 9.0326
5 20.7294 0.260 20.7310

Table 3: Fundamental dimensions of the flexible boom.ρ

Physical quantity Basic dimension composition
Gravity acceleration, a LT-2
Generalized force, F MLT-2
Boom movement time, t T
Boom length, l L
Material density, ρ ML-3
Material elastic modulus, E ML-1T-2
Structural stress, σ ML-1T-2
Boom natural frequency, ωn T-1
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Equation (23) is the complete similarity relation of the
truss boom geometry.

4.2. Derivation of Dynamic Characteristics Similarity
Relations. Based on the complete flexible boom dynamic
equation, the similarity relation between the dynamic pa-
rameters can be accurately derived by the equational analysis
method. By means of introducing the similarity ratio be-
tween each physical quantity and the natural frequency of
the flexible boom, the similarity relations between the dy-
namic parameters are solved; the specific similarity ratio
between dynamic parameters of the boom with given pa-
rameters is obtained.

In allusion to the flexible boom dynamic equation, there
are five similarity relation types of the single-valued pa-
rameters between the similar model and the prototype: (1)
similar geometrical conditions; (2) similar mass; (3) similar
load excitation; (4) similar physical conditions; (5) similar in
time, that natural frequency is similar.

In order to accord with actual situation, the flexible
boom prototype and model use the same material; that is,
Sρ � SE � 1. In addition to the above five similarity relation
types, it is also necessary to ensure that the boundary
conditions and initial conditions of the prototype and
the model should be the same, to eliminate the impact on the
similarity relation of the boom. Relative to the length of
the boom, the flexible deformation is numerically negligible;
therefore, in the similarity ratio matrix, the coupling term
ignores the effect of generalized deforming coordinates.

First of all, the similarity ratio of generalized coordinates
is

S � Six, Siy, Sθ,i, S1,i, S2,i, S3,i, S4,i, S5,i, S6,i 
T
. (24)

+e similarity ratio matrix of the mass matrix is

S
M

�
Mm

i( 9×9

M
p
i 9×9

�

SaSl 0 SaS2l SaSl SaSl SaS2l SaSl SaSl SaS2l

SaSl SaS2l SaSl SaSl SaS2l SaSl SaSl SaS2l

SaS3l SaSl SaS2l SaS3l SaSl SaS2l SaS3l

SaSl 0 0 SaSl 0 0

SaSl SaS2l 0 SaSl SaS2l

SaS3l 0 SaS2l SaS3l

SaSl 0 0

SaSl SaS2l

sym SaS3l

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)

+e similarity ratio matrix of the stiffness matrix is

SK
�

Km
i( 9×9

K
p
i 9×9

�

03×3 03×6

Sa

Sl

0 0
Sa

Sl

0 0

S2HSa

S3l

S2HSa

S2l
0

S2HSa

S3l

S2HSa

S2l

06×3
S2HSa

Sl

0
S2HSa

S2l

S2HSa

Sl

Sa

Sl

0 0

S2HSa

S3l

S2HSa

S2l

sym
S2HSa

Sl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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.

(26)

In the same way, according to the generalized force
calculation method of the flexible boom unit in the luffing
plane, substituting the similarity ratio between loads, the
similarity ratio of the generalized force of each unit can be
obtained:

FS,i � 
k

n�1
Fn,i,

S
F

�
Fm

S,i 9×1

F
p

S,i 9×9

� S
F
1,i, S

F
2,i, S

F
3,i, S

F
4,i, S

F
5,i, S

F
6,i, S

F
7,i, S

F
8,i, S

F
9,i 

T
.

(27)

+rough the equational analysis method, the similarity
relation between the dynamic parameters of the top joint of
the boom is derived, according to the specific expression of
the dynamic equation of the flexible boom as follows:

M17,3 · €r3x + M27,3 · €r3y + M37,3 · €θ3 + M47,3 · €u1,3

+ M77,3 · €u4,3 + K47,3 · u1,3 + K77,3 · u4,3

+ _θ
2
1 M47,3 · u1,3 + M77,3 · u4,3 

+ 2 _θ1 M57,3 · _u2,3 + M67,3 · _u3,3

+ M78,3 · _u5,3 + M79,3 · _u6,3) � FS7,3. (28)

Substituting the physical quantities of the prototype and
the model into the above formula, it is easy to get the re-
lations between the similarity ratios:
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17,3 ·

S3x

S2t
� S

M
27,3 ·

S3y

S2t
� S

M
37,3 ·

Sθ,3

S2t
� S

M
47,3 ·

S1,3

S2t
� S

M
77,3 ·

S4,3

S2t
� S

F
7,3,

SK
47,3 · S1,3 � SK

77,3 · S4,3 � SM
47,3 ·

S1,3

S2t
,

Sθ,1
St

 
2

· SM
47,3 · S1,3 �

Sθ,1
St

 
2

· SM
77,3 · S4,3 � SF

7,3,

Sθ,1

St

· S
M
57,3 ·

S2,3

St

�
Sθ,1

St

· S
M
67,3 ·

S3,3

St

�
Sθ,1

St

· S
M
78,3 ·

S5,3

St

�
Sθ,1

St

· S
M
79,3 ·

S6,3

St

� S
F
7,3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

+rough the similarity ratios between the mass matrix,
the stiffness matrix, and the generalized force, the similarity
relations between the dynamic parameters and the physical
quantities of the flexible boom can be obtained by the above
formula. Using the above derivation method, based on the
other equations in the equation system, the similarity re-
lations between the other dynamic parameters of the boom
can be obtained, and the derivation progress will not be
repeated here.

5. Similarity Model Experiment and Result
Analysis of Crane Flexible Truss Boom

In allusion to the research object of this article, a scale-down
boom model for similarity model experiment is designed.
+e larger slenderness ratio is the most obvious feature of the

flexible boom. +erefore, the experimental model of the
boom was constructed in the form of a truss type and had
larger slenderness ratio. +e experimental boom model was
divided into two sections; each section had three kinds of
boom length, in order to verify the correctness of the
similarity relations from two aspects of the cross-sectional
size and boom length of the flexible boom.+e acquisition of
experimental data was achieved by several groups of dis-
placement sensors; these sensors were fixed in several key
positions on the boom model, and all kinds of dynamic data
were transmitted in real time during the experiment. Ex-
perimental conditions are as shown in Figure 4.

In order to verify the dynamic similarity relations, 6
groups of parameters of the boom are designed and listed in
Table 4, to verify the correctness of the similarity relations
through experimental data analysis.

5m

75°

0.5t
30°
45°
60°

Figure 4: Experimental conditions.

Table 4: +e design parameters of model experiments.

+e boom number +e boom length +e boom section parameters +e angle of luffing
1 3m 150×160

30°∼70°
2 4m 150×160
3 5m 150×160
4 3m 300× 320
5 4m 300× 320
6 5m 300× 320
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+e truss boom structure used in the experiment is
assembled from three parts: bottom joint, standard joint,
and top joint plate. +e objects are shown in Figure 5.

In order to obtain the dynamic parameters of multiple
positions of the boom, three measuring points are designed
to collect the deformation and deformation frequency in-
formation of the boom; sensor types which are installed at
each measuring point are listed in Table 5.

Table 5: +e sensor types of model experiments.

+e measuring point number Position Sensor type
1 Junction of standard joint and bottom joint Acceleration sensor
2 Junction of standard joint and top joint Acceleration sensor
3 +e vertex of top joint Acceleration sensor
4 Hinged point of the boom root Gyroscope angular velocity sensor

Table 6: +e arrangement of the experiments.

Comparative results +e number of prototype booms +e number of model booms Dynamic parameters
First group 2 3 +e lateral deformation of point 3
Second group 5 6 +e lateral deformation of point 3
+ird group 1 6 +e lateral deformation of point 3
Fourth group 1 3 +e longitudinal deformation of point 2

Table 7: Similarity ratio and average error of group 1.

Project Value
Similarity ratio of generalized force, SF

7,3 1.051
Average similarity ratio of natural frequency, Sω 0.654
Similarity ratio of the lateral deformation of point 3, u5,3 1.966
Relative error of the maximum deformation by similarity prediction 13.7%

(a) (b)

Figure 5: +e structure of model boom: (a) experiment model 1; (b) experiment model 2.

Table 8: Similarity ratio and average error of group 2.

Project Value
Similarity ratio of generalized force, SF

7,3 1.089
Average similarity ratio of natural frequency, Sω 0.669
Similarity ratio of the lateral deformation of point 3, u5,3 1.947
Relative error of the maximum deformation by similarity
prediction 19.1%

Table 9: Similarity ratio and average error of group 3.

Project Value
Similarity ratio of generalized force, SF

7,3 0.876
Average similarity ratio of natural frequency, Sω 0.696
Similarity ratio of the lateral deformation of point 3, u5,3 1.083
Relative error of the maximum deformation by similarity
prediction 14.1%

Table 10: Similarity ratio and average error of group 4.

Project Value
Similarity ratio of generalized force, SF

7,3 1.135
Average similarity ratio of natural frequency, Sω 0.377
Similarity ratio of the longitudinal deformation of point 2,
u1,3

4.782

Relative error of the maximum deformation by similarity
prediction 28.7%
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According to the experimental result data, based on the
arrangement of the prototype and the model listed in Table 6,
by using the similarity relation of dynamic characteristics of the
flexible boom, the actual value of the boom model and the
similarity predicted value are compared.

Tables 7–10 show the similarity ratio of various dynamic
parameters in the comparison of experimental results from
group 1 to group 4 and give the average error between the
actual value of the model and the predicted value of the
similarity relation.

From Figures 6–9, it can be seen that, in the initial stage
of the experiment, due to the impact of the load shock, the
measuring point 3 of top joint of the boom has obvious
deformation, then it enters the uniform luffing stage, and the
lateral deformation of the measuring point slowly increases.
When calculating the error of maximum deformation, pre-
dicted by the similarity relations, deformation caused by load
shock in the initial stage is excluded, the curve trend of the
model is consistent with that of the prototype, and large de-
formation errors caused by load shock in the initial stage are
excluded.+e average absolute error of deformation prediction
results by using theoretical similarity relation was 15.6%, and
the other similarity predicted values were basically accurate.

6. Conclusions

+is paper derived the similarity relations of natural fre-
quency and other physical quantities of the crane truss boom
by using the dimension analysis method of similarity theory
when geometric parameters are completely similar; in order
to obtain the approximate natural frequency of the boom with
flexible deformation undergoing the large overall rotary mo-
tion, combining the perturbation theory with modal analysis,
an approximate calculation method of natural frequency of
crane boom with flexible deformation was proposed in this
paper. +en, the boom parameters of the crawler crane which
working on the luffing plane were calculated. +e results show
that because the luffing frequency of the crawler crane boom is
much lower than its structural natural frequency, the large
overall rotary motion has little effect on its natural frequency.
Finally, the similarity relations of dynamic parameters of the
boom were derived by the equational analysis method.

The actual value of model
The similarity predicted value
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Figure 7: +e lateral deformation comparison of point 3 in group 2.

The actual value of model
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Figure 8: +e lateral deformation comparison of point 3 in group 3.
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Figure 9: +e longitudinal deformation comparison of point 2 in
group 4.
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Figure 6: +e lateral deformation comparison of point 3 in
group 1.
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A similarity model experiment was designed to verify the
similarity relations of the dynamic characteristics of the
flexible truss booms. Based on the typical luffing conditions,
the dynamic parameters of the scale-down boom model
are obtained by the corresponding sensors installed on the
boom. Comparing the related parameters of prototype
and similar model of experiment, the correctness of the
dynamic similarity of crane flexible truss boom was
verified. It proved that, by using the similarity relations of
the flexible boom derived in this paper, the model pa-
rameters can be well predicted through the prototype
dynamic parameters.
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