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To facilitate continuous development of the wind power industry, maintaining technological innovation and reducing cost per
kilowatt hour of the electricity generated by the wind turbine generator system (WTGS) are effective measures to facilitate the
industrial development. Therefore, the improvement of the system availability for wind farms becomes an important issue which
can significantly reduce the operational cost. To improve the system availability, it is necessary to diagnose the system fault for the
wind turbine generator so as to find the key factors that influence the system performance and further reduce the maintenance
cost. In this paper, a wind farm with 200 MW installed capacity in eastern coastal plain in China is chosen as the research object. A
prediction model of wind farm’s faults is constructed based on the Gaussian process metamodel. By comparing with actual
observation results, the constructed model is proved able to predict failure events of the wind turbine generator accurately. The
developed model is further used to analyze the key factors that influence the system failure. These are conducive to increase the
running and maintenance efficiency in wind farms, shorten downtime caused by failure, and increase earnings of wind farms.

1. Introduction

Nowadays, global climate warming has caused frequent
occurrences of climatic anomaly, extreme climate, and
major natural disasters, thus bringing serious challenges to
sustainable development. To solve the significant increase of
energy demands and greenhouse gas emissions, energy
transformation and development is a big problem which is
highly concerned by the international society. As the rep-
resentative of renewable energy sources, wind power is the
renewable energy power generation technology which grows
the most quickly in the world. The large-scaled commer-
cialization of wind power has been formed gradually. Wind
power generation is becoming a mature technology with cost
competitiveness [1-6]. The Renewables 2019 Global Status

Report (GSR) which is released by “Renewable Energy Policy
Network for the 21st Century (REN21)” states that, in 2018,
the newly installed capacity of wind power in the world
reached 51 GW and the accumulative installed capacity was
591 GW. In the past one decade, China occupied the leading
role in global wind power development. In the global newly
installed capacity of wind power in 2018, China’s market
share accounted for 41%, manifested by 21.1 GW of the
newly installed capacity of wind power and 209.5 GW of the
accumulative installed capacity. China has become the
country with the largest wind power scale in the world [7].

However, the rapid development of wind power gen-
eration in China depends on the Feed-in-Tariff (FIT)
mechanism to some extent. Currently, fixed electric charge
policy is the main supporting mechanism to renewable
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energy sources in China, but the FIT mechanism cannot
offer sustainable capital supports to the renewable energy
source project with increasing scale. It is imagined that wind
power development in China has to get rid of dependence on
FIT basically from 2020 to 2022 [8]. On May, 2018, the
National Energy Administration hereby regulated the new
centralized onshore wind power projects and offshore wind
power projects both shall configure and determine the on-
grid price [9].

To help wind power industrial development cope with
the challenge of FIT reduction successfully, optimizing
management of the wind farms is another effective strategy
except for reducing cost per kilowatt hour of the electricity
generated by WTGS by technological innovation. Facing
with annual increase of installed capacity in wind farms and
running time of generators, owners of the wind farms
propose higher requirements on enhancing maintenance
decision management of wind turbine generators, control-
ling operation and maintenance cost, and protecting safe
sound operation of the generators [10, 11]. Since the natural
environment of the wind farm is generally tough, the op-
eration health state of the wind turbine generator fluctuates
violently. As an important part of the power production
system in the wind farm, operation fault of the wind turbine
generator may influence the whole production link signif-
icantly. Therefore, how to enhance operation availability of
the wind turbine generator to increase grid generation of the
wind farm becomes extremely important.

In this aspect, major influencing factors that influence
operation availability have to be recognized firstly. There are
various influencing factors such as wind, blade, rotor,
bearing, generator, gearbox [12], pitch, and so on. They may
bring about different types of faults, which include blade
faults, generator faults, gearbox faults, pitch machine faults,
and yaw system faults [13]. When gear and bearing goes
wrong, it could lead to gearbox faults and reduce the gen-
erator accuracy. If the yaw counter times out, the wind
turbine generator would be unable to get best wind direction
in time, which is not conducive to power generation effi-
ciency. We can also analyze the pitch angle to predict the
faults of the pitch mechanism to prevent blade damage and
unstable power generation. These faults have to be predicted
and diagnosed accurately by scientific methods, thus en-
abling to formulate targeted strategies. However, it is found
from actual maintenance practices of wind turbine gener-
ators that there is a high nonlinear relationship between the
turbine fault and relevant factors. Traditional linear model is
difficult to analyze the relationship between the turbine fault
and relevant factors. Hence, it is very important to construct
a nonlinear model for turbine fault analysis.

There are various nonlinear models which are exten-
sively used, including artificial neural network (ANN)
[14-16], support vector machine (SVM) [17, 18], Gaussian
process (GP) metamodel [19-21], and adaptive network-
based fuzzy inference system (ANFIS) [22]. As a nonlinear
dynamic system, the neural network can map nonlinear
functions and has been widely utilized in pattern recog-
nition and classification, such as distinguishing a variety of
factors to different types of faults. Back propagation neural
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network is the most commonly used networks, and it is an
agile tool to settle complex identification problems in fault
diagnosis of the wind turbine. It has good abilities of
parallel distributed processing, self-learning, associative
memory, and precisely nonlinear pattern recognition [16].
However, there are many types of faults in operation of the
wind farm, which make the network structure difficult to
determine, or there are too many nodes; it is therefore
inconvenient to train this model. SVM is a universal
learning method, evolved from statistical learning theory.
Nonlinear SVM has been used to appraise the deviation of
prediction to reflect the potential risk factors in the short-
term wind power. The research shows that wavelet trans-
form-support vector machine (WT-SVM) models have
better accuracy than the traditional radical basis function
(RBF) SVM models due to their multiresolution features
[12]. But, the choice of the optimal wavelet base is con-
fusing. The Gaussian process metamodel has been widely
used in many different fields due to its good mathematical
characteristics and flexibility [23, 24]. Although the
Gaussian process metamodel has also been applied in
system fault analysis, research on its applications in wind
turbine generator fault analysis is still at the initial stage. In
this paper, the Gaussian process metamodel is constructed
for prediction of the wind turbine generator fault. This
model is used to analyze relationships between different
factors and turbine fault and predict the probability of
turbine fault occurrence under different states. The main
contributions of this paper can be summarized as follows:

(i) Identify the main fault factors that may cause system
failure for different fault systems and categorize the
fault levels based on the system failure time.

(ii) Develop Gaussian process metamodels for different
fault systems to represent the relationship between
fault factors and system failure time. The developed
models are further used to predict the fault levels for
different fault systems.

(iii) Analyze the effects of different fault factors on the
system failure time so as to find the sensitive factors
that need to be carefully maintained.

(iv) Conduct a real case study to illustrate the perfor-
mance of the proposed method and analyze the fault
events of the wind turbine generator.

The rest of this paper is organized as follows: the de-
scription of the wind turbine system is given in Section 2.
The development of the Gaussian process metamodel and its
application to fault diagnosis of the wind turbine generator
are given in Section 3. A case study is given in Section 4, and
the conclusion is provided in Section 5.

2. Wind Turbine System

Wind turbine system is composed of several different
subsystems which make the system quite complex. The five
main subsystems include driving system, electrical control
system, pitch system, yawing system, and cooling system.
The failure of any subsystem may make the whole system
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shutdown. The description of these subsystems is given as
below based on the double-fed induction generator.

The driving system, which is used to raise the rotation
speed through the main gearbox, usually includes main
shaft, gearbox, and coupling. As the driving ratio is quite
high, the output speed of the gearbox will be raised to more
than 100 times. If an error happens in any component of this
system, it may lead to vibration or wheel gear damage.

The electrical control system is used to monitor all the
signals of the wind turbine and adjust the grid frequency.
This system, especially the converter system, is the key part
of the wind turbine. This is because only the frequency
adjusted by the converter system meets grid’s requirement,
the electric power can then be transported from the wind
turbine to the main grid stably. Any error of this system may
make the wind turbine fail to be cut-in.

The pitch system is used to catch the wind energy in an
optimization way. By the intelligent control according to the
different wind speeds and directions, the pitch system can be
optimized to catch the maximal wind energy. To support the
optimization of control, there are many protection sensors
in the pitch system. If some important sensors are broken, it
may lead to the shutdown of the wind turbine or being out of
speed. Therefore, the maintenance of sensors in the pitch
system is quite important during the operation.

Yawing system is used to detect the wind direction. The
yawing system usually contains four or six yawing motors
and some sensors. When the wind direction changes, the
motors will work and adjust the wind turbine to the optimal
direction where the pitch system can capture the highest
wind energy. To trigger this motion, the signal has to be
successfully sent from the wind vane. If the wind vane or one
of these motors has error, the wind turbine could not find
the correct wind direction, and the wind turbine will stop.

Cooling system has two types: water cooling system and
air cooling system. By contrast, the water cooling is usually
more efficient than air cooling. The function of this system is
to decrease the temperature of the electrical control system
and the generator. Once the running temperature is higher
than the system setting, the wind turbine will stop to avoid
the persistent increase of temperature and protects the in-
ternal devices.

3. Fault Diagnosis with a Gaussian
Process Metamodel

Gaussian process metamodel is a statistical approximation of
the original system based on the input and output data.
When using the metamodel, the original system can be
viewed as a black-box model. The metamodel is used to
analyze relationships in the system without understanding
on the internal structure of the system. To apply the
Gaussian process metamodel for fault diagnosis, the input
includes the fault factors (the factors that cause the fault)
such as the wind power mismatch failure, pitch charger
failure, and cable switch failure. Specifically, each fault factor
has its standard setting value, and the input values to the
model can be represented as the percentage of deviation
from the standard setting value. The output of interest in the

study is the occurrence of different fault levels under dif-
ferent fault systems. As the fault level depends on the failure
time, the essential output of interest is the failure time of
each fault. After the identification of the input and output in
the system, the data for these input and output are collected
from real system observations. Next, the details of Gaussian
process metamodel development and the application for
fault diagnosis are provided.

Let y (x) be the system output for the input x. In our case
study, x represents the deviation from standard setting value
for the considered fault factors, and y(x) represents the
failure time for the wind turbine system. Specifically, four
fault systems are considered for the wind turbine system,
including the pitch system, cooling system, converter, and
others. For each fault system, x can represent the corre-
sponding fault factors, and y(x) can represent the failure
time for this fault system. For instance, in the cooling system,
x denotes the deviation values for low inlet valve temper-
ature and generator temperature comparison failure, and
y(x) denotes the failure time for this cooling system. A
Gaussian process metamodel can be developed for each fault
system. Therefore, there are four Gaussian process meta-
models that can be developed for four fault systems. As
model development procedure is the same for different fault
systems, the output y (x) and the corresponding input x are
taken as examples to show the model development.

With the Gaussian process model, y(x) can be hy-
pothesized as the Gaussian process, which is specified by its
mean function m (x) and its variance function X (x, x). The
mean function m (x) can be hypothesized as a constant in
most real applications. The variance function X (x,x) de-
scribes spatial correlation among different input points, and
the corresponding covariance function can be expressed in
different forms [25]. The comparative study of different
covariance functions is performed by Pandit and Infield
[26]. Here, the commonly used Gaussian covariance func-
tion is adopted due to its flexibility. Specifically, the Gaussian
covariance can be expressed as follows:

¥ (x,x) = T°R(x, x), (1)

where 72 is an unknown variance and R(x, x) is the cor-
relation function. The correlation function can be further

expressed as
R(x,x) = exp(—@), (2)

where 6 is an unknown parameter and ||d| is the Euclidean
distance between two input points.

Hypothesis based on Gaussian process can construct the
Gaussian process metamodel by using the system input and
output data. The predictive function of the model output can
be further deduced. If y* is the output value under the
unknown input setting x*, the predictive function of y* can
be expressed as

¥y~ N(m(x) + 2,37 (y - m(x)),Z,, - 2,37'%, ),
(3)



where y is the actually observed data, m(x) is the mean
function, X is the variance function between the observed
points, £, is the variance function between the unobserved
point and observed point, and X, is the variance of the
unobserved point. The form of the variance function is given
by equation (1). It can be known from this predictive
function that the prediction of the unobserved point follows
the normal distribution with the given mean and variance.
The predictive mean is m (x) + 212! (y —m(x)), which can
be used to represent the expected failure time at input setting
x*. The predictive variance is 2,, — 2I¥7!3,, which can be
used to measure the predictive error of the failure time. One
advantage of the Gaussian process metamodel is that it can
easily carry out uncertainty assessment so as to provide more
robust results [27]. In this paper, the observed failure time is
treated as deterministic, and there are no enough data to
measure the noise of the observations. Therefore, the pre-
dictive variance only accounts for the spatial uncertainty due
to the model development. The extension to consider the
stochastic model can be found in the research studied by
Pandit and Infield [28].

There are several unknown parameters in the developed
Gaussian process metamodel and the derived predictive
function, such as 7> and 6. These parameters are often
treated as constant using the estimated values from esti-
mation measures such as the maximum likelihood estima-
tion method [29]. However, there are uncertainties for these
estimations, and these uncertainties may significantly in-
fluence the model accuracy and predictive performance [30].
To account for these uncertainties, a Bayesian estimation
method is proposed which is easy for uncertainty analysis.
Let & denote the unknown parameters that need to be es-
timated and g (&) denote the prior for these parameters.
Different priors can be assigned such as noninformative
prior or conjugate prior [31]. In this paper, conjugate prior is
assumed for unknown parameters due to its mathematical
convenience. That is, Gaussian process mean is assumed to
be conditional normal, variance 72 is assumed to be inverse
Gamma distribution, and parameter 6 is assumed to be
Gamma distribution. Given the likelihood that the observed
data are normally distributed conditional on the unknown
parameters, the posterior distribution of the unknown pa-
rameters can be derived as the following equation based on
the Bayesian theory:

g@&ly)ocg(OL(y18), (4)

where L(y | £) denotes the likelihood function. The posterior
distribution can then be used to make inference about the
unknown parameters. For instance, the unknown parame-
ters can be estimated as posterior mean or mode. The un-
certainties of these parameters can also be taken into account
by integrating out these parameters using the numerical
integration methods (e.g., Markov chain Monte Carlo
method) with respect to the posterior distribution.

Given the estimated parameters, the developed model
can be used for further investigation. For instance, the
developed metamodel can be used to analyze and predict the
occurrence of different fault levels under different fault
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systems. The details of applying the proposed method in
wind power system fault diagnosis are illustrated in the case
study.

4. Case Study

In this case, the fault occurrence of the wind turbine gen-
erator is studied based on the Gaussian process metamodel.
Four Gaussian process metamodels are developed for four
fault systems, respectively, including the pitch system,
cooling system, converter, and others. With the developed
metamodels, the relationship between the identified fault
factors and the occurrence of different fault levels for dif-
ferent fault systems is analyzed. Furthermore, fault occur-
rences are predicted in operation process of the wind farm
using the developed metamodels.

4.1. Case Description. Here, the fault of the wind turbine
generator in the wind farm with 200 MW installed capacity
in eastern coastal plain in China is analyzed. Fault data of
100 wind turbine generators with 2 MW unit capacity in this
wind farm are selected between April 2015 and March 2017;
that is, the period of fault data starts from the beginning of
operation and lasts 2 whole years. Data are collected every
15min of the turbine sensor and then sent to the server in
the central control room. This case mainly discusses rela-
tionships of fault factors with fault type and fault level based
on the data collected by the turbine sensor. When analyzing
fault occurrence of the wind farm, fault types are classified
according to major functional systems in which fault occurs
(Table 1), mainly including the pitch system, cooling system,
converter, and others (e.g., cable switch and torque com-
parison). Under different fault types, the system output
considered in the prediction model is the failure time. Then,
the fault levels can be identified based on the predicted
failure time. Four fault levels are divided according to failure
time: level I (continuous failure time of unit generator >7
days), level II (failure time=4-6 days), level III (failure
time = 2-3 days), and level IV (failure time <1 day).

4.2. Fault Analysis. In this case, 347 fault events for the wind
turbine generator took place in the wind farm from 2015 to
2017. The failure events of the wind turbine generator are
sent to the server as the analog signal type, which is then
transformed to digital and consequently showed as the error
code in the interface screen. According to the error code,
engineers analyze these errors during the internal system
firstly and later go for the onsite checking. Therefore, the
input values of fault factors and the failure time and fault
levels for the corresponding fault system are recorded, and
these data can be used to develop the Gaussian process
metamodel for different fault systems. Statistics on occur-
rence frequency of four fault types are shown in Figure 1.
Clearly, occurrences of the fault in the pitch system are
significantly higher than rest three fault types.

According to fault classification standards in this case,
statistics on occurrence frequency of different levels of faults
for the whole system (including four fault systems) in this
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TaBLE 1: Major fault factors of the wind farm.

Fault system

Fault factors

Factor number

Wind power mismatch failure 1
Loss of pitch converter signal indicating the ready state 2
. Pitch position comparing fault 3
Pitch . .
iteh system Pitch charger failure 4
Pitch position sensor anomaly failure 5
Pitch safety chain failure 6
. Low inlet valve temperature 7
Cooling system . .
Generator temperature comparison failure 8
Converter Emergency shutdown of converter 9
Closing failure of 1U3_breaker 10
Cable switch failure 11
Others . .
Torque comparison failure 12
180 -
160 A
& 140
g
2 120 A
&
s 100
g
£ 80 -
g
S 60 A
3
£ 40
20 A
0 - .
Pitch Cooling Converter Others
system system

Fault system

FiGure 1: Occurrences of four fault types.

wind farm are carried out. Results are shown in Figure 2. The
occurrence frequency of level III and level IV is higher,
which is more than 3 times higher than that of level I and
level II.

Based on the data obtained from the wind farm from
April 2015 to March 2017, four Gaussian process meta-
models are developed for four fault systems. The developed
metamodels are further used for prediction and compared
with the observed data. Different fault levels for different
fault systems of the wind farm are predicted by the devel-
oped Gaussian process metamodel. The occurrence fre-
quency predicted by the model and the actual observed
occurrence frequency are shown in Figures 3-6. Obviously,
all four fault types have unique distribution characteristics
on different fault levels. In the pitch system, cooling system,
and converter, the occurrence frequency of level IIT and level
IV is more than 3 times higher that of level I and level II.
However, no significant differences of occurrence frequency
have been observed among different fault levels. Although
the occurrences of four fault levels predicted by the model
are not agreeing with actual observation values, the differ-
ence is very small. Based on further analysis on root-mean-
square error (RMSE) of model prediction of four fault levels
(Table 2), no significant difference exists between model
prediction and actual observation. On the contrary, root-
mean-square errors (RMSEs) of four fault systems also

FiGure 2: Occurrences of different fault levels.

Fault occurrence frequency
'S
S
.

10 -. .
0 T T
Fault level T Fault level 1T Fault level IIT
Pitch system

Fault level IV

m Real observed values
m Predicted values

FIGURE 3: Observation and model prediction of fault occurrences in
the pitch system.
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FIGURE 4: Observation and model prediction of fault occurrences in
the cooling system.
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the converter.
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others.

reflect the prediction accuracy of the proposed model.
The proposed model has the highest prediction accuracy
in the pitch system followed by the cooling system,
converter, and others successively. This order is consis-
tent with data size difference among four fault levels in
this case. Hence, it could be speculated that increasing
fault data size of research objects could increase
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prediction accuracy of the model effectively. Noted that
the Gaussian process metamodel may not perform well if
the data size is too small or it is too large. If the data size is
small, the developed model may not be accurate. If the
data size is too large, the model can be computationally
expensive. In this case study, the data size is appropriate
for the model development.

The performance of the developed Gaussian process
metamodels is further compared with the neural network,
where a two-layer feedforward neural network with
adaptive parameters and bias units is used. The RMSEs of
four fault systems using the neural network are given in
Table 2. The results indicate that the RMSEs using the
neural network are similar to the values using the
Gaussian process metamodels. The t-test indicates that
there is no significant difference between the two
methods. Therefore, the two models have similar pre-
dictive performance using the obtained training data. The
mean absolute error (MAE) and the R-square are also
computed to assess the performance of the models. The
results as shown in Table 2 indicate that the Gaussian
process metamodels are slightly better than the neural
networks. Furthermore, the data obtained from July 2017
to September 2017 are used to validate the developed
models. The RMSEs for different fault systems using
different models are given in Table 2. The results indicate
that the Gaussian process metamodels have smaller
RMSE values, and the test results show that the difference
is significant. Therefore, the Gaussian process meta-
models have better predictive performance than the
neural network using the validation data in this case
study. The MAE and R-square are also computed, and the
results in Table 2 show that the Gaussian process met-
amodels have better performance. As a result, the con-
structed Gaussian process substitution model could
predict fault type and fault level of the wind turbine
generator accurately. In addition, compared with the
neural network, the Gaussian process metamodels are
easier for implementation, and they can account for the
uncertainties in the prediction.

The developed Gaussian process metamodel is further
used to analyze the effects of deviation of different fault
factors on the system failure time. The results are shown in
Figure 7. It can be seen that the failure time is longer with
larger input deviation for most factors, except factor 6
pitch safety chain failure. The reason is that the observed
failure time is quite long for a single event with accepted
deviation, and the average failure time for the event with
larger input deviation is short. Factors 3, 6, and 12 have
relatively larger failure time compared with other factors.
Therefore, they are more sensitive to the fault level and
have larger probability to cause high-level fault. The
probability of different fault levels are further calculated
when the deviation of each factor is below —5%, within
—-5%~5%, and above 5%. The results are given in Table 3.
The results show that when the input deviation is within
—5%~5%, there is usually a smaller probability to get high-
level fault (longer failure time). When the input deviation
becomes larger (below —5% or above 5%), the probability to
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TaBLE 2: Root-mean-square errors (RMSE), mean absolute error (MAE), and R-square of prediction of four fault types.

Fault type Pitch system Cooling system Converter Others

RMSE for GP 0.79 0.82 0.84 0.98

RMSE for neural network 0.79 0.83 0.86 0.99
MAE for GP 0.75 0.77 0.78 0.91

MAE for neural network 0.76 0.80 0.77 0.93
R-square for GP 0.87 0.89 0.90 0.93
R-square for neural network 0.85 0.88 0.88 0.90

Training data

RMSE for GP 0.89 0.92 0.91 1.07

RMSE for neural network 1.02 1.13 1.09 1.21
MAE for GP 0.83 0.86 0.84 1.02

MAE for neural network 0.88 0.89 0.87 1.09
R-square for GP 0.83 0.86 0.87 0.89
R-square for neural network 0.81 0.84 0.86 0.87

Validation data

8]
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FIGURE 7: Predicted failure time per event with different input deviations for different factors. (a) Factor 1. (b) Factor 2. (c) Factor 3.
(d) Factor 4. (e) Factor 5. (f) Factor 6. (g) Factor 7. (h) Factor 8. (i) Factor 9. (j) Factor 10. (k) Factor 11. (1) Factor 12.



8 Mathematical Problems in Engineering
TaBLE 3: Predicted fault probabilities with different input deviations for different factors.
. Predicted fault probability
Factors Input deviation
Level I Level IT Level III Level IV
Below —5% 0.089 0.206 0.412 0.293
1 Within —5%~5% 0.012 0.157 0.314 0.517
Above 5% 0.135 0.283 0.397 0.185
Below —5% 0.039 0.212 0.508 0.241
2 Within -5%~5% 0.008 0.196 0.437 0.359
Above 5% 0.102 0.231 0.529 0.138
Below —5% 0.236 0.317 0.354 0.093
3 Within —5%~5% 0.194 0.286 0.318 0.202
Above 5% 0.214 0.287 0.319 0.18
Below —5% 0.028 0.203 0.408 0.361
4 Within —5%~5% 0.007 0.167 0.325 0.501
Above 5% 0.037 0.221 0.398 0.344
Below —5% 0.183 0.249 0.307 0.261
5 Within —5%~5% 0.142 0.236 0.297 0.325
Above 5% 0.169 0.253 0.310 0.268
Below —5% 0.209 0.216 0.238 0.337
6 Within -5%~5% 0.318 0.243 0.217 0.222
Above 5% 0.179 0.208 0.297 0.316
Below —5% 0.174 0.213 0.301 0.312
7 Within —5%~5% 0.132 0.184 0.293 0.391
Above 5% 0.169 0.224 0.277 0.33
Below —5% 0.201 0.247 0.289 0.263
8 Within —5%~5% 0.134 0.201 0.237 0.428
Above 5% 0.235 0.254 0.283 0.228
Below —5% 0.191 0.226 0.257 0.326
9 Within —5%~5% 0.110 0.168 0.265 0.457
Above 5% 0.187 0.243 0.255 0.315
Below —5% 0.125 0.231 0.274 0.37
10 Within -5%~5% 0.106 0.196 0.357 0.341
Above 5% 0.162 0.264 0.299 0.275
Below —5% 0.136 0.244 0.315 0.305
11 Within —5%~5% 0.099 0.217 0.263 0.421
Above 5% 0.142 0.239 0.334 0.285
Below —5% 0.203 0.367 0.201 0.229
12 Within —5%~5% 0.156 0.248 0.302 0.294
Above 5% 0.211 0.319 0.243 0.227

get high-level fault becomes larger. Therefore, it is im-
portant to make the input deviation within control in order
to improve the turbine generator system’s performance.

5. Conclusions

This paper studies wind turbine generator fault events by the
Gaussian process metamodel. The Gaussian process meta-
models are developed to predict the failure time and the
different fault levels of different fault systems given the fault
factors. In a specific case study, relationships among different
relevant factors in the fault event are analyzed, and the fault
prediction model in the wind farm is constructed. According
to comparison between model prediction results and actual
observation results, the proposed model can predict fault level
for different fault types in the wind turbine generator accu-
rately. However, model prediction accuracy is related with
data size in the case study. Usually, the model is more accurate

with larger data size. However, it also depends on the accuracy
of the data. If the data obtained are not accurate, the model
may perform even worse with more data.

The developed model is further used to analyze the
effects of different factors on the fault occurrence. The
results indicate that some factors have higher impacts on
the fault level which have larger probability to get high-
level fault, including factor pitch position comparing fault,
pitch safety chain failure, and torque comparison failure.
These factors should be maintained more appropriately in
order to reduce the maintenance cost. The fault factor
safety chain failure would cause high-level fault with
smaller input deviation. This is due to the data obtained
from the wind farm. A small deviation of some input
factors may cause longer failure time. It should be noted
that the observed failure time may also be influenced by
other factors such as the reaction time of the engineers.
Therefore, it is important to identify the failure time that is
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caused by the input fault factors and further consider the
noise in the observations.

In general, large deviations of the fault factors often
cause longer failure time and high-level fault. Hence, it is
necessary to keep the fault factors under control. The
developed Gaussian process metamodel provides an effi-
cient way to analyze the impacts of fault factors without
conducting experiments on real systems. In addition,
using of the Gaussian process metamodel in operation
management of the wind farm can predict fault events that
are going to happen accurately so that maintenance staff
can adopt effective protection measures or formulate
maintenance schemes in advance to protect safe sound
operation of wind turbines. These are conducive to reduce
failure time caused by the fault and increase power gen-
eration of the wind turbine generator, as well as increase
earnings of wind farms.

In this paper, the Gaussian process metamodel is
developed to analyze the system fault of the wind turbine
generator for one wind farm. A potential future work is to
apply this method to other wind farms to further validate
the applicability of the proposed method. Another pos-
sible future work is to compare the proposed method with
other metamodel-based methods such as the artificial
neural network. The comprehensive comparison is
needed to study the advantages of different metamodel-
based methods on fault diagnosis for the wind turbine
generator.
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