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In many real-world fault diagnosis applications, due to the frequent changes in working conditions, the distribution of labeled
training data (source domain) is different from the distribution of the unlabeled test data (target domain), which leads to
performance degradation. In order to solve this problem, an end-to-end unsupervised domain adaptation bear fault diagnosis
model that combines Riemann metric correlation alignment and one-dimensional convolutional neural network (RMCA-
1DCNN) is proposed in this study. Second-order statistic alignment of the specific activation layer in source and target domains is
considered to be a regularization item and embedded in the deep convolutional neural network architecture to compensate for
domain shift. Experimental results on the Case Western Reserve University motor bearing database demonstrate that the
proposed method has strong fault-discriminative and domain-invariant capacity. +erefore, the proposed method can achieve
higher diagnosis accuracy than that of other existing experimental methods.

1. Introduction

Rolling bearings are key components in heavy-duty ma-
chinery and manufacturing systems and have also been
widely used in modern industries. However, unexpected
bearing faults during long-term operations lead to large
maintenance costs and safety losses [1]. In the past decades,
machine learning and statistical inference techniques have
been intensively studied and have become increasingly
popular today due to their ability to process collected signals
rapidly and efficiently and provide reliable fault diagnosis
results without prior expertise [2–5]. Recently, with the
development of deep learning, the performance of fault
diagnosis has been remarkably improved. +e excellent
performance of various fault diagnosis applications is
mentioned in [6–13].

Data-driven techniques for fault diagnosis generally
assume that training and testing data are derived from the
same distribution. However, in real-world applications, the
distributions of training and testing data are often different
from each other due to changes in the environment, working

conditions, and bearing quality. Consequently, fault diag-
nosis systems suffer from large performance degradation.

A domain adaptation technique whose main research
must focus on the adaptation of a learning model built in a
source domain for different but related target fields is
necessary to avoid such reconstruction efforts to address this
challenge. Many studies in engineering areas have reported
that domain adaptation, which includes image classification,
natural language processing, object recognition, and feature
learning, is beneficial and promising [14–16].

Domain adaptation has recently been introduced into
the field of fault diagnosis, in which the fault diagnosis
model parameters or input features are adjusted to com-
pensate for the mismatch.

Zhang et al. [17] took raw vibration signals as inputs of a
deep convolutional neural network with the wide first-layer
kernel convolutional neural network (WDCNN) model and
used adaptive batch normalization (AdaBN) as the algo-
rithm of domain adaptation to realize fault diagnosis under
different load conditions and noisy environments. Lu et al.
[18] introduced a deep CNNmodel with domain adaptation
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for fault diagnosis; this model integrated the maximum
mean discrepancy as the regularization term into the loss
function of the model to reduce the cross-domain distri-
bution difference. Zhang et al. [19] developed an adversarial
domain adaptation model, which comprises a source feature
extractor, a target feature extractor, a domain discriminator,
and a label classifier, for fault diagnosis. Jian et al. [20]
proposed a fusion CNN model that combines one-dimen-
sional CNN (1DCNN) and Dempster–Shafer evidence
theory to enhance cross-domain adaptive capability for fault
diagnosis. Li et al. [21] presented a deep domain adaptation
method for bearing fault diagnosis based on multikernel
maximummean discrepancies between domains in multiple
layers to learn representations from the source domain
applied to the target domain.

+e main contributions of this study are as follows:

(1) We propose an end-to-end approach that directly
takes raw temporal signals as inputs and does not
require time-consuming denoising preprocessing
and separate the feature extraction algorithm

(2) We combine RMCA with 1DCNN bearing for fault
diagnosis in a unique domain adaptation pipeline,
RMCA-1DCNN, which can learn fault-discrimina-
tive and domain-invariant features between domains

(3) Extensive experiments on Case Western Reserve
University (CWRU) bearing datasets demonstrate
that RMCA-1DCNN achieves superior performance
to that of existing baseline methods

+e rest of the paper is outlined as follows. In Section 2,
we discuss some necessary theoretical background on un-
supervised domain adaptation and CNN. In Section 3, we
present our RECA-1DCNN unsupervised domain adapta-
tion fault diagnosis model. We report a broad experimental
validation in Section 4. Finally, we provide conclusions in
Section 5.

2. Theoretical Background

2.1. Unsupervised Domain Adaptation. Domain adaptation
involves machine and transfer learning. In transfer learning,
when the data distribution of the source (training data) and
the target (testing data) domains is different but the two
tasks are the same, this special transfer learning is called
domain adaptation, which can be divided into two classes:
supervised and unsupervised adaptation. If the source data
have labels and the target data have no labels, then it is called
unsupervised domain adaptation. Its formal definition is as
follows:

Definition 1. (domain). A domain D comprises two com-
ponents: a feature space X and a marginal probability
distribution P(X), where X � x1, ..., xn  ∈ X is a dataset,
that is, D � X, P(X){ }.

Definition 2. (task). Task is the learning goal. A task T

comprises two components: a label spaceY and a predictive
function f(X) corresponding to the labels, i.e.,

T � Y, f(X) . f(X) � Q(Y | X) is also the conditional
probability distribution, and Y ∈ Y.

Definition 3 (unsupervised domain adaptation). Given a
labeled source domain dataset DS � (xs

i , ys
i ) |

Ns

i�1 and an
unlabeled target dataset DT � (xt

i) |
Nt

i�1, Ns and Nt are the
numbers of samples of source and target domains, respec-
tively.+e eigenspaces of DS and DT (that is,Xs � Xt), label
space (that is, Ys � Yt), and conditional probability dis-
tribution Qs(ys | xs) � Qt(yt | xt) are assumed to be the
same. However, the marginal probability distribution of the
two domains, that is, Ps(xs)≠Pt(xt), is different. Domain
adaptation aims to use labeled DS in learning a classifier
f(xt)⟶ yt for predicting the labels yt of DT, where
yt ∈ Yt.

Learning strategies of domain adaptation can be roughly
divided into two categories, namely, instance transfer and
feature matching, to reduce the distribution divergence
between domains. +e former reweights the source domain
data according to the shared information contained in the
target data and then further analyzes the reweighted source
data [22, 23]. Meanwhile, the latter either performs subspace
learning by utilizing the subspace geometrical structure
[24–27] or distribution alignment to reduce the marginal or
conditional distribution divergence between domains
[28–31]. With feature matching, some approaches based on
deep neural and adversarial networks have demonstrated
superior performance on domain adaptation benchmark
datasets [32–36].

2.2. Deep Correlation Alignment. In the activations com-
puted at a given layer of a deep neuron network, xs

i and xt
i

are d-dimensional representations. CS and CT are covariance
matrices of source and target features, respectively.
According to [27, 37], CS and CT, are respectively, defined as
follows:

CS � ASPA
T
S ,

CT � ATPA
T
T,

(1)

where P is the centering matrix [38]. Taking the source
domain as an example, P is a matrix ofNS × NS, and its value
is as follows:

Pii �
1

NS

,

Pij �
1

NS NS − 1( 
, (i≠ j).

(2)

We define the CORAL loss [27, 36] as shown in the
following to minimize the distribution discrepancy between
the second-order statistics (covariance) of the source and
target features:

Lcoral �
1
4d2 Cs − CT

����
����
2
F
, (3)

where ‖‖2F represents the squared matrix Frobenius norm.
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+e covariance matrix is a symmetric positive definite
matrix and a Riemann space, in which Euclidean distance is
suboptimal. Log − Euclidean distance is an approximate
Riemannian metric, which can effectively capture manifold
structures. Using the Log − Euclidean distance, the RMCA
loss [39] is redefined as

LRMCA �
1
4d2 log CS(  − log CT( 

����
����
2
F

�
1
4d2 Udiag log σ1( , ..., log σd( ( U

T
����

− Vdiag log u1( , ..., log ud( ( V
T
‖
2
F,

(4)

where U and V are the matrices in which CS and CT are
diagonalized, respectively; σi and ui, i � 1, ..., d, are the
corresponding eigenvalues. +e normalization term q/d2

provides the loss independent from the size of the features.

2.3. Convolutional Neural Network (CNN). CNNs have the
characteristics of the local acceptance domain, shared
weight, and spatial subsampling. A standard CNN comprises
input, convolution, pooling (subsampling), fully connected,
and output layers. We focus on 1DCNN because vibration
signals are one-dimensional. Compared with two-dimen-
sional data, one-dimensional representation is simple and
intuitive, as long as the signal is regarded as an image with a
height of 1. In 1DCNN, the forward propagation from a
previous convolution layer l − 1 to the input of a neuron in
the current layer l can be expressed as follows:

H
l
j � f 

K

i�1
H

l−1
i ∗W

(l)
ij + b

l
j

⎛⎝ ⎞⎠, (5)

where bl
j is a bias of the j neuron at layer l; Hl−1

i is the output
of the l neuron at layer l − 1; and W

(l)
ij represents the weight

of the kernel, which connects the i neuron at layer l − 1 to the
j neuron at layer l. +e pooling layer usually follows the
convolution layer and samples the features based on the
following sampling rules:

H
l
j � f βl

j down H
l−1
j  + b

l
j , (6)

where down(.) denotes the max or average pooling function.
After passing through multiple convolutional and

pooling layers, the CNN can classify the extracted features
through the fully connected and softmax layers and obtain
the labels of the samples.

3. Fault Diagnosis Framework Based on RMCA-
1DCNN

3.1. Riemannian Metric Correlation Alignment Loss. In un-
supervised domain adaption fault diagnosis, the source
domain data have labels, and the cross-entropy H(XS, YS) is
defined as

H XS, YS(  � − 
n

i�1
〈ys

i , logf x
s
i , θ( 〉, (7)

where for each sample, xs
i , ys

i is the ground truth label and
f(xs

i , θ) is the network prediction.
Considering bearing fault diagnosis as a multi-

classification problem, the final deep features must be suf-
ficiently discriminative to train strong classifiers and domain
invariance between domains. Minimizing the classification
loss alone might lead to the overfitting of the source domain
and reduce the performance of the target domain. Mean-
while, minimizing the RMCA loss itself is likely to degen-
erate features.

+erefore, we consider the cross-entropy loss in the
source domain and the second-order statistical alignment of
the given layer in the source and target domains for joint
training with the two losses and define the final loss function
as follows:

L � LCLASS + αLRMCA � H Xs, Ys(  + αLlog Cs, CT( , (8)

where LCLASS denotes classification loss on the labeled source
domain data, LRMCA denotes the Log − Euclidean metric of
the second-order statistics between the source and the target,
and the hyperparameter α determines the strong confusion
in the domains.

Considering the two kinds of losses together, the net-
work not only learns good feature classification but also
reflects the statistical structure of the source and the target
and prevents overfitting. During model training, objective
function (8) is minimized by gradient descent on θ. +e final
learned features are expected to work well on the target
domain.

3.2. RMCA-1DCNN Fault Diagnosis Model. RMCA-1DCNN
is proposed to solve the cross-domain learning problem in
the bearing fault diagnosis area. As shown in Figure 1, a
DCNN is used as the main architecture, and the model
employs a domain adaptation layer following Riemannian
metric correlation alignment loss before the classifier. +e
labeled source and unlabeled target data are fed into the
RMCA-1DCNN model in the training process. +en, do-
main-invariant features of the raw vibration signals are
extracted through the multiple convolutional and pooling
layers. +e distribution discrepancy is minimized at fully
connected layers. +eoretically, correlation alignment can
be performed at multiple layers in parallel. Empirical ev-
idence [36, 37] shows that solid performance is obtained
even if this alignment is conducted only once. As a
common practice, correlation alignment is performed after
the last fully connected layer. Joint training with the
classification and the second-order statistic losses between
the two domains in the given layer can adapt the learned
representations in the source domain for application to the
target domain. +e domain-invariant features can be ef-
ficiently extracted to improve the cross-domain testing
performance (Table 1).

3.3. Architectural Design of 1DCNN. Considering that the
vibration signals of bearing collected by acceleration sensors
are usually one-dimensional is reasonable, 1DCNN is used
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to process the vibration signals. In this study, 1DCNN is
adopted to handle bearing fault diagnosis. +e network
structure comprises four convolutional and pooling layers, a
fully connected layer, and a softmax layer at the end.+e first
convolutional layer uses wide kernels for feature extraction
and high-frequency noise suppression. Small convolutional
kernels in the preceding layers are used to deepen the
network for multilayer nonlinear mapping and preventing
overfitting [17]. +e parameters of 1DCNN are detailed in
Table 2. +e pooling type is max pooling, and the activation
function is ReLU. +e ADAM stochastic optimization

algorithm is applied to train the model to minimize the loss
function, and the learning rate is set as 1e− 3. +e experi-
ments are conducted using the TensorFlow toolbox of
Google.

4. Experimental Analysis of the Proposed
RMCA-1DCNN Model

4.1. Data Description. +e bearing fault data used for ex-
perimental validation were obtained from the Bearing Data
Center of the Case Western Reserve University (CWRU)

Classification loss

So�max

Fc5: fully connected
layer

ConV4: withs mall
conv kernels

ConV3: with small
conv kernels

Conv1: first layer with
wide conv kernels

ConV2: withs mall
conv kernels

Source samples

Source mapping Target mapping

RMCA loss

Fc5: fully connected
layer

ConV4: with small
conv kernels

ConV3: with small
conv kernels

Conv1: first layer with
wide conv kernels

ConV2: with small
conv kernels

Target samples

1DCNN

Cs CT

Figure 1: Framework of RMCA-1DCNN.

Table 1: Details of 1DCNN architecture used in experiments.

No. Layer type Kernel size Stride Kernel number Output Padding
1 Convolution1 32×1 8×1 32 256× 32 Yes
2 Pooling1 2×1 2×1 32 128× 32 No
3 Convolution2 3×1 2×1 32 64× 32 Yes
4 Pooling2 2×1 2×1 32 32× 32 No
5 Convolution3 3×1 2×1 64 16× 64 Yes
6 Pooling3 2×1 2×1 64 8× 64 No
7 Convolution4 3×1 1× 1 64 4× 64 Yes
8 Pooling4 2×1 2×1 64 2× 64 No
9 Fully connected 64 1 64×1
10 Softmax 10 1 10
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[40]. +e data were collected from a motor driving the
mechanical system under four different loads (0, 1, 2, and
3 hp) and three different locations: the fan end, the drive end
and the base, and the sampling frequency, which includes 48
and 12 kHz. +e four fault types of the bearing are normal
condition (N), outer race fault (OF), inner race fault (IF),
and roller fault (RF). Each fault type contains fault diameters
of 0.007, 0.014, and 0.021 inch. +erefore, we have 10 fault
conditions in total.

In this paper, the vibration signals of different fault lo-
cations and health states with a sampling frequency of 12 kHz
at the driving end of rolling bearing are selected for exper-
imental research. +e detailed description of the datasets is
shown in Table 2. +ree datasets are acquired under three
loads of 1, 2, and 3 hp. Each large dataset contains training
and testing samples, and each sample contains 2,048 data
points. Overlap sampling technique is used to increase the
number of training samples. +e training samples are then
overlapped to augment data [17]. However, no overlap occurs
among the testing set. Overall, each dataset comprises 6,600
training samples and 250 test samples of 10 health states.

4.2. Experiment Result. Source domain samples have labels,
whereas target domain samples have no labels. Owing to the
three domains, the experiments were conducted in six do-
main transfer scenarios, A⟶B, A⟶C, B⟶C, C⟶B,
C⟶A, and B⟶A. Taking A⟶B as an example, dataset
A is the source domain, and dataset B is the target domain.

Comparison methods: the proposed method is com-
pared with several successful machine learning methods to
verify the effectiveness of the RMCA-1DCNN model.

(1) SVM
(2) Multilayer perceptron (MLP)
(3) Deep neural network (DNN) [10]
(4) WDCNN proposed in [17] and the domain adap-

tation capacity from the AdaBN
(5) Adversarial adaptive model based on 1DCNN

(A2CNN) [19]

(1)–(3) and (5) are methods that work with the data
transformed by fast Fourier transform. (4) is a CNN-based
method that works with the normalized raw signals.

For a fair comparison, we adopt accuracies reported by
other authors with the same setting or conduct experiments
using the source code provided by the authors.

A total of 10 experiments were conducted for each
domain transfer scenario to reduce the influence of random
factors. Experimental results of six domain scenarios are
shown in Figure 2. In the domain-shift scenarios of A⟶B,
A⟶C, B⟶C, and C⟶B, the training and test accu-
racies of each scenario reach 100%. +rough the domain-
shift scenarios of C⟶A and B⟶A, the training accuracy
is 100%, and the test accuracy reaches 98%. All these results
show that the domain adaptation performance of the pro-
posed method is remarkable and stable.

+e comparison with other methods is shown in Fig-
ure 3. +e average performance of RMCA-1DCNN is better
than that of A2CNN and six other baseline methods.
RMCA-1DCNN also achieves the state-of-the-art average
accuracy of domain adaptation in all domain transfer
scenarios.

As shown in Figure 3, the performance of SVM, MLP,
and DNN in domain adaptation is poor, and their average
accuracy in the six scenarios is 66.63%, 80.40%, and 78.05%,
respectively. +erefore, the sample distribution is different
under varying conditions, and the model trained in one
condition is unsuitable for fault diagnosis and prediction in
another condition.

Compared with some recent methods, such as WDCNN
(AdaBN) and A2CNN, our method achieves an average
accuracy of 99.33%, which is evidently higher than that of all
the baseline methods.

In five out of six shifts, that is, A⟶B, A⟶C, B⟶C,
C⟶B, and C⟶A, the fault diagnosis accuracy of the
proposed method achieves the state-of-the-art domain ad-
aptation performance, and the first four domain shifts reach
up to 100%. In the domain-shift scenario of B⟶A, the
accuracy of the proposed method is close to the A2CNN
method.+is accuracy is 0.18% lower than that of the A2CNN
method, which is far better than that of SVM, MLP, DNN,
WDCNN, and WDCNN (AdaBN) methods. On this basis,
RMCA-1DCNN can learn fault-discriminate and domain-
invariant features and effectively solve the domain adaptation
problem caused by different loads of bearing data.

4.3. Sensitivity Analysis of the Fault. For each type of fault
detection, we introduce three evaluation indexes, namely,
Precision, Recall, and F-Measure, to further analyze the
sensitivity of the proposed RMCA-1DCNN method. In the
multiclassification problem of fault diagnosis, Precision and
Recall for each fault category c are defined as follows:

Table 2: Description of 12 kHz drive-end bearing datasets.

Fault location None RF IF OF
Category labels 0 1 2 3 4 5 6 7 8 9
Fault diameter (inch) 0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021

Dataset A (1HP) Train 660 660 660 660 660 660 660 660 660 660
Test 25 25 25 25 25 25 25 25 25 25

Dataset B (2HP) Train 660 660 660 660 660 660 660 660 660 660
Test 25 25 25 25 25 25 25 25 25 25

Dataset C (3HP) Train 660 660 660 660 660 660 660 660 660 660
Test 25 25 25 25 25 25 25 25 25 25
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Precision(c) �
TP

TP + FP
,

Recall(c) �
TP

TP + FN
,

(9)

where True Positive (TP) represents the number of faults
correctly identified as fault category c, False Positive (FP)
means the number of faults wrongly identified as fault
category c, and False Negative (FN) represents the number of
faults c incorrectly labeled as not belonging to c.

F-Measure is defined as a reference for diagnosis anal-
ysis, and the calculation method of F-Measure is as follows:

F � 1 + α2  ×
Precision × Recall

α2 ×(Precision + Recall)
. (10)

F-Measure denotes the geometric weighted average of
Precision and Recall, with α as the weight. We set α to 1
which indicates that Precision is as important as Recall.
When α> 1, Precision is important; meanwhile, Recall is
important when α< 1. In this study, α is set as 1, and an F-
Measure close to 1 leads to improved fault diagnosis
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Figure 2: 10 diagnosis results of six domain-shift scenarios of the proposed method: (a) A⟶ B, (b) A⟶ C, (c) B⟶ C, (d) C⟶ B, (e)
C⟶ A, and (f) B⟶ A.
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performance. +is evaluation method considers Precision
and Recall.+e highest F-Measure is 1. Precision, Recall, and
F-Measure of each health state in the RMCA-1DCNN ap-
proach are shown in Table 3.

In Table 3, for the first type of the fault, that is, the
rolling body fault size is 0.007 inch, the RMCA-1DCNN
method has low Precision in the domain-shift scenarios

B⟶A and C⟶A, which is 86% and 83%, respectively.
+us, approximately 15% of this kind of fault alerts in
the two domain shifts are unreliable. For the fourth
type of the fault, Precision of the proposed method in
the domain shift of B⟶A is 93%, indicating that 7% of
the samples are incorrectly classified as this fault
category.

A → B A → C B → C C → B C → A B → A AVG
68.60% 60.00% 67.60% 62.00% 68.40% 73.20% 66.63%
82.10% 85.60% 82.40% 79.00% 81.80% 71.50% 80.40%
82.20% 82.60% 77.00% 77.30% 76.90% 72.30% 78.05%
99.20% 91.00% 91.50% 85.10% 78.10% 95.10% 90.00%
99.40% 93.40% 97.20% 99.90% 88.30% 97.50% 95.95%
99.99% 99.30% 99.90% 99.99% 97.93% 98.18% 99.21%

SVM
MLP
DNN
WDCNN
WDCNN (AdaBN)
A2CNN
RMCA-1DCNN 100% 100% 100% 100% 98% 98% 99.33%
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Figure 3: Accuracy on six domain shifts of the proposed and compared methods.

Table 3: Precision, Recall, and F-Measure of the proposed RMCA-1DCNN on six domain shifts.

Fault location N RF IF OF
Fault diameter (inch) 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021
Category labels 0 1 2 3 4 5 6 7 8 9

Precision
A⟶B 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
A⟶C 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
B⟶C 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
C⟶B 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
C⟶A 100% 83% 100% 100% 100% 100% 100% 100% 100% 100%
B⟶A 100% 89% 100% 100% 93% 100% 100% 100% 100% 100%

Recall
A⟶B 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
A⟶C 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
B⟶C 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
C⟶B 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
C⟶A 100% 100% 100% 80% 100% 100% 100% 100% 100% 100%
B⟶A 100% 100% 100% 80% 100% 100% 100% 100% 100% 100%

F-Measure
A⟶B 1 1 1 1 1 1 1 1 1 1
A⟶C 1 1 1 1 1 1 1 1 1 1
B⟶C 1 1 1 1 1 1 1 1 1 1
C⟶B 1 1 1 1 1 1 1 1 1 1
C⟶A 1 0.9091 1 0.8889 1 1 1 1 1 1
B⟶A 1 0.9434 1 0.8889 0.9615 1 1 1 1 1
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In Table 3, for the third type of the fault, that is, the
rolling body fault size is 0.021 inch, Recall of the RMCA-
1DCNN method in the domain-shift scenarios B⟶A and
C⟶A is low at 80%. +is finding indicates that 20% of
these faults are undetected.

Similarly, F-Measure in domain-shift scenarios of
C⟶A and B⟶A for the first type of the fault is 0.9091
and 0.9434, respectively. For the third type of the fault,
F-Measure in domain shifts of C⟶A and B⟶A is all
0.8889. F-Measure in the domain shift of B⟶A for the
fourth type of the fault is 0.9615. All the other F-Measure
values of fault classes are 1.

In short, Precision, Recall, and F-Measure of the RMCA-
1DCNN method are all high. Except for the first, the third,
and the fourth fault types, the RMCA-1DCNN method
divides all categories into the correct classes. +ese results
suggest that the classification performance of the proposed
method is considerably improved after Riemann metric
correlation alignment.

4.4. Parameter Sensitivity. In this section, we study the
hyperparameter α, which is a critical coefficient for cross-
validation. A high value of α may force networks to learn
oversimplified low-rank feature representations. Al-
though this high value may lead to perfectly aligned co-
variances, it may not be useful for classification.
Meanwhile, small α may be insufficient to bridge the
domain shift. +ree typical domain transfer scenarios,
namely, B⟶A, C⟶A, and B⟶C, are selected. +e
results of α with different values are shown in Figure 4.
Similar trends are observed in other domain-transfer
scenarios. As shown in Figure 4, a range of α(α ∈ [10, 25])

can be selected to obtain better results than those of the
best baseline methods. When the value of α is larger than
25, the accuracy rapidly decreases in the three domain
shifts. +e effectiveness and robustness of the proposed
method are further verified.

Furthermore, the second-order statistics of the specific
activation layer in the source and target domains belong to
the Riemannian manifold. When the classifier is in the
optimal state, the entropy on the source domain is
minimized, and the entropy on the target domain is
minimized because both domains are indistinguishable
after the alignment [37]. Given that the target domain data
are unlabeled, the entropy E on the target domain is
defined as

E XT(  � − 
n

i�1
〈f x

t
i , θ , logf x

t
i , θ 〉, (11)

which is nothing but network predictions.
Figure 5 shows the plots of target entropy and diagnosis

accuracies as α ∈ 0.1, 0.5, 1, 2, 5, 7, 10, 12, 15, 17, 20, 22,{

25, 27, 30} on the domain transfer scenario of C⟶A. We
can clearly see that when α� 17, the target entropy is
minimal, and the diagnosis accuracy is the best.+eminimal
target entropy corresponds to the maximum performance
on the target. Note that α corresponds to the best perfor-
mance in the range of [10, 25], also proving that target

entropy minimization is necessary and is insufficient for
domain adaptation. +erefore, in the unsupervised domain
adaptation of bearing fault diagnosis, it is verified that the
selection of hyperparameter α is compatible with the data-
driven cross-validation strategy when using the Riemann
metric correlation alignment [37].

4.5. Performance under Noise Environment. In the realistic
industrial environment, the vibration signals are easy to be
polluted by noise. +is section will discuss the diagnosis
accuracy of the proposed RMCA-1DCNN method in the
noise environment. In our experiments, for six kinds of
domain-shift scenarios, the source domain data remain
the same, and the noise is added only to the target data to
enlarge the distribution gap between the source and the
target. +e added noise is an additive white Gaussian
noise, and the signals are compounded with different SNR.
+e definition of SNR is shown as follows:

SNRdB � 10 log10
Psignal

Pnoise
 , (12)
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where Psignal and Pnoise are the power of the signal and noise
respectively. By definition, the more noise the signal con-
tains, the smaller the SNR value is.

Figure 6 shows the original signal of the inner race fault,
the additive white Gaussian noise signal, and the composite
signal of the two signals with 0 dB of the SNR value. +e
composite signal is seriously polluted by noise, and to
distinguish the vibration features of the source signal visually
is almost difficult.

To verify the antinoise performance of the proposed
method, we test the RMCA-1DCNN method with noise
signals ranging from −2 dB to 10 dB.+e results are shown in
Table 4. When the SNR value increases, the diagnosis ac-
curacy increases; when the SNR value decreases, the diag-
nosis accuracy decreases. When the SNR is more than 4 dB,
the accuracy rate easily reaches above 97%. Analyzing the
reasons, we can know that the larger the SNR value is, the
less noise there is in the composite signal, the less the fault
features are affected by noise, and the better the model
performance is. +e smaller the SNR value is, the greater the
noise in the composite signal will be, which covers most of
the vibration signals, resulting in the lack of fault charac-
teristic information and worse model performance. Fur-
thermore, we think that when the gap between the source
and the target is small, the effect of the RMCA-1DCNN

method is better; when the gap is large, the effect of the
RMCA-1DCNN method is general.

4.6. Network Visualizations. +e features of the source and
target domain test data in the last hidden layer are reduced to
two dimensions and visualized using t-SNE dimension re-
duction technology to further understand the influence of
RMCA-1DCNN on network training. Taking the domain-
shift scenarios of B⟶A, C⟶A, and B⟶C as exam-
ples, the features in the last hidden layer of the source and
the target are shown in Figure 7. As presented in Figures 7(a)
and 7(b), the domain-shift scenario of B⟶C has no
overlap between classes, and the distance between different
classes is large, that is, the features are highly separable.
+erefore, the experiment has achieved a test accuracy of
100%.

In the domain-shift scenarios of B⟶A and C⟶A,
Figures 7(a) and 7(b) show that the individual rolling body
fault size of 0.021 inch is wrongly classified near the rolling
body fault size of 0.021 inch, and overlaps are observed in the
signal features between the two classes. In other words, the
model has insufficient discrimination for the two kinds of
signals. Hence, individual samples may be misclassified.+is
result is consistent with the diagnosis accuracy of 98%. +e
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Figure 6: Figures for the original signal of the inner race fault, the additive white Gaussian noise, and the composite noisy signal with
SNR� 0 dB, respectively.

Table 4: +e diagnosis results of six domain shifts of the proposed method with different SNR values.

Domain shifts SNR (dB)

A⟶B −2 0 2 4 6 8 10
A⟶C 0.604 0.864 0.908 0.936 0.988 1 1
B⟶C 0.812 0.796 0.924 0.984 0.992 1 1
C⟶B 0.728 0.796 0.884 0.988 1 1 1
C⟶A 0.748 0.704 0.88 0.948 0.972 0.972 0.98
B⟶A 0.712 0.828 0.936 0.944 0.972 0.976 0.98
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Figure 7: Feature visualization via t-SNE: last hidden fully connected layer representation of the source and target domain test data classified
by (a) the source and the target and (b) fault classes.
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excellent performance of the RMCA-1DCNN method in
unsupervised domain adaptation of bearing fault diagnosis is
verified using the t-SNE technique.

5. Conclusions

We designed an RMCA-1DCNNmodel in this study to solve
cross-domain learning problems in the bearing fault diag-
nosis field. RMCA-1DCNN aims to extract domain-in-
variant features that bridge the cross-domain discrepancy
while strengthening the fault-discriminative capacity be-
tween the two domains. +e experimental results on CWRU
bearing datasets confirm the superiority of the proposed
method. In future work, we will attempt to apply correlation
alignment at multiple layers of 1DCNN in parallel, possibly
further improving the domain adaptation performance of
the proposed model.
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