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In this paper, we focus on a special nonconvex quadratic program whose feasible set is a structured nonconvex set. To find an
effective method to solve this nonconvex program, we construct a bilevel program, where the low-level program is a convex
program while the upper-level program is a small-scale nonconvex program. Utilizing some properties of the bilevel program, we
propose a new algorithm to solve this special quadratic program. Finally, numerical results show that our new method is effective
and efficient.

1. Introduction

In this paper, we discuss the following structured quadratic
program:

inf xTAx + 2aTx

s.t. x ∈ Ω,
(1)

where x ∈ Rn, Sn×n 􏽐 A≻ 0, a ∈ Rn, and Ω ⊂ Rn is a set.
Program (1) has been frequently exploited in optimi-

zation theory and practice [1–5]. If Ω is a closed convex set,
program (1) is a convex program, which can be solved by
many algorithms such as cutting plane method, projection
method, and interior point method [1–3, 6–8]. However, in
practice, program (1) is usually a nonconvex program since
Ω is often a nonconvex set. As we know, a nonconvex
program is difficult to solve since it is a NP-hard problem in
general. However, there are still some special small-scale
nonconvex problems which can be easily solved by some
algorithms. For example, finding the roots of a continuous
function f(x) in x ∈ [a, b] ⊂ R has polynomial time
computational complexity, although this problem is non-
convex..is motivates us to covert program (1) into a small-
scale program.

Note that for a bounded closed set Ω, by the Hein–Borel
theorem, there exists a finite set Ξ ⊂ Rn such that Ω can be
covered by

∪
xk∈Ξ

x ∈ Rn
􏼌􏼌􏼌􏼌 x − xk( 􏼁

T
Bk x − xk( 􏼁 + ck ≥ 0􏽮 􏽯, (2)

where Bk≺0 and ck > 0. .is says that there exists a finite
index set Γ such that Ω is covered by

∪
t∈Γ

x ∈ Rn
􏼌􏼌􏼌􏼌 x

T
B(t)x + 2b(t)

T
x + c(t)≥ 0􏽮 􏽯, (3)

where B(t)≺0 and c(t) − b(t)TB(t)− 1b(t)> 0,∀t ∈ Γ.
If

Ω � ∪
t∈Γ

x ∈ Rn
􏼌􏼌􏼌􏼌 x

T
B(t)x + 2b(t)

T
x + c(t)≥ 0􏽮 􏽯, (4)

where B(t) ∈ Sn×n, b(t) ∈ Rn, c(t) ∈ R, and Γ is a finite set.
Program (1) could be solved by the theory of S-procedure
[9, 10] which is an important tool for solving programs with
quadratic objective functions and quadratic constraints. We
could separate program (1) into several parts, and each part
is a program with quadratic objective function and quadratic
constraints which could be solved by the theory of S-pro-
cedure. .en, we could find the global minimum value from
all optimal values easily, since Γ is finite. But when Γ is not a
finite set, this method is invalid and we need to find a new
method. In this paper, we focus on a special case of program
(1), where Ω has the same structure as program (3). For this
special structure, we can try to turn program (1) into a
solvable bilevel program.

Some notions and symbols are introduced here.
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Notions and symbols:Rn is the n-dimensional real Euler
space;Rn×n denotes the set of all n × n real matrices; xi is the
ith element of x ∈ Rn; Sn×n is the subset of Rn×n, which is
consisted of the symmetric real matrix; A ≻ 0 (A ≺ 0) and
A≽ 0 (A≼ 0) mean that A is positive definite (negative
definite) and positive semidefinite (negative semidefinite),
respectively; I is the identify matrix with proper dimension;
e � (1, . . . , 1)T; and zf(x) is the subgradient of f(x).

2. Quadratic Program on a Structured
Nonconvex Set

Definition 1. We call a setΩ as a structured set generated by
Γ, denoted by SS(Γ), if it satisfies

Ω � ∪
t∈Γ

x ∈ Rn
􏼌􏼌􏼌􏼌 x

T
B(t)x + 2b(t)

T
x + c(t)≥ 0􏽮 􏽯, (5)

where Γ is a subset in Rl, l< n, B(t) ∈ Sn×n, B(t)≺0,

b(t) ∈ Rn, c(t) ∈ R, and∀t ∈ Γ. We call Γ as a generator of
Ω.

Usually, the dimension of Γ is far smaller than the di-
mension ofΩ. Γmay be a finite set, such as 0, 1{ }, a countable
infinite set, such as Z, or an uncountable infinite subset of
Rn. In fact, there are a lot of SS(Γ) sets, such as circle, sphere,
donut, and crescent. Here are some examples.

Example 1.

(a) x ∈ Rn | − xTx + 1≥ 0􏼈 􏼉∪ x ∈ Rn | − xTx + 4eTx +􏼈

1 − 4n≥ 0}, where Γ � 0, 1{ }, B(t) � − I, and

b(t) �
0 t � 0
2e t � 1􏼨 , c(t) �

1 t � 0
1 − 4n t � 1􏼨

(b) ∪t∈Z x ∈ Rn | − xTx + 2teTx + 1 − t2n≥ 0􏼈 􏼉, where
Γ � Z, B(t) � − I, b(t) � te, and c(t) � 1 − t2n

(c) ∪t∈[0.1,1] x ∈R2 | − (1/t)xTx +
2
2t

􏼠 􏼡

T

x +1 − (t + t3)
⎧⎨

⎩

≥0}, where Γ� [0.1,1], B(t) � − (1/t)I, b(t) �
1
t

􏼠 􏼡,

and c(t) � 1 − (t + t3).

Example 1 shows that a SS(Γ) set is not a convex set in
general. (a) is just a union set of two separated spheres, (b) is
the union of a series of spheres, and (c) is a horn.

If ∃ t∗ ∈ Γ such that

c t
∗

( 􏼁 − b t
∗

( 􏼁
T
B t
∗

( 􏼁
− 1

b t
∗

( 􏼁< 0, (6)

then

x ∈ Rn
􏼌􏼌􏼌􏼌 x

T
B t
∗

( 􏼁x + 2b t
∗

( 􏼁
T
x + c t

∗
( 􏼁≥ 0􏽮 􏽯 (7)

is empty. And if ∃ t∗ ∈ Γ such that

c t
∗

( 􏼁 − b t
∗

( 􏼁
T
B t
∗

( 􏼁
− 1

b t
∗

( 􏼁 � 0, (8)

then

x ∈ Rn
􏼌􏼌􏼌􏼌 x

T
B t
∗

( 􏼁x + 2b t
∗

( 􏼁
T
x + c t

∗
( 􏼁≥ 0􏽮 􏽯 (9)

is just

x ∈ Rn
􏼌􏼌􏼌􏼌 x � − B t

∗
( 􏼁

− 1
b t
∗

( 􏼁􏽮 􏽯. (10)

For avoiding the above two simple cases, we make an
assumption as follows.

Assumption 1.

c(t) − b(t)
T
B(t)

− 1
b(t)> 0, ∀t ∈ Γ. (11)

We call this assumption as regular assumption.
Now, we consider program (1) with a SS(Γ) constraint:
inf xTAx + 2aTx

s.t. x ∈ ∪
t∈Γ

x ∈ Rn | xTB(t)x + 2b(t)Tx + c(t)≥ 0􏽮 􏽯.

(12)

We rewrite program (12) into a simpler formulation as
follows:

inf yTAy

s.t. y ∈ ∪
t∈Γ

y ∈ Rn
􏼌􏼌􏼌􏼌 yTB(t)x + 2􏽢b(t)Ty + 􏽢c(t)≥ 0􏽮 􏽯,

(13)

where
􏽢b(t) � b(t) − B(t)A− 1a, 􏽢c(t) � c(t) − 2b(t)TA− 1a +

aTA− 1B(t)A− 1a, and y � A− 1x + a.

.en, the following lemma is true.

Lemma 1. If regular assumption holds for program (12), then
it still holds for program (13).

Proof.

􏽢c(t) − 􏽢b(t)
T
B(t)

− 1􏽢b(t)

� c(t) − 2b(t)
T
A

− 1
a + a

T
A

− 1
B(t)A

− 1
a

− b(t) − B(t)A
− 1

a􏼐 􏼑
T
B(t)

− 1
b(t) − B(t)A

− 1
a􏼐 􏼑

� c(t) − b(t)
T
B(t)

− 1
b(t)> 0.

(14)

Now, we just need to focus on program (13).
.e following lemma is called as S-Lemma, which

presents the relationship between a biquadratic program and
a semidefinite program. S-Lemma plays an important role in
our analysis. □

Lemma 2 (see S-Lemma [9, 10]). If x ∈ Rn | xTBx+􏼈 2bTx +

c≥ 0} has nonempty interior points, then the following two
statements are equivalent:

(a) xTAx + 2aTx + d≥ 0, for all x ∈ x ∈ Rn | xTBx +􏼈

2bTx + c≥ 0}

(b) there exists λ≥ 0 satisfying A a

aT d
􏼠 􏼡 ± λ B b

bT c
􏼠 􏼡

By Lemma 2, for each t ∈ Γ, we will find the minimum
d(t) such that

y
T
Ay + d(t)≥ 0, ∀y ∈ y ∈ Rn

􏼌􏼌􏼌􏼌 y
T
B(t)y + 2􏽢b(t)

T
y + 􏽢c(t)≥ 0􏽮 􏽯,

(15)
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first. :en, we solve program supt∈Γd(t) to obtain the optimal
value of program (13). Summarizing the above discussion, we
get the following theorem.

Theorem 1. If regular assumption holds and A ≻ 0 for
program (13), then the optimal value of program (13) is same
as that of the following program:

sup − d

s.t. ∀t ∈ Γ, ∃λt ≥ 0 such that
A 0

0 d
􏼠 􏼡 ± λt

B(t) 􏽢b(t)

􏽢b(t)T 􏽢c(t)

⎛⎝ ⎞⎠.

(16)

Proof. If − d∗ is the optimal value of program (13), then

y
T
Ay≥ − d

∗
, y ∈ ∪

t∈Γ
y ∈ Rn

􏼌􏼌􏼌􏼌 y
T
B(t)y + 2􏽢b(t)

T
y + 􏽢c(t)≥ 0􏽮 􏽯,

(17)

which means for all t ∈ Γ,

y
T
Ay + d

∗ ≥ 0, y ∈ y ∈ Rn
􏼌􏼌􏼌􏼌 y

T
B(t)y + 2􏽢b(t)

T
y + 􏽢c(t)≥ 0􏽮 􏽯.

(18)

By Lemma 2, for all t ∈ Γ, there exists λt ≥ 0, such that

A 0

0 d∗
􏼠 􏼡 ≽ λt

B(t) 􏽢b(t)

􏽢b(t)T 􏽢c(t)

⎛⎝ ⎞⎠, (19)

so d∗ is a feasible point of program (16), and the optimal
value of program (13) is not smaller than − d∗.

On the other hand, if the optimal value of program (16) is
− d∗∗; then, for all t ∈ Γ, there exists λt ≥ 0, such that

A 0

0 d∗∗
􏼠 􏼡≽ λt

B(t) 􏽢b(t)

􏽢b(t)T 􏽢c(t)

⎛⎝ ⎞⎠. (20)

By Lemma 2, for all t ∈ Γ,

y
T
Ay≥ − d

∗∗
, (21)

for all

y ∈ y ∈ Rn
􏼌􏼌􏼌􏼌 y

T
B(t)y + 2􏽢b(t)

T
y + 􏽢c(t)≥ 0􏽮 􏽯, (22)

so

y
T
Ay≥ − d

∗∗
, (23)

where

y ∈ ∪
t∈Γ

y ∈ Rn
􏼌􏼌􏼌􏼌 y

T
B(t)y + 2􏽢b(t)

T
y + 􏽢c(t)≥ 0􏽮 􏽯, (24)

whichmeans that − d∗∗ is a low bound of the optimal value of
program (13). Hence, the optimal value of program (13) and
program (16) are the same.

By .eorem 1, we could solve program (16) instead of
solving program (13). Noticing that

A 0

0 d
􏼠 􏼡 ≽ λt

B(t) 􏽢b(t)

􏽢b(t)T 􏽢c(t)

⎛⎝ ⎞⎠⟺
A − λtB(t) − λt

􏽢b(t)

− λt
􏽢b(t)T d − λt􏽢c(t)

⎛⎝ ⎞⎠ ≽ 0.

(25)

Since A ≻ 0, B(t) ≺ 0, and λ ≥ 0, then

A − λB(t) − λ􏽢b(t)

− λ􏽢b(t)T d − λ􏽢c(t)

⎛⎝ ⎞⎠ ≽ 0

⟺
A − λB(t) ≽ 0

d − λ􏽢c(t) − λ2􏽢b(t)T(A − λB(t))− 1􏽢b(t))
􏼨

(26)

So program (16) can be rewritten as the following
program:

sup − d

s.t. ∀t ∈ Γ,

λ≥ 0

A − λB(t) ± 0

d − λ􏽢c(t) − λ2􏽢b(t)T(A − λB(t))− 1􏽢b(t)

≥0 has a solution λ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(27)

Noticing that the feasible set of program (27) is just
∀t ∈ Γ,

λ≥ 0,

d − λ􏽢c(t) − λ2􏽢b(t)T(A − λB(t))− 1􏽢b(t)≥ 0 has a solution λ,
􏼨

(28)

since A ≻ 0 andB(t)≺0. It is still too complex to solve
program (27) directly. In the following theorem, we turn
program (27) into a bilevel program. □

Theorem 2. :e optimal value of program (27) is opposite to
that of

sup
t∈Γ

inf
λ≥0

φ(λ, t) � λ􏽢c(t) + λ2􏽢b(t)
T
(A − λB(t))

− 1􏽢b(t). (29)

Proof. .e infimum d of program (27) satisfies that

∀t ∈ Γ,

λ≥ 0,

d − λ􏽢c(t) − λ2􏽢b(t)T(A − λB(t))− 1􏽢b(t)

≥0 has a solution λ.

⎧⎪⎪⎨

⎪⎪⎩
(30)

Noticing that for each t ∈ Γ, if d(t) is an infimum sat-
isfying (28), then (28) holds for any d≥d(t). Hence, we just
need to find the infimum d(t) satisfying (28) for each t ∈ Γ
firstly and then find the supremum d(t) in t ∈ Γ.

For each t ∈ Γ, we reconsider (28) and let

φ(λ, t) � λ􏽢c(t) + λ2􏽢b(t)
T
(A − λB(t))

− 1􏽢b(t), (31)

ϑ(t) � inf
λ≥0

φ(λ, t), (32)

then ϑ(t) must be the infimum d(t) of (28), since if
d(t)< ϑ(t), it is impossible to find λ ∈ [0, +∞) such that
d(t)≥φ(λ, t)≥ ϑ(t); if d(t)> ϑ(t), by the definition of ϑ(t),
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there must exist λ such that φ(λ, t)≤ ((ϑ(t)+ d(t))/2)< d(t),
which contradicts the definition of d(t). Summarizing the
above discussion, we have that the optimal value of program
(27) is opposite to that of program (29).

By .eorem 2, we just need to solve program (29).
However, program (29) is not easy to solve since it is a sup-

inf program. Fortunately, φ(λ, t) has some good
properties. □

Property 1.

(a) φ(λ, t) is a convex function with respect to
λ ∈ [0, +∞),∀t ∈ Γ.

(b) ((zφ(λ, t))/zλ) � 􏽢c(t) + 2λ􏽢b(t)TM􏽢b(t) + λ2􏽢b(t)TMB

(t)M􏽢b(t), ∀λ ≥ 0, t ∈ Γ, where M � (A − λB(t))− 1.

(c) If 􏽢c(t), 􏽢b(t) and B(t) are differentiable on Γ, then

zϑ(t) � λ∗􏽢c′(t) + 2 λ∗( 􏼁
2􏽢b′(t)

T
M􏽢b(t) + λ∗( 􏼁

3􏽢b(t)
T
MB′(t)M􏽢b(t) λ∗

􏼌􏼌􏼌􏼌 ∈ arg inf
λ≥0

φ(λ, t)􏼚 􏼛, (33)

where M � (A − λ∗B(t))− 1 and ϑ(t) is defined in (32).

Proof. (a): ∀t ∈ Γ; since λ≥ 0 and A − λB(t)≻0, there is an
invertible matrix P such that PTAP � X ± 0 and
PT(− B(t))P � Y≻0, where X andY are the di-
agonal matrices. .en,

λ2􏽢b(t)
T
(A − λB(t))

− 1􏽢b(t) � λ2􏽢b
T
(t)P

− T
(X + λY)

− 1
P

− 1􏽢b(t).

(34)

Let q � P− 1􏽢b(t); then,

λ2􏽢b(t)
T

A − λB(t))
− 1􏽢b(t)􏼐 􏼑 � λ2 􏽘

n

i�1

q2i
Xii + λYii

. (35)

Here,

λ2

Xii + λYii

�
1

Y2
ii

Xii + λYii( 􏼁 − 2Xii +
X2

ii

Xii + λYii

􏼠 􏼡.

(36)

When λ≥ 0, every term of the above equation is a
convex function, so

λ2􏽢b(t)
T
(A − λB(t))

− 1􏽢b(t),

λ􏽢c(t) + λ2􏽢b(t)
T
(A − λB(t))

− 1􏽢b(t)
(37)

are convex functions with respect to λ≥ 0.

(b) and (c): it is obvious from [11]. □

Remark 1. (a) Since the convexity of φ(λ, t),

ϑ(t) � inf
λ≥0

φ(λ, t) (38)

is an easy solvable program for every t ∈ Γ.
(b) If there is t∗ ∈ Γ satisfying 􏽢b(t∗) � 0, then the op-

timal value of the low-level program is

inf
λ≥0

φ λ, t
∗

( 􏼁 �
0, 􏽢c t∗( )≥ 0,

− ∞, 􏽢c t∗( )< 0.
􏼨 (39)

(c) If regular assumption holds, then 􏽢c(t∗)> 0 when
􏽢b(t∗) � 0.

(d) λ � 0 is always a feasible point of (38), so

inf
λ≥0

φ(λ, t)≤ 0, ∀t ∈ Γ, (40)

which means that if there exists t∗ satisfying
infλ≥0φ(λ, t∗) � 0, then

sup
t∈Γ

inf
λ≥0

φ(λ, t) � 0. (41)

S0 Given ε> 0, c> 0, η ∈ (0, 1), t∗ ∈ Γ, k � 0;
S1 Let λk � 0, compute κk �(zφ(λ, t))/zλ|λk,t∗ ; If κ

k > 0, then stop and return λk;
S2 If |κk|< ε, then stop and return λk;;
S3 Let α � 1;
S4 If φ(λk − ακk, t∗)≥φ(λk, t∗) − αc(κk)2 or λk − ακk < 0, α � ηα, goto S4; else λk+1 � λk − ακk, k � k + 1, goto S2;

ALGORITHM 1: (solving the low-level program).

Table 1: Numerical results for Algorithm 2.

Time (s) NOI Optimal value of (12)
(42) 0.01 1 0
(43) 0.07 1 0.1716
(44) 0.03 5 1.2686
(45) 0.011 2 1.5069

4 Mathematical Problems in Engineering



(e) By the above discussion, if regular assumption holds,
and ∃t∗ ∈ T such that 􏽢b(t∗) � 0, then the value of
program (12) is 0.

3. Algorithms

In this section, based on our main result, we present a
method for solving program (12) by solving the bilevel
program, where we use a linear search method for solving
the low-level program and a feasible direction method in
[12] for solving the upper-level program. Here, we suppose
T � [a, b] (Algorithm 1):

4. Numerical Results

In this section, we demonstrate the efficiency and effec-
tiveness of the proposed method by solving some illustrative
numerical examples. All of our computations are conducted

on a Windows machine, equipped with a dual core 2.4GHz
processor, using MATLAB 7.6 as the computational engine.
Noticing that ourmethod does not depend on the dimension
of x, we just test some examples for x ∈ R2.

Example 2.
inf xTx

s.t. ∪
t∈[0.1,1]

x ∈ R2 􏼌􏼌􏼌􏼌 −
1
t
x

T
x +

2

2t

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

T

x + 1 − t + t
3

􏼐 􏼑≥ 0
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(42)

Example 3.
inf xTx

s.t. ∪
t∈[1,2]

x ∈ R2
􏼌􏼌􏼌􏼌 − xTx +

2t

2t2
􏼠 􏼡

T

x + t − t2 − t4 ≥ 0
⎧⎨

⎩

⎫⎬

⎭.

(43)

Example 4.

inf xTx

s.t. ∪
t∈[− 1,1]

x ∈ R2 􏼌􏼌􏼌􏼌 x −
cos(t) + 1

t
􏼠 􏼡

T

⎛⎝
2 1

1 2
􏼠 􏼡 + t2I􏼠 􏼡 x −

cos(t) + 1

t
􏼠 􏼡􏼠 ≤ 1

⎧⎨

⎩

⎫⎬

⎭.
(44)

Example 5.

inf xTx

s.t. ∪
t∈[0,2]

x ∈ R2
􏼌􏼌􏼌􏼌 x −

cos(t) + 1

t
􏼠 􏼡

T

⎛⎝
2 1

1 2
􏼠 􏼡 + t2I􏼠 􏼡 x −

cos(t) + 1

t
􏼠 􏼡􏼠 ≤ 1

⎧⎨

⎩

⎫⎬

⎭.
(45)

Computational results for solving the upper-level programs
are provided in Table 1, where time represents the average
running time in second and NOI represents the number of
iterations. t0 and err are set as (l + u)/2 and 10− 5, respectively.

We choose the discretization method as the comparing
algorithm since there are no other methods for program
(12). We select finite different points ti in Γ and get their
optimal values of

S1 Given ε> 0, c> 0, η ∈ (0, 1), t0 ∈ Γ, k � 0;

S2 Plug tk into the lower-level program to get λk;

S3 Compute μk ∈zϑ(tk) and set ti �

ui (μk)i > 0
li (μk)i < 0
(ui + li)/2 (μk)i � 0

⎧⎪⎨

⎪⎩
, dk � t − tk;

If |μT
k dk|< ε, stop and return φ(λk, tk);

S4 Let α � 1;
S5 If θ(tk + αdk)< θ(tk) + αc(μk)2, then α � ηα, goto S5; else tk+1 � tk + αdk, k � k + 1, goto S2.

ALGORITHM 2: (solving the upper-level program).

Table 2: Numerical results for the discretization method.

Time (s) Average optimal value of (12)
(42) 0.11 0.0110
(43) 0.23 0.1787
(44) 0.31 1.2726
(45) 0.22 1.5311
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inf xTAx + 2aTx

s.t. xTB ti( 􏼁x + 2b ti( 􏼁
T
x + c ti( 􏼁≥ 0,

(46)

at ti, which is equal to the value of
sup − d

s.t.

λ≥ 0
A a

aT d
􏼠 􏼡 ≽ λ

B ti( 􏼁 b ti( 􏼁

b ti( 􏼁
T

c ti( 􏼁

⎛⎝ ⎞⎠.

(47)

.en, we could find out the minimum among these finite
number of optimal values to approximate the optimal value
of program (12). As for program (47), we use the interior
point method [13] or the feasible direction method [12].

Computational results of the discretization method are
shown in Table 2, where time represents the average running
time in second. For each example, we choose 20 points in Γ
randomly and test 10 times.

From Table 2, we can see that our method is more ef-
fective and efficient than the discretization method.

5. Conclusion and Future Work

In this paper, we discuss a quadratic program on a structured
nonconvex set. By S-lemma, we convert this program into a
bilevel program, where the low-level program is a convex
program. Under some assumptions, we develop an algo-
rithm to solve the nonconvex program. Finally, we present
the numerical results to show the effectiveness and efficiency
of our new method.

Note that we need to solve a lower-level program for
each tk. However, computational cost of (A − λB(tk))− 1 is
expensive. Hence, how to avoid computing (A − λB(tk))− 1

is our future work.
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