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In this paper, a novel adaptive diagnosis scheme is proposed for multiparametric faults of nonlinear systems by using the model
and intelligent optimization-based approaches. ,e key idea of the proposed method is to analyze the correlation of the output
signals between the real system and the fault identification system instead of residual. A new adaptive scheme is built based on an
adaptive observer and differential evolution algorithm. Meanwhile, the conditions of detectability and identifiability of faults are
analyzed.,e isolation and estimation of the multiparametric fault are formulated as the solution of an optimization problem that
is solved by using a differential evolutionary algorithm (DE). ,e fitness function of DE is constructed by the correlation
coefficient equations in which the faulty components are contained. ,e application on a coupled three water tank model attests
the feasibility and validity of the suggested approach. Simulation and experimental results show that the developed method is
applicable to diagnose either single or multiparameter faults on-line.

1. Introduction

Nonlinearity is considered to be ubiquitous in industrial
systems. Due to complicated structures of the systems and
harsh working conditions, multifault may coexist in prac-
tical applications [1]. In order to improve the safety and
reliability of practical systems, prompt detection, robust
isolation, and accurate estimation of multifault have become
active research areas [2]. Generally, the difficulties of mul-
tifault diagnosis mainly originate from two aspects: (1) under
severe noise interference, the defect signals generated by
different faults will overlap and counteract in the time
domain; (2) different faults may excite common or different
resonance [1]. Furthermore, the uncertainty and nonlinear
characteristics of modern industrial systems have made
multifault diagnosis to become a challenging task.

Faults can be classified into catastrophic faults and
parametric faults. Catastrophic faults cause the complete
failure of the systems. By parametric faults, they mean any
deviation in the nominal value implying unwanted changes
in the behavior of one or more components of the system.

Parameterization fault is mainly caused by component ag-
ing, wear, manufacturing tolerances, and environmental
conditions [3]. Degradation of system performance is closely
related to the respective parameters. Scientists are prone to
believe that efficient diagnosis of small bursts or early failure
can prevent rapid degradation of system performance and
larger failure [4]. If the parametric faults are not detected and
estimated immediately, the system is likely to suffer serious
catastrophic faults [5]. ,e problem of fault diagnosis (FD)
thus amounts to the detection and isolation of parameter
changes in a model. Multiparametric FD is crucial for the
evaluation of fault severity, fault cause analysis, residual life
prediction, and fault tolerant control [6]. For these reasons,
the focus of this paper considers the multiparametric fault
diagnosis based on continuous process monitoring.

Aiming to detect and isolate multiple parametric faults of
nonlinear systems, different diagnostic techniques have been
investigated. Diagnosis methods may be classified as two
types: model-based approach and computationally intelli-
gent-based fault diagnosis methodologies [7]. In model-
based diagnosis, a residual is an indicator of the deviation
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from its expected/normal behavior of a system. A conven-
tional model-based approach is typically relied on a set of
residual generators and residual evaluation logic [7]. In an
ideal case, a residual generator should be sensitive to a fault.
,erefore, the number of possible residual generator can-
didates grows exponentially with the degree of redundancy
of the model [8]. By definition of a residual, a fault-free
system means that the ideal output of a residual is zero [9].
However, under the influence of model uncertainty and
measurement noise, the residual output of the fault-free
system may not be zero, which causes the fault false alarm.
To address this problem, much literature has devoted to the
thresholding of the residual [10] and the optimization of
threshold research [11–13]. In a fault diagnosis system, the
objective is not only to develop an algorithm that detects
faults as quickly as possible, but also to minimize the false
alarm. ,erefore, the threshold should be sufficiently small
so that low severity faults can be detected in their early
stages; on the contrary, thresholds have to be set to suffi-
ciently large values to avoid excessive false alarms due to the
presence of noise and uncertainties [7]. In terms of the
multiparametric fault estimation for nonlinear systems,
optimal selection of multiple threshold bands and designing
of multiple observers are still very difficult. For a conven-
tional adaptive observer, the parameter estimation algorithm
is formed according to the gradient change of the residual.
Due to the coupling of effects of the multiple parameter
faults to residual, multiparameter estimation is easy to fall
into local optimization.

As the close relative approaches based on intelligent
computing have developed rapidly in recent years, evolu-
tionary algorithm, support vector machine algorithm, neural
network/deep learning algorithm, and others have been
introduced into fault diagnosis methods [4, 7]. In order to
improve the ability of fault parameter estimation in the case
of multiparameter faults and nonlinear system, intelligent
computing algorithms could be used in the residual analysis
process.

In the above types of approach, each has its own ad-
vantages and drawbacks. No single method is able to satisfy
various diagnostic requirements, especially in the case of
nonlinearity, uncertainty, and multiple faults. In recent
years, there has been a growing interest in integrating dif-
ferent methods to each other. ,e development of hybrid
approaches could improve the fault diagnosis performances
and overcome the limitations of individual methods used
separately [14]. Indeed, model-based methods are better for
discovery causal relationships, while the methods which are
computationally intelligent based are better at finding
correlations between faults and symptoms. ,erefore, the
combination of two methods may potentially derive benefits
from each approach and overcome their eventual
limitations.

In this paper, a hybrid fault diagnosis scheme is
employed. Considering the sensitivity of a residual to a fault,
the residual still acts as the basis of fault detection to achieve
prompt detection of fault in this paper. To improve the
performance of fault isolation, a new adaptive observer
based on correlation analysis of the output is built. ,e

system parameters being identified are formulated as the
solution of an optimization problem that is solved by using a
differential evolutionary (DE) algorithm. ,e latest identi-
fication values of parameters will be sent back to the observer
to overcome the uncertainty of the model. It is necessary to
mention that different from the usual intelligent computing-
based fault diagnosis methods, in this paper, the differential
evolution algorithm is not used for the construction of the
main framework for fault diagnosis, but for the correlation
analysis between the actual system output and the model
system output. ,e fault diagnostic system structure is in
principle model based.

,emain contributions of this paper are as follows. First,
using output correlation coefficient analysis by a differential
evolution algorithm, a novel multiparameter fault diagnosis
framework is built which is a new construction on an
adaptive observer. Secondly, a new scheme is proposed
which fuses the advantage of the model-based method in
structured analysis and the ability in parameter identifica-
tion of DE, and the efficiency of fault isolation and iden-
tification are improved significantly.

,is paper is organized as follows. ,e considered fault
diagnosis problem is formulated in Section 2. ,e proposed
adaptive fault diagnosis scheme-based DE is presented in
Section 3. ,e correlation analysis method and the DE al-
gorithm tool are investigated in Section 4. Validation studies
on a benchmark model are addressed in Section 5. Con-
cluding remarks are made in Section 6.

2. Formulations of System and Fault

2.1. Nonlinear System Model. Without loss of generality, a
parameterized nonlinear system is considered:

M:
_x � φ(x, t)θ(t) + Bu(t),

y � Cx,
􏼨 (1)

where x ∈ Rl, θ ∈ Rp, u ∈ Rm, and y ∈ Rn denote the system
state, parameter, input vector, and output vector, respec-
tively, θ is an unknown time-varying parameter, and the
term φ(x, t) is known as nonlinear functions with appro-
priate dimensions.

Assumption 1. ,e uncertain time-varying parameter θ(t)

satisfies

θ(t) − θo

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ Γ, (2)

where θ0 is known as parameter nominal values and Γ is
known as a constant vector. Here, the assumed nonlinear
system M is linear on parameters. If the process parameter
nominal value θo is known, the nominal model of the system
is

Mo:
_x � φ(x, t)θo(t) + Bu(t),

yo � Cx.
􏼨 (3)

,e output error r(t) in the fault detection system is as
follows:

r(t) � y(t) − yo(t). (4)
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Assumption 2. ,e fault identification system M′ has the
same model structure with M:

M ≔
_x′ � φ x′, t( 􏼁θ′(t) + Bu(t),

y′ � Cx′,

⎧⎨

⎩ (5)

where y′ is the output of the fault identification system.

2.2. Parametric Fault inDynamic System. In a system model,
a parametric fault is usually related to parameter changes.
,erefore, it is natural to monitor the parameter changes to
achieve FD. ,e nominal parameter value θ0 characterizing
the fault-free mode of the system is known, and a parametric
fault is characterized by a deviation from θ0.

To determine whether the actual system is faulty, the
difference between the parameter value θ of the actual
system model M and the parameter value θ0 of the nominal
model Mo can also be used. When the difference between θ
and θ0 exceeds a certain threshold, it means the system is
faulty. Generally, system parameters cannot be measured
directly. If y(t) and yo(t) are used to represent the behavior
of the actual system and the nominal system, respectively,
then the residual r(t) represents the difference between the
behavior of the actual system and the one of the nominal
system. If the difference r(t) caused by parameter changes
exceeds the acceptable level in the view of engineering, it
means that there is a fault in the system. ,erefore, we can
judge whether the system is faulty according to whether the
residual r(t) exceeds a certain threshold. ,e size of the
threshold depends on the specific engineering requirements.

3. Fault Diagnosis Scheme

3.1. Diagnosability of Multiple Faults of Linear Parametric
Variation Model (LPV). Fault diagnosability includes fault
detectability, isolability, and identifiability. For multipa-
rameter fault diagnosis, the following definition of fault
diagnosability is used to formulate the fault indicator and
fitness function selection problem.

Definition 1 (fault detectability). Let R denote a set of re-
sidual. A fault mode F is detectable in R if there exists a
residual rk ∈ R that is sensitive to at least one fault fi ∈ F.

Definition 2 (fault isolability). A fault mode Fi is isolable
from another fault mode Fj if there exists a residual rk ∈ R

that is sensitive to at least one fault fi ∈ Fi but not any fault
fj ∈ Fj(i≠ j).

Definition 3 (fault identifiability). A fault fi identifiability
refers to whether a fault can be uniquely estimated when the
input and output data of the model are known.

In this paper, a residual acts as fault test quantity and the
output vectors correlation coefficient is used for fault iso-
lation instead of the residual. ,e correlation coefficient ρyy′
of the two output variables can reflect the directivity and
waveform change of the two variables and the similarity
degree of every unit change. Our approach to fault diagnosis
is under the following assumptions: (1) the considered

system is component based: a fault fi corresponds to a
component. (2) Faults do not change the model structure.
(3) ,e system is observable with its normal working ex-
citation. (4) ,e parameters are changed at most once in a
time window T.

Theorem 1. 4e parameters θ of a linear parametric vari-
ation model can be estimated consistently through the output
correlation function if the following necessary conditions are
satisfied:

4e parameter θi (i� 1, 2, . . ., p) is distinguishable from
each other;
4e input signal u(t) is exactly measurable or known;
When t ∈ [t0, t0 + T], the output correlation coefficient
􏽐

n
i�1 ρyy′ � n (n is the dimension of the output vector y

or y′) between the fault detection system and the fault
identification system;
4e systems’ initial state satisfies

x t0( 􏼁 � x′ t0( 􏼁; (6)

4e systems’ state satisfies

x(t) � x′(t). (7)

Proof. If 􏽐
n
i�1 ρyy′ � n, then the output y′ is linearly de-

pendent on y. Obviously, y′ can be expressed as

y′ � Ky + D, (8)

where K and D are the constant matrix. When t � t0, from
(3), (5), and (6), there exist

φ x, t0( 􏼁θ t0( 􏼁 � φ x′, t0( 􏼁θ′ t0( 􏼁. (9)

,en,

θ t0( 􏼁 � θ′ t0( 􏼁,

K � I,

D � 0,

(10)

when t≠ t0, and if x(t) � x′(t), then y′(t) � y(t) such that

φ x′, t( 􏼁θ′(t) � φ(x, t)θ(t). (11)

Since x(t) � x′(t), then we have

θ′(t) � θ(t). (12)

,e proof is complete.
,e above proof means that the precise estimation of the

parameters can be obtained if the output curves of two
systems overlap, respectively, within a time window. Ac-
cordingly, the coordinates of the parameters in the pa-
rameter space and the fault mode (single fault or multiple
faults) can be determined. ,erefore, the fault identification
problem can be solved as an optimization problem. ,e
optimization problem is as follows:
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min 􏽐
n

i�1
ρyy′ − n􏼠 􏼡,

s.t. θmin ≤ θ≤ θmax,

(13)

where n denotes the output dimensions which is known for a
certain system model and the correlation coefficient ρy,y′ is
the optimised variable. ,is diagnosis method can be seen as
a parameter identification problem in engineering since the
input and the output are known, and it is used to estimate
the parameters of the model.

3.2. Fault Detection Based on Luenberger-Like Observer.
Considering a system of the form (1), a Luenberger-like
observer acts as an estimator of the state x(t) from the
measurable u(t) and y(t). ,e state observer can ensure that
the estimated state keeps track of the system state in time.
When parameter θ subjects to changes, the residual between
the estimated output and the system output is clearly not
equal to 0. ,us, the fault is detected. For fault detection, a
parameter vector of the nominal system is used:

_􏽢x � φ(􏽢x, t)θ0 + Bu(t) + Kobv(y − 􏽢y),

􏽢y � C􏽢x,

⎧⎨

⎩ (14)

where 􏽢x is the estimate of x and Kobv represents the gain of
the fault detection observer.

Under certain assumptions about the system structure
and input excitation, and if the gain vector Kobv is chosen
appropriately, for example, according to Lyapunov theorem,
the estimated state vector can converge to its actual value.
,us, the necessary condition (5) of ,eorem 1 can be
ensured. ,ere are many ways to obtain the observer gain
matrices, but we will not deal with this problem in this paper.
,e interested reader is referred to [13].

Note: when system (1) is deterministic, the estimation of
x(t) amounts in principle to the estimation of the initial
state x(t0). However, due to modeling errors, it makes sense
to estimate the trajectory x(t) instead of the initial state
x(t0).

Residual of output variables: r(t) � 􏽢y − y is used for
fault detection. If r(t) � 0, it means that the actual system is
fault free. If the absolute value of r(t) is greater than a preset
threshold, the system is determined faulty. Of course, in the
case of considering system uncertainty, environmental
noise, and other factors, the residual threshold will be more
complex. Because the fault detection is not the main topic of
this paper, interested readers please refer to the literature
[13].

3.3. Fault Isolation and Identification Scheme. In the pa-
rameter estimation-based fault diagnosis method, if the
parameter vector value of the actual dynamic system is
identified, the parameter component in the actual system
parameter vector which is different relative to the one in the
normal system parameter vector, i.e., the faulty parameter, is
found, so the fault is isolated. At the same time, the mag-
nitude of the deviation of the faulty parameter from the
normal value is estimated, so the fault is identified.

As an initial motivation, a conventional Luenberger-like
adaptive observer is designed to estimate the states and
parameters. It is presented as follows:

_􏽢x � φ(􏽢x, t)􏽢θ + Bu(t) + Kobv(y − 􏽢y),

􏽢y � C􏽢x,

_􏽢θ � Kθ(y − 􏽢y),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

where 􏽢θ represents the parameter estimates which are
composed of parameters in which may occur faults
according to prior knowledge and Kθ denotes the gain of the
parameter estimation observer. ,e state estimates the
equation in the above observer and still uses an output
variable residual r(t) for state correction. ,e objective of
selecting the gain Kobv in the state estimate equation is to
ensure the sensitivity of the output residual of the parameter
deviation θ − 􏽢θ. ,at is to say, if parameter deviation
θ − 􏽢θ≠ 0, then the output residual r(t)≠ 0. On the contrary,
the selecting of the gain Kobv should ensure that output
residual r(t) and state error x(t) − 􏽢x(t) have certain ro-
bustness to noise, uncertainty, initial condition difference,
etc. ,at is to say, when the parameter deviation θ − 􏽢θ � 0,
the gain Kobv can eliminate the effects of noise, uncertainty,
and initial condition differences and make the output re-
sidual and the state error converge to zero.

In the above Luenberger-like adaptive observer, the
parameter identification of the Luenberger-like adaptive
observer chooses the search path according to the variation
of the output variable output continuously. However, for a
nonlinear dynamic system, especially in the case of multi-
parameters, in the continuous parameter identification
search path, the case is often complex and difficult. ,ere
may be local optimal points or flat road sections which cause
the failure of parameter identification. To overcome the
disadvantages of this kind of continuous path search
method, the differential evolution (DE) algorithm-based
relative analysis can be used to fulfill parameter estimation in
the adaptive observer. Consequently, the following DE-
based adaptive observer is obtained:

_􏽢x � φ(􏽢x, t)􏽢θ + Bu(t) + Kobv(y − 􏽢y),

􏽢y � C􏽢x,

􏽢θ � argminDE
􏽢θ

􏽘

n

i�1
ρyy′−n 􏼩,􏼨

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

where min􏽢θ DE ∗{ } presents the optimization calculation
using the differential evolution algorithm, ρyy′ is a corre-
lation coefficient which measures the degree of similarity
between different signals, and the absolute value of ρyy′ is
larger when the degree of correlation between two time
series is higher.

,e objective function of DE optimization calculation is
chosen as min(􏽐

n
i�1 ρyy′ − n). ,e choice of this objective

function is based on the consideration that the correlation
calculation only analyzes the morphological similarity be-
tween the variables and does not care about the difference in
the amplitude of the variables.
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To sum up, the fault diagnosis scheme based on an
adaptive observer using DE is shown in Figure 1. Figure 1
shows the scheme of the fault diagnosis as a solution of an
optimization problem.,is article will use the above scheme
of fault diagnosis based on parameter estimation in a
nonlinear system. Such approach is presented in the next
section.

4. Mathematical and Algorithm Tools

4.1.CorrelationAnalysis. As a statistical method, correlation
analysis has been applied in evaluating the strength of the
relationship between two quantitative variables with avail-
able statistical data. ,is technique is strictly connected to
the linear regression analysis that is a statistical approach for
modeling the association between a dependent variable and
one or more explanatory or independent variables. In this
paper, the Pearson correlation coefficient is chosen to extract
the feature and apply it to multifault identification. ,is
method has many advantages, such as high accuracy, high
efficiency, and strong practicability.

,e Pearson correlation coefficient presents a measure of
how two random variables relate linearly in a sample. ,e Y

and Y′ vectors in the following formula define the residual
correlation coefficient, which is generally denoted by the
symbol ρYY′ :

ρYY′
�
cov Y, Y′( 􏼁

σYσY′
�

E YY′( 􏼁 − E(Y)E Y′( 􏼁
�������������
E Y2( ) − E2(Y)

􏽰
×

��������������

E Y′
2

􏼒 􏼓 − E2 Y′( 􏼁

􏽲 ,

(17)

where cov is the covariance, σ is the standard deviation, and E

is the expectation. ,e Pearson correlation coefficient lies in
the range −1⩽ ρYY′ ⩽ 1. In order to obtain the correlation
coefficient, obtaining σY′ , σY, and cov(Y, Y′) is necessary. In
practice, these parameters for the variables are either un-
known or difficult to obtain.,us, the alternative is using ρYY′
which one can be obtained from a sample. ,e following
formula expresses the sample correlation coefficient ρYY′ :

ρYY′ �
􏽐

T/Ts

i�1 yi
′ − y′􏼐 􏼑 yi − y( 􏼁

�������������

􏽐
T/Ts

i�1 yi
′ − y′􏼐 􏼑

2
􏽲 �������������

􏽐
T/Ts

i�1 yi − y( 􏼁
2

􏽱 , (18)

where

y′ �
1

T/Ts

􏽘

T/Ts

i�1
yi
′( 􏼁, y �

1
T/Ts

􏽘

T/Ts

i�1
yi( 􏼁, (19)

in which T is the length of the data window used for fault
identification;Ts is the sampling step size; (yi

′, yi) is the ith pair
observation value; and y′ and y are samplemeans for y′ andy,
respectively. Pearson correlation is a straightforward approach
to evaluate the relationship between two variables. ,e larger
the |r| is, the more significant the relationship between Y and
Y′ is.

In the subject of signal and system, correlation analysis is
an important method to describe signal characteristics in the
time domain. Since the correlation concepts were

introduced to study the statistical characteristics of random
signals, they can be also theoretically applied to the study of
the similarity between two deterministic signals (one of the
reference waveform and one of the signal waveform
collected).

4.2. Differential Evolution Algorithm (DE). Differential
evolution (DE) is a simple and powerful intelligent opti-
mization algorithm. As an advanced version of the genetic
algorithm (GA), DE has been the subject of much attention
due to its attractive characteristics of the need for lower
parameters, simple structure, ease of use, and robustness
[15, 16]. DE has been extended for handling multiobjective,
constrained, large-scale, dynamic, and uncertain optimiza-
tion problems. Due to the advantages of DE, it was devel-
oped for many applications in engineering fields. In DE, a
general description includes four operators of population
initialization, mutation, crossover, and selection. An over-
view of the main steps of the DE algorithm is presented next.

4.2.1. Initialization. Setting up the maximum generation
number Gmax and generation index G � 1, the initial pop-
ulation within the range [θmin

i , θmax
i ] of parameters is ran-

domly created.

θi � θmin
i + rand(0, 1) × θmax

i − θmin
i􏼐 􏼑, (20)

where rand(0, 1) denotes a random number in the interval
(0, 1), i � 1, 2, . . . ,NP. ,e value of NP is the number of
individuals of population that will affect computational time
and fault identification performance. Increasing NP means
high computational time but low risk to be trapped in local
minimum.

4.2.2. Mutation. Mutant individual is generated by using
(21). ,e scale factor of difference perturbation F is chosen
in the range of [0, 2].

θG � θj + F × θk − θl( 􏼁, (21)

where θj, θk, θl (j≠ k≠ l) are randomly selected vectors, θG is
a mutant, and all of these vectors must be dissimilar so that
the population contains at least four individuals.

4.2.3. Crossover

θt �
θG, if rand(0, 1)≤CRor j � q,

θi, otherwise,
􏼨 (22)

where j � 1, 2, . . . , D and q ∈ [1, 2, . . . , D] is a random
index. ,e value of CR is chosen in the range of [0, 1].

4.2.4. Selection Operation. Fitness computation f(θ) by (13)
and comparison by (23) is used to update the population.

θt+1 �
θt, if f θt( 􏼁<f θi( 􏼁,

θi, otherwise.
􏼨 (23)
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,is step is repeated until the termination criterion is
satisfied, and hence a population of solution is obtained.

5. Case Studies

,e effectiveness of the proposed correlation-based robust
FDI is demonstrated through typical nonlinear dynamic
process systems with variable parameters.

5.1. Description of4ree-TankModel. ,e three-tank system
is widely used for comparison and demonstration purpose in
control engineering as a benchmark process in laboratories
for process control [17]. To illustrate the effectiveness of the
proposed methodology, in this section, a simulation ex-
periment on the three-tank system (TTS) is introduced. TTS
is shown in Figure 2. ,e precise mathematical model can

easily describe the multiply faults such as leakage/plugging/
sensor/actuator faults. Industrial systems consist of the plant
(or system dynamics), sensors, and actuators [4]. ,e sensor
and actuator faults are additive fault. ,e leakage and
plugging faults are usually nonadditive. In the references,
many efficient fault estimation methods of the sensors and
the actor can be found [18–21]. However, from the FTC
point of view, much more important is the problem of the
plant (component) fault diagnosis. ,ere have been few
studies on nonadditive faults, especially for the nonlinear
dynamic system. In this paper, two types of tank faults
(leakage and plugging faults) are belonging to nonadditive
faults.

Applying the incoming and outgoingmass flows with the
Torricellies law, the dynamics of TTS is modeled by

dh1

dt
�
1
A

Q1 − δ1Ansgn h1 − h3( 􏼁

���������

2g h1 − h3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

􏼒 􏼓,

dh2

dt
�
1
A

Q2 + δ3Ansgn h3 − h2( 􏼁

���������

2g h3 − h2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

− δ2An

����

2gh2

􏽱

􏼒 􏼓,

dh3

dt
�
1
A

δ1Ansgn h1 − h3( 􏼁

���������

2g h1 − h3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

− δ3Ansgn h3 − h2( 􏼁

���������

2g h3 − h2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

􏼒 􏼓􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

where A is the cross-section area of the tank; An is the cross-
section area of the pipe; Q1, Q2 are the incoming mass flow
(cm3/s); hi(t), i � 1, 2, 3, are the water level (cm) of each
tank and measured; δi, i � 1, 2, 3 is the coefficient of flow for
pipes.

,e state vector X, output vector Y, and input U will be

X � h1, h2, h3􏼂 􏼃
T ∈ R

3
,

Y � h1, h2, h3􏼂 􏼃
T
,

U � Q1, Q2􏼂 􏼃
T ∈ R

2
,

Q1 � Q2.

(25)

,e dynamic model fault free is as follows:

Real system

Residual evaluation
r(t) > 0

Fault decision

Condition monitoring
Input u(t)

Outside the 
threshold 

Residual r(t)

Output y′(t)

Gain Kobv

y′(t) 

y(t)

Adaptive observer

Output y(t)

Fault isolation and identification

Parameters 
evaluation 

Fault decision

Output correlation 
analysis ρyy′

Fault isolation and parameter 
identification based on DE

–
+

Figure 1: A multiparameter fault diagnosis scheme of a nonlinear adaptive observer based on DE.
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dx1

dt
�
1
A

Q1 − δ1Ansgn x1 − x3( 􏼁

���������

2g x1 − x3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

􏼒 􏼓,

dx2

dt
�
1
A

Q2 + δ3Ansgn x3 − x2( 􏼁

���������

2g x3 − x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

− δ2An

����
2gx2

􏽰
􏼒 􏼓,

dx3

dt
�
1
A

δ1Ansgn x1 − x3( 􏼁

���������

2g x1 − x3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

− δ3Ansgn x3 − x2( 􏼁

���������

2g x3 − x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

􏼒 􏼓􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y � x1, x2, x3􏼂 􏼃
T
, x t0( 􏼁 � x0, u1 � Q1 � Q2.

(26)

5.2.MultifaultDiagnosis Results. In this paper, the process is
affected by two types of faults: the leak faults and the
plugging faults. ,e leaks in the three tanks can be modeled
as additional outgoing mass flows of tanks [22]:

Qf1 � a1S1
����
2gx1

􏽰
,

Qf2 � a2S2
����
2gx2

􏽰
,

Qf3 � a3S3
����
2gx3

􏽰
,

(27)

where S1, S2, and S3 are the cross-sectional area of leaks,
which are unknown and depend on the size of the leaks, and

a1, a2, and a3 are the coefficients of flow for leaks and
unknown. ,e plugging between two tanks and in the outlet
pipe by tank 2 can be modeled by

Qf4 � b1δ1Ansgn x1 − x3( 􏼁

���������
2g x1 − x3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱
,

Qf5 � b3δ3Ansgn x3 − x2( 􏼁

���������
2g x3 − x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱
,

Qf6 � b2δ2An

����
2gx2

􏽰
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(28)

where b1, b2, b3 ∈ [0, 1] are unknown. ,e model of plant
faults is modeled by

_x1 �
1
A

u1 − δ1Ansgn x1 − x3( 􏼁

���������

2g x1 − x3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

+ Qf4 − Qf1􏼒 􏼓,

_x2 �
1
A

u1 + δ3Ansgn x3 − x2( 􏼁

���������

2g x3 − x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

− δ2An

����
2gx2

􏽰
− Qf5 + Qf6 − Qf2􏼒 􏼓,

_x3 �
1
A

δ1Ansgn x1 − x3( 􏼁

���������

2g x1 − x3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

− δ3Ansgn x3 − x2( 􏼁

���������

2g x3 − x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

− Qf4 + Qf5 − Qf3􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

In general, the size of the leaks is less than the pipes, then
the coefficient of flow for leaks is less than that of the pipes,
thus let

ai � ρiδi,

Si � kiSn,

i � 1, 2, 3,

(30)

Pump 1 Pump 2

h 1 h 2h 3

Q13 Q32

Q2Q1

Q20

Tank 1 Tank 3 Tank 2

S

sn

Figure 2: ,ree-tank system by Ding [22].
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where ρi, ki are the scale factors and ρi, ki ∈ [0, 1].
Note: as shown by equations (27) and (28), fault 2 and

fault 6 are linearly correlated with respect to
����
2gx2

􏽰
, which

does not satisfy the first necessary condition of ,eorem 1.
,erefore, fault 2 and fault 6 cannot be accurately identified

and isolated at the same time in this system. ,e defining
Q∗f2 � Qf6 − Qf2 is a trade-off in order to achieve a linear
description on parameters. ,e linear parameter-space
representation then becomes

_x1 �
1
A

u1 − θ4δ1Ansgn x1 − x3( 􏼁

���������

2g x1 − x3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

􏼒 􏼓 − θ1δ1An

����
2gx1

􏽰
,

_x2 �
1
A

u1 + θ5δ3Ansgn x3 − x2( 􏼁

���������

2g x3 − x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

+ θ2δ2An

����
2gx2

􏽰
􏼒 􏼓,

_x3 �
1
A

θ4δ1Ansgn x1 − x3( 􏼁

���������

2g x1 − x3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

− θ5δ3Ansgn x3 − x2( 􏼁

���������

2g x3 − x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

− θ3δ3An

����
2gx3

􏽰
􏼒 􏼓,
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

where θ1 � ρ1k1, θ2 � ρ2k2 − 1 + b2, θ3 � ρ3k3, θ4 � 1 − b1,

θ5 � 1 − b3. ,e nominal values of parameters are
θ01 � 0, θ02 � 1, θ03 � 0, θ04 � 1, θ05 � 1. ,e range of the pa-
rameters are θi ∈ [0, 1](i � 1, 3, 4, 5) and θ2 ∈ [−1, 1].
Equation (31) is multiple linear regression equations and can

be transformed into the following linear parameter-varying
form:

_x � F(x)θ + Bu, (32)

where

F(x) �

−δ1An

����
2gx1

􏽰
0 0 −δ1Ansgn x1 − x3( 􏼁

���������
2g x1 − x3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱
0

0 δ2An

����
2gx2

􏽰
0 0 δ3Ansgn x3 − x2( 􏼁

���������
2g x3 − x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱

0 0 −δ3An

����
2gx3

􏽰
δ1Ansgn x1 − x3( 􏼁

���������
2g x1 − x3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱
−δ3Ansgn x3 − x2( 􏼁

���������
2g x3 − x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �
1
A

,
1
A

, 0􏼔 􏼕.

(33)

Table 1: Process parameters of the system.

Parameters Symbol Value Unit
Cross-section area of tanks A 160 cm2

Cross-section area of pipes An 0.6 cm2

Max height of tanks Hmax 100 cm
Max flow rate of pump 1 Q1max 90 cm3/s
Max. flow rate of pump 2 Q2max 90 cm3/s
Coefficient of flow for pipe 1 δ1 0.6
Coefficient of flow for pipe 2 δ2 0.6
Coefficient of flow for pipe 3 δ3 0.6

Table 2: Diagnosis results with different fault dimension

Fault cases θ1 􏽢θ1 θ2 􏽢θ2 θ3 􏽢θ3 θ4 􏽢θ4 θ5 􏽢θ5 ρyy′

1-dimention 0.1 0.099672 1 0.99895 0 0.002993 1 0.988149 1 0.997931 3
2-dimention 0.1 0.090868 0.6 0.601092 0 0.007281 1 0.978094 1 0.999205 3
3-dimention 0.1 0.098079 0.6 0.598053 0.5 0.598053 1 0.994553 1 0.996132 3
4-dimention 0.1 0.11311 0.6 0.598932 0.5 0.483429 0.7 0.742294 1 0.996307 3
5-dimention 0.1 0.096488 0.6 0.606524 0.5 0.513945 0.7 0.689603 0.9 0.912194 3
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Table 3: ,e parameter estimation results with different SNR.

Parameter Fault value SNR� 50 SNR� 40 SNR� 30 SNR� 20 SNR� 10
θ1 0.3 0.300550 0.298721 0.290431 0.307865 0.275272
θ2 0.3 0.301163 0.259900 0.295185 0.274000 0.303014
θ3 0.5 0.491633 0.494183 0.495723 0.493756 0.428642
θ4 0.6 0.602957 0.603952 0.594899 0.595272 0.616803
θ5 1.0 0.996162 0.991430 0.998303 0.998101 0.995124
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Figure 4: Estimation of the five parameters (SNR� 10).
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Figure 3: ,e relationship between the correlation coefficient and signal to noise ratio (SNR).
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,e output residuals r1(t), r2(t), and r3(t) of the fault
detection system are shown as follows:

r1(t) � y1 − y1′,

r2(t) � y2 − y2′
,

r3(t) � y1 − y3′,

(34)

where y1, y2, and y3 are the system outputs and y1′, y2′, and
y3′ are the Luenberger-like observer outputs. According to
equation (13), the object function of the parameter opti-
mization problem is

min 􏽐
3

i�1
ρyiyi
′−3􏼠 􏼡

s.t.

0≤ θ1 ≤ 1

−1≤ θ2 ≤ 1

0≤ θ3 ≤ 1

0≤ θ4 ≤ 1

0≤ θ5 ≤ 1
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Figure 5: Estimation of the five parameters (SNR� 50).
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Figure 6: ,e residual output (time window� 1000, SNR� 50).
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5.3. Experiments and Numerical Results

5.3.1. 4e Results in the Absence of Noise. In order to verify
the effectiveness of the proposed approach in the paper, the
noise-free case is first examined with the aid of the three-
tank system. In the system, five parameters can constitute 31
fault modes. Considering that the essence of any fault mode
is to estimate the coordinates of parameters in the parameter
space, only five typical modes are selected for verification of
the proposed approach. Five experiments were conducted
for five fault modes. ,e process parameters of the system
are given in Table 1.,e diagnosis results with different fault
dimension are shown in Table 2.

5.3.2. 4e Results in the Presence of Noise. Now, the output
signal is assumed to be corrupted by noise. If the noise is
relatively high compared to the effect of fault on the output,
then the correlation coefficient will decrease. ,us, perfor-
mance of fault identification will degrade. Figure 3 shows the
relationship between the correlation coefficient and signal to
noise ratio (SNR).,e values of the estimated parameters
under different output SNR are shown in Table 3, which
indicates that the higher the SNR, the better the estimation
performance.

From Figure 3, when SNR > 30, the correlation coeffi-
cient is close to 1 and changes slowly. When SNR< 30, the
more the SNR, the larger the correlation coefficient. All the
implementations were made in MATLAB R2016b. Figures 4
and 5 show the parameter identification results with dif-
ferent SNR. Comparing to Figure 5, Figure 4 shows the
degradation of parameter estimation performance in the low
SNR. Figure 6 shows the real output of the three tanks and
the estimated output. From Figure 6, it can be seen that when
the correlation coefficient is 3, the two curves almost overlap.
Figure 7 shows the residual changes when the faults occur at
1000 and 2000 seconds.

6. Conclusion

In this paper, the diagnosis system follows a general model-
based architecture where the output signal correlation

coefficient is used to detect inconsistencies between model
predictions and sensor data. ,e fault detection system and
fault identification system are designed. In the fault iden-
tification system, a variable parameter model is used to
simulate the real system. ,e output correlation coefficient
between the fault detection system and the fault identifi-
cation system is formulated as an optimization problem. It is
solved by evolutionary algorithms to estimate fault pa-
rameters. By integrated estimation of all parameters of the
system, the coordinates of the fault point in the parameter
space can be obtained and the faults severity andmode of the
fault (single fault or multiple faults) can be determined.
Comparing with common residual-based methods, e.g.,
filter and adaptive observer methods, the proposed method
reduces the number and the complexity of the observer for
the estimation of high-dimensional parameter. It overcomes
the problem of combinatorial explosion of fault modes and
simplifies the fault diagnosis structure. To our knowledge,
there are few papers on the adaptive isolation and identi-
fication mechanism which combine the observer and in-
telligent optimization algorithms. Using the powerful global
search ability of an evolutionary algorithm, the proposed
method is more beneficial to overcome local optimality
comparing with the traditional adaptive search mechanism
based on parameter gradient change.

Data Availability

Since the experimental results are obtained by the simulation
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submission.
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