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Dividing abstract object sets intomultiple groups, called clustering, is essential for effective data mining. Clustering can find innate
but unknown real-world knowledge that is inaccessible by any other means. Rodriguez and Laio have published a paper about a
density-based fast clustering algorithm in Science called CFSFDP. CFSFDP is a highly efficient algorithm that clusters objects by
using fast searching of density peaks. But with CFSFDP, the essential second step of finding clustering centers must be done
manually. Furthermore, when the amount of data objects increases or a decision graph is complicated, determining clustering
centers manually is difficult and time consuming, and clustering accuracy reduces sharply. To solve this problem, this paper
proposes an improved clustering algorithm, ACDPC, that is based on data detection, which can automatically determinate
clustering centers without manual intervention. First, the algorithm calculates the comprehensive metrics and sorts them based on
the CFSFDP method. Second, the distance between the sorted objects is used to judge whether they are the correct clustering
centers. Finally, the remaining objects are grouped into clusters. /is algorithm can efficiently and automatically determine
clustering centers without calculating additional variables. We verified ACDPC using three standard datasets and compared it
with other clustering algorithms. /e experimental results show that ACDPC is more efficient and robust than
alternative methods.

1. Introduction

In data mining, clustering is the process of dividing abstract
object sets into multiple groups./e groups are formed such
that the objects in a group are more similar to each other
than they are to objects in other groups [1–5]. Clustering is
an important research hotspot in data mining because it is
very important for revealing inherent, latent, and unknown
knowledge or rules in the real world. It is widely applied in a
variety of fields, such as intelligent computing, information
retrieval, biology, psychology, and economics [6–9]. How-
ever, with the current rapid growth in data volume and data
diversity and with limited prior knowledge of data (such as
categories or class labels), effective clustering is a challenging
task. /erefore, more efforts are being made to exploring
efficient and effective clustering algorithms.

Rodriguez and Laio [1] published the novel clustering al-
gorithm “clustering by fast search and find of density peaks”
(CFSFDP) in Science. /e CFSFDP algorithm must calculate
only two variables: local density and minimum density-based
distance, and then it draws a decision graph according to both of
them. Because of the high local densities and large minimum
density-based distances of clustering centers, potential clustering
centers can be identified from the decision graph using visual
judgment. /e remaining objects are then grouped into clusters
according to certain rules. Compared with other clustering
algorithms, the advantages of CFSFDP are as follows:

(1) It is simple, fast, and efficient, needing to calculate
only two variables to do clustering

(2) It is not necessary to do an iterative calculation of
objective functions in the clustering process
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(3) It can be done on datasets of various numbers and
densities

However, one obvious imperfection remains in CFSFDP
that needs to be resolved. /e problem stems from the
dependence on visual judgment in determining clustering
centers. In most cases, clustering centers can be correctly
identified in this manner. But for datasets with a large
volume of data or complex decision graphs, it is difficult to
identify the correct clustering centers using CFSFDP.

To solve this problem, this paper integrated the com-
prehensive metrics of CFSFDP with the distances between
potential clustering centers to detect clustering centers
synthetically and automatically, after which the clustering
process is continued. Because the proposed algorithm is an
improved version of CFSFDP, we call it automatic cluster
density peak clustering (ACDPC).

/e rest of this paper is organized as follows: in Section 2,
the related works on clustering and CFSFDP clustering
center detection are analyzed and reviewed. In Section 3, the
ACDPC algorithm is demonstrated based on CFSFDP. In
Section 4, we describe the experimental results and results of
testing the performance of ACDPC using three standard test
datasets. Section 5 concludes the paper.

2. Related Work

2.1. Data Object Clustering Methods. Researchers have put
great effort into devising and proposing highly efficient
clustering algorithms. /at work can be divided into seven
categories:

(1) Partition-based algorithms, such as k-means [10] and
k-medoids [11]. /e main idea of this kind of
clustering approach is that for datasets containing n
objects, given the number of clusters k (k≤ n), the
datasets are divided into k clusters by continuously
optimizing certain object partitioning criteria. Par-
tition-based algorithms are simple and efficient, but
the number of clusters needs to be known in ad-
vance, and the algorithms are sensitive to the se-
lection of initial clustering centers.

(2) Hierarchical-based algorithms [12, 13] construct a
cluster tree based on data objects and then seek
optimal clustering results by iteratively splitting or
aggregating. Hierarchical-based algorithms are
simple and efficient, but their executive processes are
easily affected, and the terminating condition is
difficult to determine.

(3) Density-based algorithms, such as DBSCAN [14, 15],
can cluster datasets with convex shapes and noisy
objects, but it is difficult to determine the density
threshold. CFSFDP is eminent among the density-based
clustering algorithms. CFSFDP calculates only two
variables (local density and minimum density-based
distance), but the determination of clustering centers is
done by visual judgment and manual selection.
/erefore, for datasets with complex decision graphs, it
is difficult to correctly identify clustering centers.

(4) Graph-based algorithms [16, 17] first construct a
graph according to the characteristics of the dataset
and then divide the graph into a series of subgraphs
based on set rules. Each subgraph is then regarded as
a cluster. However, the problems of “neck” and
“chain” in the clustering process are unsolved.

(5) Model-based algorithms [18, 19] use a given
mathematical model to fit datasets and then group
objects into several clusters. However, the clustering
results are sensitive to the parameters of the math-
ematical models, and it is difficult for model-based
approaches to identify clusters with different shapes
and densities.

(6) Grid-based algorithms [20, 21], similar to density-
based algorithms, do clustering on grid merging and
segmenting, but they are not suitable for clusters
with different densities.

(7) Hybrid clustering algorithms such as ensemble
clustering [22–24] combine at least two kinds of the
clustering algorithms mentioned above to get higher
quality clustering results. Also, ensemble clustering
algorithms using various strategies [25–34] to break
through the limitations of base clustering algorithms
have been increasingly popular in recent years. But
these kinds of algorithms may have high time
complexity.

2.2. Detection of Clustering Centers Based on CFSFDP. To
solve the problem of identifying clustering centers for
CFSFDP, researchers have also proposed various algorithms
to automatically detect clustering centers. Integrating the
local density and hierarchical-based algorithms, Xu et al.
proposed a linear fitting method to identify potential
clustering centers, which turned out to have high efficiency
[35]. But when clusters are highly overlapped, the number of
identified clustering centers may be higher than the correct
number of clusters. Rong et al. also combined the local
density approach with an improved hierarchical clustering
algorithm to improve the clustering process [36], but if
clusters of dataset overlap are higher, incorrect clusters may
be produced. Ding et al. proposed DPC-GEV andDPC-CI to
automatically identify clustering centers based on the gen-
eralized extreme value and Chebyshev’s inequality, respec-
tively [37], but this method cannot be applied to datasets
with high overlapping. Chen analyzed and extracted the
information of data objects using the normal distribution
theory, excluded the abnormal objects, and then identified
the clustering centers [38]. Again, for datasets with a high
degree of overlap, the clustering result may be less than ideal.
Liang and Chen integrated the divide-and-conquer strategy
and the density-reachable ideas of DBSCAN to determine
clustering centers [39]. However, an inappropriate cutoff
distance may result in a misidentification of clustering
centers. Wang and Song proposed a clustering algorithm
(STClu) to automatically identify clustering centers based on
comprehensive metrics c following the long-tailed distri-
bution [40]. However, when clusters have similar numbers
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of objects and distribute as a regular grid, the number of
clustering centers identified may be lower than the actual
number of clusters.

3. Principles and Algorithm of ACDPC

Here, the algorithm of ACDPC is described based on
CFSFDP.

3.1. /eories of ACDPC. Dataset S � Xi 
N
i�1 where N is the

total number of objects in the dataset S:
d(i, j) � Xi − Xj

�����

�����, (1)

where d(i, j) is the distance from the object Xi to Xj in S, and
the objects Xi and Xj have 2-D or higher-dimensional
features.

/e local density ρi of any object Xi in S is defined as

ρi � 
j

exp −
d(i, j)2

d2
c

 , (2)

where dc is the cutoff distance, which is represented as
dc � d Nd∗

p

100[ ], (3)

where Nd �
N

2  dc � d[Nd∗(p/100)] ∈ D � [d1, d2, d3, . . . ,

dNd
], d, sorted in ascending order, is the set of the distance

between every two objects in S, Nd ∗ (p/100) is a subscript of
d[Nd∗(p/100)], [∗] is the ceiling function, and P is the percent of
the total number of objects in the dataset. /e value of p
varies from 1% to 2%.

/e minimum density-based distance δi is defined as the
minimum distance between the object Xi and any other
higher density objects:

δi � min
j: ρj>ρi

d Xi, Xj . (4)

For objects with the highest local density, the minimum
density-based distance is defined as max (d (Xi, Xj)).

A decision graph can be constructed for each object Xi in
S, after calculating the local density and the minimum
density-based distance. According to the large size of both ρ
and δ values of clustering centers, potential clustering
centers are identified by observing the decision graph.

/e comprehensive metric ci of the objectXi is defined as

ci � ρi · δi. (5)

Because ρ and δ values are large for clustering centers,
their corresponding c values are also large. Conversely, c

values of nonclustering centers are small. /erefore, there
are large gaps between clustering centers and nonclustering
centers. Generally, clustering centers can be detected by
observing the decision graph and comprehensive metrics
sorting figures. But for large datasets or complex decision
graphs, it is difficult to select clustering centers. To solve this
problem, this paper proposes an algorithm to automatically
detect clustering centers.

Because comprehensive metrics c and distances between
potential clustering centers are always related [41], they can
be integrated to automatically identifying clustering centers.

Ti 
N

i�1 is the subscript of the descending order of ci 
N

i�1:

cT1
≥ cT2
≥ . . . ≥ cTN

. (6)

Let DmTi
represent the minimum density-based distance

of an undetermined clustering center XTi
:

DmTi
� δTi

− 0.7∗ dc. (7)

We improved the algorithm proposed by Zhao [41, 42] to
recognize the clustering centers. Discriminant distance φTi

is
defined as

φTi
�

�
5

√
− 1
2

· (1/2) δT1
+ δT2

− 2∗ dc  +


i>2

cT(i−1)
/ 3/2∗ cT(i−2)
  ∗ δTi−1

− dc − ln δTi−1
  ]

(i−1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ (8)

where δTi
is the minimum density-based distance according

to c ,sorted in descending order, and i is the number of
determinate clustering centers.

/e discriminant condition of clustering centers is de-
fined as [41]

DmTi
>φTi

. (9)

If XTi
can follow the discriminant condition, it is defined

as the clustering center. /e objects with the largest and
second-largest c are first defined as the clustering centers.

C � Cj 
M

j�1 is the set of M clustering centers, where
M<N. First, XT1 is defined as an intrinsic member of C.
Second, if object XTi

follows equation (9), it will be added to
C. Otherwise, the identification of clustering centers is

terminated. /ird, the number of clustering centers M is
output. Finally, the remaining objects are clustered in
Algorithm 1.

3.2. /e Process of the ACDPC Algorithm. /e detailed al-
gorithm is described in pseudocode as follows:

4. Experiment and Discussion

4.1. Datasets. Standard clustering datasets were used to
evaluate the effectiveness and robustness of ACDPC. /ese
2-D datasets come from http://people.sissa.it/laio/Research/
Res_clustering.Php and http://cs.joensuu.fi/sipu/datasets/.
/e details of these datasets are as follows:
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4.1.1. S Sets. Made up of four subsets (S1, S2, S3, and S4) with
different degrees of overlap. Each subset contained 5,000
objects and 15 Gaussian clusters. A larger degree of overlap
makes it more difficult to identify clustering centers; therefore,
the S sets can be used to evaluate the clustering performance of
ACDPC on datasets with differing degrees of overlap.

4.1.2. Shape Sets. Made up of five subsets (Aggregation, R15,
D31, Five-Gaussian, and Spiral). Aggregation contained 788
objects and 7 Gaussian clusters, D31 contained 3,100 objects
and 31 Gaussian clusters, R15 contained 600 objects and 15
Gaussian clusters, Five-Gaussian contained 4,000 objects
and 5 Gaussian clusters, and Spiral contained 312 objects
and 3 Gaussian clusters. Because these subsets contained
clusters with various shapes, proximities, orientations, and
densities, they could be used to evaluate the performance of
ACDPC in identifying clustering centers and clustering
accuracy for complex datasets.

4.1.3. Birch1. A dataset contained 100 Gaussian clusters and
100,000 objects. /e clustering centers were arranged in
10×10 regular grids, and the number of objects in each
cluster was almost equal. To improve the experimental ef-
ficiency, nine clusters were selected, with the nine clustering

centers arranged in 3× 3 regular grids. /is kind of dataset
was used to evaluate the efficiency of ACDPC for regular
distributions with a similar number of objects in each
cluster.

/e correct clustering centers and object labels of the
above datasets and subsets were known in advance, except
for the object labels of Five-Gaussian.

4.2. Experimental Results and Analysis. /e ACDPC algo-
rithm in Section 3.2 was implemented in C++, and three
groups of datasets were loaded to test. /e experimental
environment was Windows 10 64 bit running on an Intel
Core i7-4770 CPU, with 8GB of memory and a 1 TB hard
disk. To assess the clustering performance of ACDPC in-
tuitively, in this paper, the clustering results are shown with
2-D figures. Small circles of various colors are used in the
figures to indicate that objects belong to different clusters.
/e p-value of the cutoff distance dcwas uniformly set to 2%.
/e same datasets were clustered by CFSFDP, STClu, DPC-
CI, and DBSCAN to compare their performances. For DPC-
CI, the parameter Ɛ was set to optimal value 2.

4.2.1. Results and Analysis on S Sets. Clustering results by
ACDPC on the S sets are shown in Figure 1. Figures 1(a) and

Input: datasets S � Xi 
N
i�1, parameter P;

Output: clustering result;
(1) RhoSet�Ø, DeltaSet�Ø, and GammaSet�Ø;

//Part 1: Metric extraction
(2) distanceMatrix�DistanceFunction (S); //Calculate distance according to equation (1);
(3) Calculate the cutoff distance dc according to equation (3);
(4) RhoSet� Fρ (distanceMatrix, dc); //Calculate ρ
(5) DeltaSet� Fδ (distanceMatrix, Rhoset); //Calculate δ
(6) GammaSet�Rhoset·DeltaSet; //c � ρ · δ
//Part 2: clustering center identification
(7) cTi

� sort (GammaSet, “descend”); //Sort GammaSet in descending order to get a set of ordered statistics γ, Ti 
N

i�1 indicates the
subscript of GammaSet in descending order

(8) Calculate DmTi according to equation (6);
(9) Calculate the discrimination distance φTi

according to equation (8);
(10) while i> 1 do
(11) If (DmT(i+1)

>φT(i+1)
)

{
(12) M� i;

}
(13) Else

{
(14) Break;

}
(15) end
(16) Identify the objects corresponding to {XT1, XT2,...., XT(i)} as the clustering centers {C1, C2,..., CM}, and label Ci as i;
//Part 3: Object clustering
(17) for i� 1 to N do
(18) if Xi is unlabeled then
(19) Mark Xi the with label of its nearest neighbor with higher ρ;
(20) end
(21) end
(23) return;

ALGORITHM 1: ACDPC.
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1(b) show that for data subsets S1 and S2 with less overlap,
correct clustering centers can be effectively identified. Fig-
ures. 1(c) and 1(d) show that for data subsets S3 and S4, with
greater overlap, ACDPC can still recognize the correct
clusters. From the corresponding decision graphs (shown in
Figure 2), it can be seen that the first 15 objects with larger
ρ-δ were distant from other objects, so these were selected as
the clustering centers by CFSFDP. However, as the degree of
clustering overlap increased, some clustering center objects
were closer to other objects in the decision graphs, which
created difficulties for CFSFDP in identifying the correct
clustering centers. Moreover, the cluster results for STClu
and DBSCAN show that the correct clustering centers could
also be identified. For DPC-CI, it could find the number of
clusters for subsets S1, S2, and S3, but it failed for S4.

Clustering centers were identified by five different al-
gorithms on S sets, and the statistics of the number of
clustering centers are shown in Table 1. /ere, we can see
that ACDPC, CFSFDP, STClu, and DBSCANwere all able to
identify the correct clustering centers. For DPC_CI, except
for the subset S4, it also could correctly find the clustering
centers.

To quantitatively analyze the clustering results on S sets,
the clustering accuracy of the five algorithms is displayed in
the right-hand columns of Table 1. We can see that the
clustering accuracy of ACDPC gradually decreased from S1 to
S4 as the degree of clustering overlap increased. Because the
process of grouping objects of ACDPC and DPC-CI was the
same as that of CFSFDP, their clustering accuracy was the
same when correct clustering centers could be detected. Also,

if the clustering centers could not be correctly identified, the
clustering accuracy was not calculated in this paper. More-
over, the clustering accuracy by STClu was consistent with
that of ACDPC. For DBSCAN, however, the clustering ac-
curacy was not ideal, especially for subsets of S3 and S4.

4.2.2. Results and Analysis on Shape Sets. Figure 3 shows the
results of ACDPC on shape sets. /e figure shows that
ACDPC could recognize the correct clusters for the five
subsets. But if we used CFSFDP to cluster the same subsets,
we got different results. /e decision graphs of these subsets
(Figure 4) show that the clustering centers were easily de-
tected with CFSFDP for the subsets Spiral and R15.

However, the decision graph of the Aggregation subset
(Figure 4(a)) shows that the number of clustering centers
could be 7 or 8–10. According to the decision graph of the
subset D31 (Figure 4(b)), the number of clustering centers
was less than 31, which obviously was not consistent with the
correct number of clusters. /e decision graph of the subset
Five-Gaussian (Figure 4(d)) shows that the number of
clustering centers could be either 5 or 6. Because CFSFDP
detects clustering centers based on visual judgment, bad
results may be archived for a complex dataset.

To analyze the clustering performance of ACDPC on
complex datasets, STClu, DPC-CI, and DBSCAN were also
used to detect clustering centers. /e results show that
STClu and DBSCAN were able to correctly identify the
clustering centers for the five subsets. Moreover, DPC-CI
failed on subsets R15 and Five-Gaussian.

(a) (b)

(c) (d)

Figure 1: /e results of ACDPC for S sets: (a) Subset S1, (b) Subset S2, (c) Subset S3, and (d) Subset S4.
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To compare the performance of ACDPC, CFSFDP,
STClu, DPC-CI, and DBSCAN in identifying clustering
centers for shape sets, we listed the results in Table 2. Table 2
shows that ACDPC, STClu, and DBSCAN could accurately
determine the clustering centers of all five subsets, but
neither CFSFDP nor DPC-CI could well recognize the
clustering centers on shape sets.

Clustering accuracy was also calculated for these five
algorithms, with the results shown in the accuracy columns of
Table 2. Because the object labels of the subset Five-Gaussian
were unknown, its accuracy is omitted. Table 2 shows that for
the remaining subsets, the clustering accuracy with ACDPC
was higher than 98%. /erefore, ACDPC achieved good
clustering results for datasets containing arbitrary shapes,
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Figure 2: Decision graphs for S sets, (a) Subset S1, (b) Subset S2, (c) Subset S3, and (d) Subset S4.

Table 1: Number of clustering centers and accuracy for various algorithms on S sets.

Algorithm

Subset
S1 S2 S3 S4

Clustering
centers

Accuracy
(%)

Clustering
centers

Accuracy
(%)

Clustering
centers

Accuracy
(%)

Clustering
centers

Accuracy
(%)

ACDPC 15 99.7 15 97.2 15 90.5 15 87.2
CFSFDP 15 99.7 15 97.2 15 90.5 15 87.2
STClu 15 99.0 15 98.4 15 90.0 15 87.2
DPC-CI 15 99.7 15 97.2 15 90.5 16 —
DBSCANa 15 96.6 15 82.1 15 72.6 15 52.1
a/e parameters of DBSCAN (S1 : Eps� 30,000, MinPts� 20; S2 : Eps� 25,000, MinPts� 23; S3 : Eps� 23,000, MinPts� 24; S4 : Eps� 20,700, MinPts� 35).
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proximity, orientation, and density. /e clustering accuracies
for the other four subsets using STClu and DBSCAN were
also high, but for the subsets Aggregation, R15, and D31, they
were nonetheless lower than those of ACDPC. In sum, the
overall experimental results on the four groups of data subsets
show that the clustering accuracy of ACDPC was superior to
that of STClu and DBSCAN.

4.2.3. Results and Analysis on Birch1. Figure 5 shows the
clustering results for ACDPC on the dataset Birch1.
Figure 5 shows that nine clusters could be identified. From
the decision graph (Figure 6), the number of clustering
centers could also be correctly detected. /e number of
identified clustering centers with these five algorithms is
shown in Table 3. /e results show that ACDPC, CFSFDP,

DPC-CI, and DBSCAN can determine the correct clus-
tering centers. However, the number of clustering centers
identified by STClu is 3, which is much lower than the
correct number.

Table 3 shows the clustering accuracy for the five dif-
ferent algorithms. /e clustering accuracy with ACDPC was
98.4%, showing that ACDPC can not only find clustering
centers correctly but also achieve high clustering accuracy.
/e clustering accuracy of DBSCAN was 84.4%, but still
poorer than ACDPC.

In conclusion, it is apparent that ACDPC performs
better than the other algorithms on three test cases. Except
for the DBSCAN algorithm, none of them were able to
identify all clustering centers in the three datasets. How-
ever, a problem with the DBSCAN algorithm is that the
parameters Eps and MinPts were difficult to find. In

(a) (b)

(c) (d)

(e)

Figure 3: Results of ACDPC for shape sets: (a) Subset Aggregation, (b) Subset D31, (c) Subset R15, (d) Subset Five-Gaussian, and (e) Subset
Spiral.
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clustering accuracy, the allocation strategy of ACDPC was
the same as that of both CFSFDP and DPC-CI, so their
performance was equal. Moreover, the clustering accuracy

of ACDPC was superior to that of STClu on the shape sets,
and approximately the same on the other two groups of
datasets. It was better than DBSCAN in three datasets. In
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Figure 4: Decision graphs for shape sets, (a) Subset Aggregation, (b) Subset D31, (c) Subset R15, (d) Subset Five-Gaussian, and (e) Subset
Spiral.
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addition, the time complexity of the ACDPC algorithm is
approximately O (N2), where N is the number of objects.

To further analyze the experimental results in term of
accuracy, we use the paired t-test [27, 43] (with p< 0.05) to
evaluate the statistical significance of the differences between
proposedmethod and state-of-the-art methods, the results are
shown in Table 4. In the average row, the performances (in
terms of the accuracy) of different algorithms averaged over
all 9 datasets (except Five-Gaussian) have been presented. In

Figure 5: Results of ACDPC on Birch1.
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Figure 6: Decision graph on Birch1.

Table 2: Number of clustering centers and accuracy for various algorithms on shape sets.

Algorithm

Subset
Aggregation R15 D31 Five-Gaussian Spiral

Clustering
centers

Accuracy
(%)

Clustering
centers

Accuracy
(%)

Clustering
centers

Accuracy
(%)

Clustering
centers

Accuracy
(%)

Clustering
centers

Accuracy
(%)

ACDPC 7 99.9 15 99.7 31 98.4 5 — 3 100
CFSFDP {7,8,9,10} — 15 99.7 28 — {5, 6} — 3 100
STClu 7 98.5 15 90.3 31 93.5 5 — 3 100
DPC-CI 7 99.9 13 — 31 98.4 1 — 3 100
DBSCANa 7 96.7 15 95.9 31 90.4 5 — 3 100
a/e parameters of DBSCAN (Aggregation: Eps� 1.8, MinPts� 15; R15 : Eps� 0.3, MinPts� 5; D31 : Eps� 0.9, MinPts� 35; Five-Gaussian: Eps� 0.04,
MinPts� 35; and Spiral: Eps� 2.2, MinPts� 5).

Table 3: Number of clustering centers and accuracy for various
algorithms on the Birch1 dataset.

Algorithm Clustering centers Accuracy (%)
ACDPC 9 98.4
CFSFDP 9 98.4
STClu 3 —
DPC-CI 9 98.4
DBSCANa 9 84.4
Note. Parameter of DBSCAN (Birch1: Eps� 11 000, MinPts� 50).
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the second row, a triple b-e-w indicates the number of that
ACDPC method is better-than/equal-to/worse-than other
methods./e results reported in Table 4 indicate the proposed
method outperforms the state-of-the-art methods.

4.3. Sensitivity to Parameters of ACDPC. /e parameter p in
equation (3) to calculate the cutoff distance dc affects the
calculation of local density ρ. Furthermore, p will influence the
determination of clustering centers. To make the experiment
more convincing, in Section 4.1, we uniformly set the p-value
to 2%. To further analyze ACDPC’s performance in detecting
clustering centers, we tried various p-values. For a dataset with
N objects, the default value of p follows with CFSFDP in the
range of 1% to 2%./erefore, the experiments were run with p
set to 1.5% and 1%.

Table 5 shows that ACDPC can determine the number of
correct clustering centers of these datasets when p is set to 1.5%
or 1%, except for the Aggregation subset. /e main reason for
the exception is that the number of objects in each cluster and
the densities among clusters are greatly different in this subset,
so the selection of p-value must be more rigorous. But for the
varied ranges of p from 1.75% to 2.25%, the number of correct
clustering centers can be detected. From the results, we found
that ACDPCwas robust when pwas set within a suitable range,
and the clustering centers could be automatically and effec-
tively identified for various kinds of datasets.

5. Conclusions

To overcome the requirement to manually detect clustering
centers in CFSFDP, this paper proposes an automatic de-
termination algorithm called ACDPC based on the com-
bination of comprehensive metrics and distances between
potential clustering centers. /rough comprehensive ex-
periments and comparison with some classic and state-of-
the-art algorithms, the ACDPC algorithm was demonstrated
to be effective and robust. ACDPC can correctly determinate

clustering centers for datasets with various densities, shapes,
or distributions, and the clustering accuracy is excellent.

We also tested the performance of ACDPC for high-
dimensional datasets (Dim 32) and real-world datasets (the
Olivetti face data). Because the number of clustering centers
and the clustering accuracy with ACDPC were the same as
those of the other algorithms, the results of those experi-
ments are not shown in this paper.

As further work, we will explore the following aspects:
(1) the time complexity of the ACDPC algorithm is still high;
we would like to reduce it. (2) /e calculation of local
density, whether by ACDPC or CFSFDP, does not apply well
to datasets whose clusters have convex shapes; this needs
further improvement. (3) We would like to improve the
object-allocating strategy to get better clustering results.
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