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Car following is the most common phenomenon in single-lane traffic. (e accuracy of acceleration prediction can be effectively
improved by the driver’s memory in car-following behaviour. In addition, the Apollo autonomous driving platform launched by
Baidu Inc. provides fast test vehicle following vehicle models. (erefore, this paper proposes a car-following model (CFDT) with
driver time memory based on real-world traffic data. (e CFDT model is firstly constructed by embedded gantry control unit
storage capacity (GRU assisted) network. Secondly, the NGSIM dataset will be used to obtain the tracking data of small vehicles
with similar driving behaviours from the common real road vehicle driving tracks for data preprocessing according to the
response time of drivers. (en, the model is calibrated to obtain the driver’s driving memory and the optimal parameters of the
model and structure. Finally, the Apollo simulation platform with high-speed automatic driving technology is used for 3D
visualization interface verification. Comparative experiments on vehicle tracking characteristics show that the CFDT model is
effective and robust, which improves the simulation accuracy. Meanwhile, the model is tested and validated using the Apollo
simulation platform to ensure accuracy and utility of the model.

1. Introduction

Car-following (CF) behaviour is the most basic micro driving
behaviour, referring to the interaction between two adjacent
vehicles in a vehicle fleet driving on a single-lane road that
does not allow passing [1].(e concept of CF originated in the
early 1950s. Over the past six decades, CF models have been
extensively and systematically studied, and fruitful achieve-
ments have beenmade [2]. Since the 1990s, research in related
fields has gradually emerged in China. Researchers from
various fields have attempted to interpret the observed mi-
croscopic phenomena from different perspectives [3].

(ere are currently many types of CF models that can be
divided into two categories based on their origins: theory-
driven and data-driven CF models [4].

In the development of the theory-driven models, the
stimulus-response models are the most classic CF models, of

which the General Motors (GM) model [5] is the most
important.(e GMmodel has been gradually developed and
used since the late 1950s; it is the basis of many of the
subsequent stimulus-response models. (e GM model
clearly reflects the characteristics of CF behaviour; it has a
simple form and a clear physical meaning based on its
originality. However, this model is prone to change with
changes in traffic operational conditions and hence lacks
universality.

With the increasing popularity of artificial intelligence,
data-driven models have gradually become a focus of re-
search of CF models. In 1988, Rumelhart proposed the back-
propagation neural network (BPNN) [6], which is a mul-
tilayer feedforward neural network (FNN) that uses the error
back-propagation algorithm to adjust weights. It is the most
widely used NNmodel. Chen et al. proposed a deep learning
method for learning potentially complex and irregular
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probability distributions, which can accurately estimate the
values of CDF and PDF [7].

With the wide application of NNs in the field of traffic
simulation, in 1998, Kehtarnavaz [8] applied the BPNN
model to CF behaviour modelling for the first time, using the
speed of the following car and the distance between the two
cars as the model inputs and the relative speed of the two
cars as the model output, thus verifying the validity of the
model. Zhang et al. [9] established a closed-loop driving
following model based on BP neural network and verified
the adaptability of the model to different driving groups
through experiments.

Support vector regression (SVR) [10] is a machine
learning algorithm that converts the original problem into a
convex quadratic programming problem and solves it using
the optimality theory to obtain the global optimal solution.
Wei and Liu [11] proposed a vehicle following model based
on support vector regression and studied the asymmetric
characteristics of vehicle following behaviour and its in-
fluence on the evolution of traffic flow. Parham et al. [12]
propose car-following modelling using an efficient support
vector regression method and prove that it has appropriate
validity after inputting the driver’s instantaneous reaction
time. However, studies based on such models are in their
infancy.

CF behaviour is a continuous behaviour, so a driver can
make a corresponding decision based on the memory of the
previous time period [13–15]. However, a large number of
existing models do not fully consider the driver’s memory
effect and only consider the instantaneous interaction be-
tween the following and leading cars. To process the CF time
series data to use their historical information, the model
must have a memory capability; this is lacking in both the
BPNN- and SVR-based models.

Recurrent neural network (RNN) [16] is a class of neural
network with memory capability. Yang [17] proposed a car-
following model based on recurrent neural network (RNN)
to effectively describe the state changes of vehicles while
driving and road traffic congestion.

When an input sequence is long, the gradient explosion
and vanishing problems, also known as the long-term de-
pendency problem, will occur. To solve this problem, various
modifications have been made on RNNs; the most effective
method is to introduce various gating mechanisms such as
the long short-term memory (LSTM) [18, 19] and the gated
recurrent unit (GRU) [20] networks.

Based on the previously described studies, Wang et al.
[21] proposed the use of GRU to model CF behaviour and
embed the driver’s memory effect in the model, which
used the speed of the following car, the relative speed of
the two cars, and the distance between the two cars ob-
served in the last several time intervals as inputs and the
estimated speed of the following car at the next time point
as the output. (e test results showed that the proposed
model has higher simulation accuracy than the existing CF
models and provides a new concept for the study of traffic
flow theory and simulation. However, the driver’s deci-
sion-making and reflection time are not considered in the
judgment process.

However, influenced by multiple sources of information,
a driver’s decision-making and judgment process exhibits a
complex nonlinear modality during driving, and the driver’s
psychological decision cannot be described with a simple
mathematical expression. Fuzzy theories and artificial neural
networks show certain operational advantages in handling
complex nonlinear issues and also exhibit a good learning
capacity under big data samples. (erefore, the fuzzy theory
and artificial neural network are often used for simulating
driving behaviours under different environments. However,
the current schemes utilizing fuzzy theories and artificial
neural networks only focus on the velocities and accelera-
tions of the leading car and the following car, as well as the
spacing there between, without considering driving envi-
ronments [22]. In addition, how to obtain real-time traffic
information (such as average speed, travel time, traffic flow,
and traffic conditions) is also an important issue for un-
manned driving. Many scholars have also done a lot of
research on real-time traffic information. Chen proposed a
cell probe (CP)-based method to analyse cellular network
signals with an estimated accuracy of 97.63%, which is easier
to obtain than traditional methods [23].

In April 2017, Baidu released its open platform Apollo
for autonomous driving; after iterations of multiple versions,
the platform has been enabled for localization, sensing,
decision, and simulation. Apollo may help its partners in the
automotive and autonomous driving industries to quickly
develop a set of their own autonomous driving systems in
consideration of vehicles and hardware systems. In the
Apollo simulation environment, environment information
including traffic signs, index lines, and the relationships with
surrounding vehicles may be inputted into Dreamview via
corresponding interfaces to thereby construct a driving
environment. Besides, the Apollo platform is further enabled
for validating the car-following model and optimizing the
relevant algorithm through a 3D visual interface.

In this study, based on the previously described studies and
combined with actual road conditions, we designed a CFDT
model based on the data-drivenmodel in combinationwith the
improved RNN. In our model, the speed of the leading vehicle
in the previous time interval, the speed of the following vehicle,
and the distance between the two vehicles are used as inputs to
predict the acceleration of the following vehicle at the next time
point. Furthermore, the establishedmodel was calibrated using
the CF data to determine the optimal parameters and optimal
structure of the model, which were then verified through
simulation. Finally, the proposed model was compared with
the BPNN- and SVR-based models. It was confirmed that,
compared with the traditional CF models, the RNN network-
based CF model has high robustness and improved simulation
accuracy, providing a methodological basis for studying the
car-following behaviour.

(e remainder of the paper is divided into four sections.
Section 2 introduces conventional car-following models and
the neural network based car-following model. Section 3
models CF behaviour mainly using the RNN network.
Section 4 processes the data and briefly analyses the driver’s
response time. Section 5 trains the proposed model to obtain
the optimal parameters, compares it with the other two
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existing models, and verifies that the proposed model can
achieve better simulation results. Section 6 conducts an
empirical study of the three types of CF models based on the
data and describes in detail the models’ verification experi-
ments. Section 7 uses the Apollo simulation platform to verify
the model and ensure the accuracy and practicability of the
model. Section 8 introduces the summary and prospects.

2. Background

2.1. Traditional Car-Following Models. (e stimulus-re-
sponse framework is the most traditional modelling idea of
the car-following behaviour, which embodies many essential
characteristics of the car-following behaviour, while the GM
model is the most important stimulus-response type of the
traditional vehicle following model. (e GMmodel assumes
that a vehicle does not show passing or lane-changing be-
haviour when following. (e driving dynamics theory is
used to derive the basic equation:

an+1(t + T) � λv
m
n+1(t + T)

Δv(t)

[Δx(t)]l
. (1)

In equation (1), an+1(t + T) is the instantaneous accel-
eration of a following car at time (t + T); vn+1(t + T) is the
instantaneous speed of a following car at time (t + T); Δv(t)

is the relative speed of the two cars at time t;Δx(t) is the
distance between the two cars at time t; T is the response
time; λ is the sensitivity parameter to be calibrated; and m

and l are additional parameters to be calibrated. Numerous
studies have been focused on the parameter calibration and
extension of the GM model.

(e GM model clearly reflects the characteristics of CF
behaviour; it has a simple form and a clear physical meaning
based on its originality. However, this model is prone to
change with changes in traffic operational conditions and
hence lacks universality.

2.2. Basics of NN. NN is a highly nonlinear model with a
neuron as its basic unit. When a neuron receives a set of
input signals, it generates an output signal. A typical
structure is shown in Figure 1.

where x � x1 x2 · · · xd􏼂 􏼃
T ∈ Rd is the input, w �

w1 w2 · · · wd􏼂 􏼃
T ∈ Rd is the weight, and b is a bias unit.

(e sum of the weighted inputs is described using the net
input z; then, we have equation (2), as follows:

z � wTx + b, (2)

where f(x) is the activation function. (en, the output can
be expressed as follows in equation (3):

a � f(z). (3)

(e commonly used activation functions, which are
nonlinear, are as follows:

Sigmoid function:

σ(x) �
1

1 + e− x
. (4)

Tanh function:

tanh(x) �
ex − e− x

ex + e− x
. (5)

ReLU function:

ReLU(x) � max(0, x). (6)

Leaky ReLU function:

LeakyReLU(x) � max(αx, x). (7)

In practical application, the appropriate activation
function can be selected according to the actual situation.

Historically, various NN structures have been proposed;
those most commonly used include the feedforward NN, the
feedback NN, and the graph network. In this study, the
feedback NN was adopted. (e neurons in a feedback NN
can receive not only the signals of other neurons but also
their own. Compared with those in a feedforward NN, the
neurons in a feedback NN have a memory function and have
different states at different times. (e basic structure of a
feedback NN is shown in Figure 2.

In a feedback NN, signals can propagate in one or both
directions. (is type of network includes RNN and the
Boltzmann machine.

2.3. Gated RNN. To solve the long-term dependence
problem of RNNs in the long sequence of training, a gating
mechanism is introduced to selectively add new information
while selectively forgetting the retained information. Such
networks are collectively referred to as gated RNNs; the most
popular include the LSTM and GRU networks.

2.3.1. LSTM Network. An LSTM network adds the new
internal states ct and introduces three “gates”—the forget-
ting gate (f t), input gate (it), and output gate (ot). (e value
of a “gate” is within (0, 1); it is used to control the amount of
information passed.

Specifically, the forgetting gate f t controls the amount of
information to be forgotten by the internal state of the last
time point (ct− 1); the input gate it controls the amount of
information to be retained by the candidate state 􏽥ct of the
current time point; and the output gate ot controls the
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Figure 1: Structure of a neuron.
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amount of information to be output to the external state ht

by the internal state ct of the current time point.
Figure 3 shows the internal structure of the LSTM unit,

where × represents the multiplication of vector elements and
+ represents the addition of vector elements; σ(x) is the
sigmoid activation function. (us, the three gates of f t, it,
and ot can be calculated with equations (8)–(10), respec-
tively. W∗(∗ � f, i, o) and U∗(∗ � f, i, o) stand for the
weight matrix from the cell to gate, and b∗(∗ � f, i, o)

denotes the vector of each gate.

ft � σ Ufht− 1 + Wfxt + bf􏼐 􏼑, (8)

it � σ Uiht− 1 + Wixt + bi( 􏼁, (9)

ot � σ Uoht− 1 + Woxt + bo( 􏼁. (10)

(e methods for status updating are described in
equations (11)–(13) for f t, it, and ot, respectively:

􏽥ct � tanh Ucht− 1 + Wcxt + bc( 􏼁, (11)

ct � ft ∗ ct− 1 + it ∗􏽥ct, (12)

ht � ot ∗ tanh ct( 􏼁. (13)

In equations (12) and (13), ∗represents the multiplication
of vector elements.

In an LSTM network, the internal state of the unit ct can
retain certain key information for a significant amount of time.

2.3.2. GRU Network. (e internal concept of a GRU net-
work is similar to that of an LSTM network, and a GRU
network can achieve a comparable effect. However, a GRU
network has fewer parameters, lower training difficulty, and
higher practicality.

Because the input and forgetting gates in the LSTM unit
are complementary, in a GRU unit, they are combined into
one gate, i.e., the update gate zt, while the output gate of the
LSTM unit is deleted and a reset gate rt is added without
introducing a new internal state. Its structure is shown in
Figure 4.

Where the update gate controls the amount of infor-
mation to be retained by the state of the current time point
(ht) from the state of the last time point (ht− 1), as well as the
amount of new information received from the candidate
state (􏽥ht), the reset gate controls the amount of information
to be retained from the state of the last time point (ht− 1) by
the candidate state of the current time point (􏽥ht). (e
methods for the calculation of the two gates are shown in
equations (14) and (15). W∗(∗ � z, r, h) and U∗(∗ � z, r, h)

stand for the weight matrix from the cell to gate, and b∗(∗ �

z, r, h) denotes the vector of each gate.

zt � σ Uzht− 1 + Wzxt + bz( 􏼁, (14)

rt � σ Urht− 1 + Wrxt + br( 􏼁. (15)

(e methods for updating the states are shown in
equations (16) and (17):

􏽥ht � tanh Uh rt ∗ ht− 1( 􏼁 + Whxt + bh( 􏼁, (16)

ht � zt ∗ ht− 1 + 1 − zt( 􏼁∗ 􏽥ht. (17)

In the case where zt � 0 and rt � 1, the GRU network
degenerates into a simple RNN.

3. Approach to the Proposed Model

Herein, we adopted the RNN network to model CF be-
haviour. (e proper choice of model inputs and outputs can
improve the simulation accuracy of the model. Based on the
GM model, we use the speed of the leading car at time t
(vn(t)), the speed of the following car at time t (vn+1(t)), and
the distance between the two cars (Δx(t)) as inputs and the
acceleration of the following car at time t + T (an+1(t + T))

as the output. (en, we have equation (18):

an+1(t + T) � f
vn(t), vn+1(t),Δx(t), vn(t − T), vn+1(t − T),Δx(t − T), . . .

vn(t − (N − 1)T), vn+1(t − (N − 1)T),Δx(t − (N − 1)T)
􏼠 􏼡, (18)

where N is the length of the time interval of “memory.”
Figure 5 is the specific structure diagram of the model
proposed in this paper.

To eliminate the influence of dimension on the simu-
lation accuracy and convergence rate of the model, the paper
normalizes the vehicle following data (leading vehicle speed,

following vehicle speed, and following vehicle acceleration).
In different traffic environments, the behaviour of following
a car is easily affected by the propagation of the slight
disturbance of the speed of the leading car, the habit of
acceleration and deceleration, the driver’s cognition of the
environment, and the driver’s cognition of driving

x1

x2

x3

y

Layer 1 Layer 2 Layer 3 Layer 4

Figure 2: Feedback NN.
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behaviour. (e distribution of the car-following data cannot
judge whether it is close to a Gaussian distribution.
(erefore, the MinMaxScaler of the simplest method to
eliminate the influence of dimensionality and data value
range is selected in this paper to preserve the relationship
existing in the original data. (e formula for MinMaxScaler
is as follows:

Xscaled �
X − X.min

X.max − X.min
· (max − min) +min , (19)

where max and min are the maximum and minimum values
of a given zoom range, respectively; i.e., the original data are
scaled to the range of [max, min]. Specifically, the original
data are scaled to the range of [0, 1]. (en, we have the
following:

Xscaled �
X − X.min

X.max − X.min
. (20)

(eCF data are constructed to the appropriate input and
output shapes to comply with the input and output struc-
tures of the GRUmodel. Because the length of the “memory”
interval (N) is closely related to the constructed data, it also
directly affects the prediction accuracy of the model and so it
was tested in detail in this study. (en, the dataset was
randomly divided into training and test sets. Next, ReLU was
selected as the activation function of the output layer to
establish the GRU model. Because the number of hidden
layers and the number of neurons in each hidden layer can
have numerous combinations, it is necessary to separately
test each of the models with different structures to obtain the
optimal structure of the model.

MSE �
1
m

􏽘

m

i�1
yi − 􏽢yi( 􏼁

2
. (21)

(emean square error (MSE) (21) was used to construct
the loss function and the Adam optimizer [24–26], due to its
excellent performance in most cases, was adopted.

In the input layer, the time step is set to N, and each step
contains three input variables (vn, vn+1,Δx). Since it is
necessary to predict the acceleration of the following vehicle
with a continuous time of m, the input value is constructed
into a matrix X ∈ Rm×N×3 through the normalization of
formula (19). Finally, the predicted acceleration of d for a
continuous period of time of the following car was con-
structed into output y ∈ Rm×1 through the GRU gate unit of
multiple hidden layers. (e pseudocode for the construction
of the RNN-based CF model is shown in Algorithm 1.

4. Data Preparation

4.1. Processing of the Following Vehicle Data. (e Next
Generation Simulation (NGSIM) program [27] was initiated
by the U.S. Federal Highway Administration (FHWA).
(rough the established synchronous digital camera net-
work, detailed vehicle trajectory data were acquired at a time
interval of 0.1 seconds from the US-101 Freeway and the
southbound direction of Lankershim Boulevard in Los
Angeles, California; Interstate I-80 in Emeryville, California;
and the eastbound direction of Peachtree Street in Atlanta,
Georgia.

In this study, the detailed trajectory data of the east-
bound vehicles on Interstate I-80 in Emeryville, California,
were used. (e data were acquired at 10 frames per second
by seven cameras mounted on the 30-story Pacific Park Plaza
Building located at Christie Avenue. (e study road section
is 503m long and has six lanes. Lane 1 is a high occupancy
vehicle (HOV) lane and Lane 6 is a collector-distributor lane,
as shown in Figure 6.

xt–1 xt xt+1 

ht–1 ht ht+1 

ct–1 ct ct+1 

c~t–1 c~t c~t+1
tan h tan h tan h

tan h tan h tan hft–1 it–1 ot–1 

σ σ σ

×

× ×

+

ft it ot 

σ σ σ

×

× ×

+

ft+1 it+1 ot+1 

σ σ σ

×

× ×

+

c~t–1
tan h

tan hftff –1 it–1 ot–1 

σ σ σ

×

× ×

+

c~t+1
tan h

tan hftff +1 it+1 ot+1 

σ σ σ

×

× ×

+

Figure 3: LSTM unit.
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×

×

+

σ σ

+
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+

× ×

×

× × ×

×

tan h

1–1–1–

h~t–1rt–1 zt–1 
tan hσ σ

×

×

+

×
1–

h~t+1rt+1 zt+1 
tan hσ σ

+

× ×

×

1–

Figure 4: GRU unit.
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(e I-80 dataset includes vehicle trajectory data for three
time periods. (e road conditions are shown in Table 1.

In this study, we mainly analysed the CF behaviour of
cars and their microscopic characteristics. (e CF behaviour
is closely related to the road conditions. To ensure the
universality of the CF behaviour, we examined the vehicle
trajectory data between 4:00 pm and 4:15 pm, which contain
1,028,575 trajectory records. Each record contains 18 fields,
as fully described in Table 2.

4.1.1. Data Preprocessing. First, data of the following ve-
hicles were found and filtered according to the following
rules:

(1) To avoid the potential difference in CF behaviour
between different types of vehicles, we only focused
on the CF behaviour of small cars (i.e., v_Class � 2)

(2) Cars from the HOV lane (i.e., Lane_ID � 1) and the
collector-distributor lane (i.e., Lane_ID � 6) were
excluded to ensure that the vehicles under study are
associated with similar driving behaviour, i.e., to
ensure the consistency of driving behaviour

(3) (e single-lane data of driving vehicles were adopted
to avoid the influence of lane-changing behaviour on
CF behaviour

(4) Only the data for cars with a following time greater
than 45 s (i.e., 450 records) were retained to ensure

vn (t)

vn (t – T)

vn (t – (N – 1)∗T)

...

vn+1 (t)

vn (t)
vn+1 (t)

vn+1 (t – T)

an+1 (t + T)

vn+1 (t – (N – 1)∗T)

...

∆x (t)

∆x (t – T)

∆x (t – (N – 1)∗T)

...

∆x (t)

Current time t

Figure 5: Schematic structure of the GRU-based CF model.
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GRU-based car-following model

Input: vn(t), vn+1(t),Δx(t), vn(t − T), vn+1(t − T),Δx(t − T), . . . ,

vn(t − (N − 1)T), vn+1(t − (N − 1)T),Δx(t − (N − 1)T)
Output: an+1(t + T)

(1) Data normalization using MinMaxScaler.
(2) (e input is constructed as X ∈ Rm×N×3, (e output is constructed as y ∈ Rm×1

(3) (e constructed data is divided into training set and testing set.
(4) Modelling Sequential(), add GRU Layer and Dense Layer
(5) Compiler model, loss function� “MSE,” optimizer� “Adam”
(6) while model convergence do
(7) Training model
(8) end while
(9) Test model

ALGORITHM 1: Pseudocode for the construction of the GRU-based CF model.

Study area

Ashby ave
on-ramp

1650′

420′

1230′

1
2

3
4

5

6 Lane 6 width > 16′

≈170′

140′

Powell street
on-ramp

EB/NB I-80

Figure 6: Outline of the study area.
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the integrity of the CF process and to ensure an
adequate number of samples for model training

(e pseudocode for the data processing is shown in
Algorithm 2.

Table 3 is a part of vehicle tracking data obtained through
data preprocessing, whose lead vehicle ID is 66 and the
following vehicle ID is 74.

4.1.2. Driver Reaction Time. (e driver reaction time refers
to the time between the driver perceiving a change in the
surrounding environment and responding [28, 29]; it is also
an important parameter in the CF model.

According to the restrictions of the CF, as the driving
state of the leading car changes, the following car changes
accordingly. However, changes in the driving states of the
two are asynchronous. (is is because the driver of the
following car must have a reaction process to respond to a
change by the leading vehicle. (is reaction process includes
four parts: perception, judgment, reaction initiation, and
reaction execution; the required time is referred to as the
reaction time. Assuming that the reaction time is Twhen the
leading car makes a change at time t, the following car can
only make the corresponding change at time (t + T).

(e driver reaction time has been extensively investi-
gated by many researchers. Kim et al. [30] analysed the
braking reaction time of young and old drivers. Jin [31]
studied the driver reaction time using least squares analysis
via SPSS 13.0 and generated a reaction time distributionmap
(Figure 7).(e calculation showed that the weighted average
of driver reaction time is 1.077 s.

Lu et al. [32] obtained statistical information on driver
reaction time through 63 samples, as shown in Table 4.

Based on the above discussion, we set the reaction time
to 1 s in this study. Because the acquisition time interval of
the adjacent two records of the CF data is 0.1 s, we excerpted
one record for every 1 s (i.e., 10 records); the new dataset was
saved for later use.

4.2. Evaluation Index. In this paper, MSE is used as the
evaluation index of CFDT model. MSE is a risk function,
related to the expected value of the squared error loss or
quadratic loss. MSE is arguably the most important criterion
used to evaluate the performance of a predictor or an es-
timator. It measures how close a fitted line is to data points.
For every x data point, take the distance vertically from the
point to the corresponding y value on the curve fit (the
error), and square the value. (e lower estimation value of
MSE represents the lower error [33, 34]. (e specific cal-
culation formula of MSE has been shown in equation (21).

5. Training and Test

In this section, we used Keras, a Python-based deep learning
library, to construct and train the CFDT model, and used
TensorFlow as a back-end tool. (e hardware environment
of our experiment is as follows: processor Intel Xeon
2.10GHz E5-2683 v4, memory 64GB 2400MHz, operating
system Windows Server 2012 R2 standard, IDE: PyCharm.

According to this model training process, the optimal
length of a “memory” time interval and the optimal structure

Table 1: Road conditions.

Acquisition period Road condition
4:00 p.m.∼4:15 p.m. Transition from noncongestion to congestion
5:00 p.m.∼5:15 p.m. Congestion
5:15 p.m.∼5:30 p.m. Congestion

Table 2: Field descriptions.

Field Description
Vehicle_ID Vehicle identification number (increase by entry time)
Frame_ID Frame identification number (increase by start time)
Total_Frames (e total number of frames in the dataset of vehicles
Global_Time Time elapsed since 1970.1.1 (unit: ms)
Local_X X-value in study regional coordinate system
Local_Y Y-value in study regional coordinate system
Global_X X-value in standard geographic coordinate system
Global_Y Y-value in standard geographic coordinate system
v_length Vehicle length (unit: feet)
v_Width Vehicle width (unit: feet)
v_Class Vehicle type (1: motorcycle, 2: compact vehicle, 3: large vehicle)
v_Vel Instantaneous vehicle speed (unit: feet/s)
v_Acc Instantaneous vehicle acceleration (unit: feet/s2)
Lane_ID Number of the current lane of the vehicle
Preceding Vehicle identification number of leading vehicle
Following Vehicle identification number of following vehicle
Space_Headway Head spacing (unit: feet)
Time_Headway Headway time distance (unit: s)
(e acquisition interval is 0.1 s; 1 ft� 0.3048m.
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Processing of vehicle trajectory data.
Input: Vehicle Trajectory Data, the number of trajectory records n
Output: Car-following Data

(1) for pos_Lv ← 0 to n
(2) if Following[pos_Lv]≠∅ then
(3) time ← 0
(4) for pos_Fv ← 0 to n
(5) if Vehicle_ID [pos_Fv] �� Following[pos_Lv] and Fram_ID[pos_Lv] �� Fram_ID[pos_Fv] then
(6) time ← time + 1
(7) Data ← Data + [v_Vel[pos_Lv], v_Vel[pos_Fv], v_Acc[pos_Fv], Space_Headway − v_length[pos_Lv]]

(8) end if
(9) end for
(10) if time> 450 then
(11) (e Data that holds the data is stored in CSV format
(12) end if
(13) end for

ALGORITHM 2: (e pseudocode for the CF data processing.

Table 3: A group of following team part of the data.

Lead vehicle speed Following vehicle speed Following vehicle acceleration Space
22.07 18.5 0 27.72
22.07 18.5 0 28.07
22.07 18.5 0 28.41
22.22 18.5 0 28.77
22.26 18.5 0 29.17
21.94 18.5 0 29.57
21.17 18.57 1.07 29.93
20.05 18.71 1.84 30.14
19.01 18.78 0.39 30.19
18.33 18.7 − 2.08 30.12
18.01 18.46 − 3.41 30.03
17.96 18.19 − 2.24 29.99
17.99 18.04 − 0.59 30
18 18 − 0.11 30
18 17.99 0.05 30
18 18 0.16 30
18 18.02 0.26 30
18 18 − 0.48 29.99
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Figure 7: Reaction time distribution map.
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of the model must be determined so the model has its best
performance. (e results of previous studies have shown that
the optimal length of a “memory” time interval is not related
to the structure of themodel, and theNGSIMdataset does not
need more than three hidden layers for model performance
[21]. On this basis, we performed the following experiment.

First, we fixed the structure of the model. To reduce the
training time, a simple structure with a single hidden layer and
20 neurons was adopted to separately perform the experiment
with different N values. (e results are shown in Figure 7.

Figure 8 shows that when the length of the “memory”
time interval was 10, i.e., when the driver of the following car
only considers the historical information within the time
period of the last 10T, the model had the best performance.

On this basis, assumingN� 10, we separately trained and
tested the models with the nine structures listed in Table 5.

(e results showed that, for models with one hidden
layer (Structures 1 through 3), the performance value of the
model with Structure 3 is the minimum; for models with two
hidden layers (Structures 4 through 6), the performance
value of the model with Structure 5 is the minimum; and for
models with three hidden layers (Structures 7 through 9), the
performance value of the model with Structure 8 is the
minimum. In terms of model performance, the performance
values of the models are ranked in an ascending order: the
model with Structure 3< the model with Structure 5< the
model with Structure 8.

Next, the CF data, in which the vehicle ID of the leading
car is 66 and that of the following car is 74, were trained
using themodel with Structure 3, themodel with Structure 5,
and the model with Structure 8. (e simulation results were
visualized and are shown in Figures 9–11.

In each of the figures, the first subplot shows the actual data,
the second subplot shows the simulation data cluster belonging
to 100 different trainingmodels, and the third subplot shows the
simulation data cluster with error bars, i.e., mean± std.

In summary, for the RNN-based CF model, the model
with a “memory” time interval length of N� 10 and three
hidden layers that contain 30, 10, and 10 neurons had the
highest prediction accuracy and generated satisfactory
simulation results for a road section that had continuous
acceleration and deceleration behaviours.

6. Comparison with Other CF Models

To test the simulation accuracy of the RNN-based CF model,
two othermodels, i.e., BPNN and SVR, were selected from the

data-driven models to conduct a comparative experiment.
Similarly, to ensure the fairness of the comparison, the speed
of the leading car at time t (vn(t)), the speed of the following
car at time t (vn+1(t)), and the distance between the two cars
at time (Δx(t)) were used as the inputs to the model, and the
acceleration of the following car at time (an+1(t + T)) was
used as the output of themodel. MSE continued to be adopted
as the criterion for model evaluation.

6.1. BPNN-Based CF Model. First, a model as shown in
Figure 12 was constructed based on the BPNN. (e model
can have various structures in terms of the number of hidden
layers and the number of neurons in each layer. According to
Kolmogorov’s theorem [35], a back-propagation neural
network with three layers is sufficient to complete any
mapping from n dimensions tom dimensions.(erefore, we
choose the BPNN network with two hidden layers as the
structure of the BPNN-based CF model. After multiple tests,
the optimal structure, which included two hidden layers
containing 20 and 10 neurons, was selected. (e Tan h
function was used as the activation function of the neurons.

(e model was constructed and trained using Keras.
Methods such as the holdout method were used to randomly
create the training and test sets.

Table 4: Reaction time statistics.

Response time τ(s)

Mean value 0.7016
Standard error 0.05236
Median 0.50
Standard deviation 0.41562
Variance 0.173
Range of change 1.70
Minimum 0.30
Maximum 2.00

7 8 9 10 11 12 13
N

8.5

9

9.5

10

10.5

11

M
SE

MSE

Figure 8: Influence of the length of the “memory” time interval.

Table 5: Structures of the model.

Structure number
Hidden layer

1 2 3
1 10 0 0
2 30 0 0
3 50 0 0
4 10 5 0
5 30 10 0
6 50 20 0
7 10 5 5
8 30 10 10
9 50 20 20
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(e CF data with the leading car ID of 2771 and the
following car ID of 2812 were randomly selected; their
simulation results are shown in Figure 13.

Figure 12 shows that because this dataset had a signif-
icant amount of “noise” (i.e., the following car was

constantly in an accelerating or decelerating state), the
resulting simulation results of the model have a low accuracy
(i.e., there is a certain error when compared to the real data).
Nevertheless, the results reflect the variation trend in the
acceleration of the following car. Moreover, the model has a
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relatively simple structure and fast convergence rate. (e
above experiment demonstrates the validity of the BPNN-
based CF model.

6.2. SVR-Based CFModel. we constructed an SVR-based CF
model, as shown in Figure 14.

where the Gaussian kernel function was selected as the
kernel function for the model.

KGaussian(x, z) � exp −
x − z2

����
����

2σ2
􏼠 􏼡. (22)

To simplify the experimental process, we used the svm.
SVR in the existing Scikit-learn framework for training and
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testing and assumed the parameter kernel of svm. SVR was
“rbf.” As in the case of the BPNN-based model, the dataset
was randomly split.

We again randomly selected a set of CF data that was
associated with leading car 79 and following car 87. In
addition, the following car exhibited frequent acceleration
and deceleration behaviour. As shown in Figure 15, the
simulation results indicate that the prediction error of the
SVR-based model is small.

6.3. Comparison between Different CF Models. To compare
the above three CF models, we tested each of the models on
the same CF dataset (i.e., leading car 1503 and following car
1507). (e simulation results are shown in Figure 16.

In this CF dataset, the acceleration and deceleration
behaviour of the following car was infrequent, and the
following car was driving at a constant speed nearly 40% of
the time. As reflected in Figure 16, the polyline of the real
data is relatively smooth. (erefore, all three models

performed well in the simulation. However, in Figure 16, the
GRU predicted acceleration is closer to the real acceleration
than the BPNN model and the SVR model when the real
acceleration of 0 to 5 seconds and 50 to 60 seconds has a
significant continuous jump. (erefore, the GRU model
proposed in this paper is superior to the SVR model and the
BPNN model.

Figure 17 shows the MSE evaluation values of the above
three models. (e lower estimation value of MSE represents
the lower error. (rough the comparison of MSE evaluation
index values in the above three model simulation experi-
ments, it is found that the MSE value of BPNN model is the
highest, while the model proposed in this paper is the lowest,
which is only half of the MSE value of BPNN model.
(erefore, the comparison of the MSE evaluation index
values in the above three model simulation experiments
shows that the proposed model is superior to the SVRmodel
and the BPNN model.

To conclude, the above three models can not only reflect
the variation trend in the acceleration of the following car
but also accurately predict the values. However, for vehicles
driving at variable speeds over a long period of time, the
proposed model, which includes a memory unit, had better
simulation results but, correspondingly, a slower conver-
gence rate than the other two models.

7. Test Verification on Apollo
Simulation Platform

(e proposed method for predicting a car-following be-
haviour is combined with the Apollo platform as follows:

Differentiating scene information in an autonomous
driving process of a vehicle into static information and
dynamic information, and importing the static information
and the dynamic information into Dreamview of the Apollo
platform to construct a road scene, specifically including
obtaining three-dimensional information of a traffic scene
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and motion information, wherein the three-dimensional
information of the traffic scene refers to static information in
the corresponding scene information and the motion in-
formation of the traffic scene refers to dynamic information
in the scene information; preliminarily constructing a to-
pological structure of the scene, wherein the topological

information of the scene includes information such as the
number of surrounding vehicles, the lanes occupied by
surrounding vehicles, and the distance from a road edge;
inputting such information into Dreamview via a corre-
sponding interface of Apollo; configuring paths to specific
modules based on the Table of Module Output Interface
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Standards (Table 6) provided by the simulation environ-
ment, and performing, by respective modules in the Stan-
dard, environment construction with reference to the traffic
flow and simulated environment information resulting from
understanding of the scene, as shown in Table 6.

During the construction process, the dynamic infor-
mation and the static information during vehicle driving are
obtained through understanding of the scene; the desired
distance and reaction time are obtained by capturing the
driver’s behaviour features, and the process of the car-fol-
lowingmodel is improved using RNN, computing the safety-
and-comfort-based optimal solution of the following-car
acceleration range. Meanwhile, the model is tested and
validated using the Apollo simulation platform to ensure
accuracy and utility of the model.

(e method for predicting a car-following behaviour
under the Apollo platform as disclosed is tested using the
Apollo simulation platform. After the Apollo software en-
vironment is configured, the output interface of the Apollo
platform is docked with the method. After successfully
predicting information such as the following-car accelera-
tion using the proposed method, the method is docked with
the decision planning module Planning of Apollo; finally,
the Apollo software implements testing and validation of the

method; during multiple times of simulation process, the
parameters are constantly adjusted, and the algorithm is
optimized over the Apollo visual platform, specifically:

Deploying the environment (e.g., Docker environ-
ment), and pulling the container mirror of Apollo; entering
the Apollo container, and compiling the simulation envi-
ronment (e.g., Dreamview simulation environment); run-
ning the simulation environment after successful
compilation; testing and validating the efficacy of the model
using the corresponding simulation environment; the
testing and validating interface refers to the simulation
environment interface, wherein the interface is shown in
Figure 18.

Docking the traffic flow and environment information
outputted by Apollo with the input of the model; then,
converting the predicted acceleration value obtained using
the model into the Planning input simulation platform,
wherein the specific docking path is shown in Table 7.

Docking the traffic flow and environment information
outputted by Apollo with the input of the model; then,
converting the predicted acceleration value obtained
through the model into the Planning input simulation
platform, wherein the specific docking path is shown in
Figure 19.

Table 6: Table of module output interface standards provided by simulation.

Module Topic Description Field

Localization /apollo/localization/
pose

Output data such as the position and
orientation of the following car

Position, orientation, linear_velocity, linear_acceleration,
angular_velocity in pose

Perception

/apollo/perception/
obstacles

Output data such as positions,
orientations, velocities, shapes, etc. of

respective obstacles

(e simulation will provide id, position, theta, velocity,
length, width, height, type, polygon_point in

PerceptionObstacle
/apollo/perception/

traffic_light Output traffic light signals (e simulation will provide color, id and tracking_time in
Traffic Light,

CAN bus /apollo/canbus/
chassis

Output data such as the velocity and
drive mode of the following car (e simulation will provide speed_mps

Router /apollo/
routing_response Output the navigation result

(e simulation will provide routing response, including
the planned navigation route from the current position to

the destination
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Figure 17: Comparison of the MSE evaluation values of the three CF models.
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Figure 18: A simulation Apollo platform.

Figure 19: Simulation environment.

Table 7: Table of decision planning module interface standards.

Module Topic Description Fields

Planning /apollo/
planning

Output the planned trajectory of the
following car in a future period of time

(e developer must provide
(1) timestamp_sec in header

(2) v, a, relative_time in trajectoryPoint
(3) x, y, z, theta, kappa in pathPoint

Prediction /apollo/
prediction

Output respective obstacles and their
predicted trajectories

(e developer optionally outputs trajectories in predictionObstacle,
which may be used for displaying predicted trajectories of respective

obstacles

Decision /apollo/
decision

Output decisions with respect to
various obstacles and the main

decisions

(e developer optionally outputs mainDecision and objectDecisions,
which may be used for displaying the main decisions and the

decisions with respect to respective obstacles
Testing and validating the model in the Apollo simulation environment.

(a) (b)

(c) (d)

Figure 20: (e following process under Apollo platform.
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Figure 20 is part of the following process diagram of the
vehicle following behaviour visualization on the Apollo
platform using the model proposed in this paper. In the
figure, the cube with green border is the leading car and its
current speed is shown directly above it. (e blue car is the
following car and its current speed is shown at the top right
of the figure. In Figure 20(a), the speed of the leading car is
5m/s (equivalent to 18 km/s), and the speed of the following
car is 20 km/s. In Figure 20(b), the speed of the leading car is
5m/s (equivalent to 18 km/s), and the speed of the following
car is 21 km/s. In Figure 20(c), the speed of the leading car is
5m/s (equivalent to 18 km/s), and the speed of the following
car is 21 km/s. In Figure 20(d), the speed of the leading car is
5m/s (equivalent to 18 km/s), and the speed of the following
car is 23 km/s. In the comparison of Figures 20(a)–20(d), it is
found that the speed of the following car has been fluctuating
from the speed of the leading car so that the speed of the
following car is not longer than that of the leading car.
Moreover, a relatively long distance is maintained between
the following car and the leading car, which provides suf-
ficient braking distance for the following car to ensure the
driving safety of the following car. (rough the visual
simulation of the model proposed in this paper on the
Apollo simulation platform, it was found that there would be
no collision between the following car and the guiding car
during the long time of following.(erefore, by using Apollo
simulation platform to test the model visually, it is found
that the model proposed in this paper is valid and practical.

8. Conclusions

In this study, we used high-precision vehicle trajectory data
from Interstate I-80 in the NGSIM dataset to obtain the CF
data through data preprocessing. Based on the characteristics
of the CF behaviour, we verified the correctness of the data
through experiments and chose the reaction time of T�1 s to
further filter the CF data. We modelled the CF behaviour
based on the RNNnetwork, using the speed of the leading car,
the speed of the following car, and the distance between the
two cars, all at time t, as inputs and the acceleration of the
following car at time (t+T) as output. Finally, we performed
in-depth examination and experiments on the length of the
“memory” time interval and the network structure of the
constructed model and obtained the parameters that enabled
themodel to have its best performance. Further, we compared
the simulation results of the constructed model with those of
the BPNN- and SVR-basedmodels and demonstrated that the
constructed model with a memory unit added had higher
simulation accuracy. Both the BPNN- and SVR-based CF
models were unstable; i.e., when the following vehicle had
frequent acceleration and deceleration behaviour, their
simulation results were poor. In comparison, the RNN-based
CF model was able to make more accurate predictions be-
cause it considered the relevant information of the last several
time intervals. At the same time, Apollo simulation platform
was used to test and verify the model, ensuring the accuracy
and practicability of the model.

(e RNN-based CF model established in this study was
only used to study the CF behaviour between small cars. In

reality, the CF behaviours between different types of vehicles
are different. In a follow-up study, we will construct models
that consider various types of vehicle so that the existing
model can be further improved according to the actual
conditions such as asymmetric driving behaviour and
multiple leading vehicles.
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