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Software reliability is an important feature that influences systems’ reliability. Software reliability models are a common tool to
evaluate software reliability quantitatively. Various reliability models have been suggested based on the NHPP (nonhomogeneous
Poisson process). In this article, a new NHPPmodel based on the Lindley distribution is proposed.-emathematical formulas for
its measures of reliability are obtained and graphically illustrated. -e proposed model’s parameters are estimated using both the
NLSE (nonlinear least squares estimation) and the WNLSE (weighted nonlinear least squares estimation) methods. -e model is
then validated based on several different reliability datasets. -e methods of estimation are evaluated and compared using three
different criteria. -e performance of the new model is also evaluated and compared, both objectively and subjectively, with three
previously suggested models. -e application results show that our new model demonstrates good performance in our selected
failure data.

1. Introduction

-e development of software systems is becoming more
expensive and time-consuming because of their increasing
complexity. Consequently, the reliable performance of
software systems is becoming more important. Numerous
SRGMs (software reliability growth models) with various
assumptions have been proposed since the 1970s [1–3].
Several researchers have used reliability models based on the
NHPP during the past years [4–8].

Kapur et al. [9] proposed a new SRGM based on It􏽢o type
of stochastic differential equation; the proposed model
performs comparatively better than the existing NHPP
models. Xu and Yao [10] also suggested a novel NHPP
model based on the partial differential equation, and their
suggested model exhibits a closer fitting to observation. Li
and Yi [11] proposed a modified SRGM to reconsider the
reliability of open source software and showed that it well fits
the failure data and provides powerful prediction capability.
Ramasamy and Lakshmanan [12] proposed the SRGM with

infinite testing effort function. Recently, Al-Turk [13] pro-
posed a NHPP model based on the two-parameter log-lo-
gistic distribution. -e essential model characteristics were
obtained, and the parameters of the model were estimated
using the MLE (maximum likelihood estimation) and the
NLSE methods. -e results of the application indicate that
the considered model gives a reasonable prediction capa-
bility for real studied datasets. Hui and Liu [14] proposed a
SRGM based on Gaussian new distribution. -e proposed
model was confirmed by experiments to have a better fit and
prediction performance than other reliability models.

In this article, we propose a new model that belongs to
the NHPP class and based on the Lindley distribution.
Several properties of the proposed model are outlined in
Section 2 with graphical representations. -ese properties
include MVF (mean value function), failure intensity,
number of remaining faults, error detection rate, MTBF
(mean time between failures), and conditional reliability.
-e NLSE and WNLSE methods are used for the purpose of
estimating the proposed model parameters in Section 3.
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Application on real datasets is provided in Section 4.-e last
section concludes the article.

2. NHPP Lindley Model

2.1. Model Construction. A one-parameter Lindley distri-
bution was suggested by Lindley [15] for the analysis of
failure data. -is model can capture failure data with dif-
ferent shapes of hazard rates. It has been studied by several
authors as a good alternative to the exponential and Weibull
distributions [16–18]. As with all statistical distributions, the
Lindley distribution is specified by its PDF (probability
density function),

f(t) �
θ2

θ + 1
(1 + t)e

− θt
, (1)

or its CDF (cumulative distribution function),

F(t) � 1 −
θ + 1 + θt

θ + 1
e

− θt
, (2)

where t> 0, θ > 0, and θ is the shape parameter. -e main
aim of the NHPP model is to assess and predict the expected
number of detected faults up to a specific point of time,
which can be achieved using its MVF. Suppose m(t) denotes
the cumulative number of faults discovered at time t, and
F(t) is the distribution function of time between two suc-
cessive failures, then the MVF of the NHPP model can be
expressed as follows [5]:

m(t) � aF(t), (3)

while the corresponding intensity function is given by

λ(t) �
dm(t)

dt
� af(t), (4)

where a> 0 is the expected number of faults. By substituting
equations (1) and (2) into equations (3) and (4), respectively,
we get the MVF of the NHPP L (Lindley) model as follows:

m(t) � a
(θ + 1) − (θ + 1 + θt)e

− θt

θ + 1
􏼢 􏼣, (5)

and its corresponding intensity function as follows:

λ(t) �
a θ2

θ + 1
(1 + t) e

− θt
. (6)

2.2.Model Characteristics. -eNHPP model has very useful
reliability measures for describing failure phenomena. In
this section, the mathematical formulas of some of these
measures for the new model will be given. First, the number
of remaining faults of the NHPP L model is given by

n(t) � a − m(t)

�
a(θ + 1 + θt)

θ + 1
e

− θt
,

(7)

and then the error detection rate can be defined as follows:

d(t) �
λ(t)

a − m(t)

�
θ2(1 + t)

θ + 1 + θt
,

(8)

while the MTBF is as follows:

MTBF �
1

λ(t)

�
θ + 1

aθ2(1 + t)e
− θt

.

(9)

-e conditional reliability R(x | t) is expressed by the
probability that nondetected fault is found in the interval
(t, t + x), given that a fault occurred at time t≥ 0. x> 0 is the
interval of operation time according to some practical or
administrative requirements [19]. Mathematically, the
conditional reliability of the NHPP L model can be obtained
as follows:

R(x|t) � exp[− (m(t + x) − m(t))]

� exp −
a

θ + 1
1 − e

− θx
􏼐 􏼑 e

− θt
(θ + 1 + θt)􏼐 􏼑 − θxe

− θ(t+x)
􏼐 􏼑􏼔 􏼕.

(10)

2.3. Graphs of the Model Characteristics. -e plots of the
NHPP L model’s characteristics for different selected values
of parameters are shown in Figures 1–6. Figure 1 illustrates
the MVF which represents the variation of the number of
faults detected with respect to time. From this figure, we can
see that, initially, the faults detected during testing are very
high but later on become stable, and also larger values of the
parameter a give higher MVF form. Figure 2 displays that
the intensity function varies in shape over the different
selected shape parameters, and it reaches a larger peak level
with the larger value of the parameter a. -e number of
remaining errors function in Figure 3 decreases as the testing
time increases; smaller values of the parameter a give a lower
form of the number of remaining errors function. In Fig-
ure 4, the error detection rate function increases as the
testing time increases; a larger value of the shape parameter
gives a larger form of the failure occurrence rate per fault of
the software function. -e MTBF function in Figure 5 in-
creases with the progress of the testing time. In Figure 6, we
can see that as t tends to infinity the conditional reliability
becomes approximately 1.

3. Estimation of Model Parameters

In this section, the NLSE and WNLSE methods are applied
for the estimation of parameters of our proposed model.

3.1.(eNLSE andWNLSEMethods. Assume that a software
system is tested forT units of time and n faults were detected.
Let 0< t1 < t2 < · · · < tn <T be the times at which the failures
were observed. m(ti;Θ) is the MVF; and Θ is its unknown
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parameters. -e parameters Θ are thus derived from n

observed data pairs: (m0, t0), (m1, t1), . . . , (mn, tn) where mi

is the total number of faults detected within time (0, ti).
-en, the NLSE method aims to minimize the following
function:

LSS(Θ) � 􏽘
n

i�1
e
2
i � 􏽘

n

i�1
mi − m ti;Θ( 􏼁( 􏼁

2
, (11)

while the WNLSE method aims to minimize the following
function:

LSSW(Θ) � 􏽘
n

i�1
wi mi − m ti;Θ( 􏼁( 􏼁

2
, (12)

where wi > 0 and(i � 1, . . . , n) are positive weights;􏽐n
i�1 wi �

n [20].

3.2. (e NLSE and WNLSE Methods for the NHPP L Model.
For the NLSE, we substitute equation (5) in equation (11) as
follows:
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Figure 1: Plots of the MVF of the NHPP L model for (a) selected values of θ and (b) selected values of a.
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Figure 2: Plots of the intensity function of the NHPP L model for (a) selected values of θ and (b) selected values of a.
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LSS(a, θ) � 􏽘

n

i�1
mi − a 1 −

θ + 1 + θti( 􏼁

θ + 1
e

− θti􏼢 􏼣􏼠 􏼡

2

. (13)
Taking the partial derivative of equation (13) with respect

to a and θ, respectively, we get

dLSS(a, θ)

da
� − 2􏽘

n

i�1
mi − a 1 −

θ + 1 + θti( 􏼁

θ + 1
. e

− θti􏼢 􏼣􏼠 􏼡. 1 −
θ + 1 + θti( 􏼁

θ + 1
. e

− θti􏼠 􏼡,

dLSS(a, θ)

dθ
� 2􏽘

n

i�1
mi − a 1 −

θ + 1 + θti( 􏼁

θ + 1
e

− θti􏼢 􏼣􏼠 􏼡 a
θ + 1 + θti( 􏼁

θ + 1
− te

− θti􏼐 􏼑 +
(θ + 1) 1 + ti( 􏼁 − θ + 1 + θti( 􏼁

(θ + 1)
2 e

− θti􏼠 􏼡􏼢 􏼣􏼠 􏼡.

(14)
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Figure 3: Plots of the number of remaining faults function of the NHPP L model for (a) selected values of θ and (b) selected values of a.
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Figure 4: Plots of the error detection rate function of the NHPP L model for selected values of θ.
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By setting the derivatives equal to zero, we get the fol-
lowing nonlinear equations:

􏽢a �
􏽐

n
i�1 mi 1 − θ + 1 + θti( 􏼁/(θ + 1)( 􏼁.e

− θti􏼐 􏼑

􏽐
n
i�1 1 − θ + 1 + θti( 􏼁/(θ + 1)).e

− θti􏼐 􏼑
2
,􏼒

(15)

a 􏽘
n

i�1
mi.tie

− θti .
1

(θ + 1)
2 −

θ + 1 + θti( 􏼁

θ + 1
􏼠 􏼡 + a

2
􏽘

n

i�1
1 −

θ + 1 + θti( 􏼁

θ + 1
e

− θti􏼢 􏼣.tie
− θti .

θ + 1 + θti( 􏼁

θ + 1
−

1
(θ + 1)

2􏼠 􏼡 � 0. (16)
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Figure 5: Plots of the MTBF function of the NHPP L model for (a) selected values of θ and (b) selected values of a.
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Figure 6: Plots of the conditional reliability of the NHPP L model for (a) selected values of θ and (b) selected values of a.
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-e closed form expression for the NLS estimates of θ
cannot be obtained. Consequently, an estimate of parameter
θ can be obtained by numerically solving the nonlinear
equation (16), and then by substituting this estimate in
equation (15), the estimate of the parameter a can be
obtained.

For the WNLSE, we substitute equation (5) in equation
(12), and thus we obtain

LSSW(a, θ) � 􏽘

n

i�1
wi mi − a 1 −

θ + 1 + θti( 􏼁

θ + 1
e

− θti􏼢 􏼣􏼠 􏼡

2

.

(17)

Taking the partial derivative of equation (17) with respect
to a and θ, respectively, we get

dLSSW(a, θ)

da
� − 2􏽘

n

i�1
wi mi − 􏽢a 1 −

θ + 1 + θti( 􏼁

θ + 1
.e

− θti􏼢 􏼣􏼠 􏼡. 1 −
θ + 1 + θti( 􏼁

θ + 1
.e

− θti􏼠 􏼡,

dLSSW(a, θ)

dθ
� 2􏽘

n

i�1
wi mi − a 1 −

θ + 1 + θti( 􏼁

θ + 1
e

− θti􏼢 􏼣􏼠 􏼡 a
θ + 1 + θti( 􏼁

θ + 1
− te

− θti􏼐 􏼑 +
(θ + 1) 1 + ti( 􏼁 − θ + 1 + θti( 􏼁

(θ + 1)
2 e

− θti􏼠 􏼡􏼢 􏼣􏼠 􏼡.

(18)

By setting the derivatives equal to zero, we have the
following nonlinear equations:

􏽢a �
􏽐

n
i�1 wimi 1 − θ + 1 + θti( 􏼁/(θ + 1)( 􏼁.e

− θti􏼐 􏼑

􏽐
n
i�1 wi 1 − θ + 1 + θti( 􏼁/(θ + 1)).e

− θti􏼐 􏼑
2
,􏼒

(19)

a 􏽘
n

i�1
wimitie

− θti .
1

(θ + 1)
2 −

θ + 1 + θti( 􏼁

θ + 1
􏼠 􏼡 + a

2
􏽘

n

i�1
wi 1 −

θ + 1 + θti( 􏼁

θ + 1
e

− θti􏼢 􏼣.tie
− θti .

θ + 1 + θti( 􏼁

θ + 1
−

1
(θ + 1)

2􏼠 􏼡 � 0. (20)

Closed form expression for the WNLS estimate of θ
cannot be obtained. By solving equation (20) using the
Gauss–Newton method, we obtain the value of the estimate,
and then by substituting this estimate in equation (19), the
estimate of the parameter a can be obtained.

4. Application to Failure Data

In this section, examples of real data are used to compare the
two considered methods of estimation for the proposed
model. Also, we perform a comparative study to evaluate the
effectiveness of the proposed model with three of the pre-
viously existing models. Useful results based on the studied
real datasets are presented and discussed at the end of this
section. To facilitate mathematical computation, a software
tool was developed using R language version 3.6.1.

4.1. Datasets. Nine published datasets with different sizes
were chosen for our evaluation study. References for the
selected datasets are shown in Table 1.

4.2. Models. In addition to our proposed model (NHPP L),
three other well-known reliability models are considered,
and the names and MVFs of these models are listed in
Table 2.

4.3. Evaluation Criteria. To check the performance of the
considered models, we used the following three criteria
based on equations (21)–(23). -e mean square error (MSE)
is the variation between the predicted values and the actual
observations. It is defined as [19]

MSE � 􏽘
n

i�1

􏽢m ti( 􏼁t − nmi( 􏼁
2

n − k
, (21)

where 􏽢m(ti) is the estimated number of faults at time ti

obtained from the considered model; mi is the total number
of faults detected within time (0, ti), (i � 1, . . . , n); n is the
number of observations; and k is the number of parameters.
A lower value of the MSE indicates more confidence in the
model and thus better performance. -e variance is defined
as follows [29, 30]:

variance �

�����������������������

1
n − 1

􏽘

n

i�1
mi − 􏽢m ti( 􏼁 − Bais( 􏼁

2

􏽶
􏽴

, (22)

where the bias is defined as | 􏽐
n
i�1(m(ti) − mi)/n|. -e av-

erage of the prediction faults is referred to as the prediction
bias, and its standard deviation is often used as a measure of
the variance in the predictions. -e small value of variance
indicates that the model fits the data well. -e coefficient of
determination (R2) can measure how precise the fit is in
describing the deviation of the data. It is defined as [19]
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R
2

� 1 −
􏽐

n
i�1 mi − 􏽢m ti( 􏼁( 􏼁

2

􏽐
n
i�1 mi − 􏽐

n
j�1 mj/n􏼐 􏼑􏼐 􏼑

2. (23)

Values for this coefficient range from 0 to 1. -e value of
R2 closest to 1 indicates the best model.

4.4. Results and Discussion

4.4.1. Comparative Study of the Estimation Methods. -is
section evaluates the performance of the NLSE and WNLSE
methods for the NHPP L model based on eight datasets. -e
results are shown in Table 3. From the evaluation criteria
values in Table 3, we derived the following conclusions:

(i) -e NHPP L model provides values indicative of a
better model for most of the evaluation criteria in
most cases when using the WNLSE method.

(ii) -e different evaluation criteria gave different re-
sults, and this indicates the necessity to study several
criteria during the comparison.

Figures 7 and 8 illustrate the actual and fitted curves of
software failures using the NLSE and WNLSE methods.
According to these figures, we can see our new model
provides a good fit for all considered datasets when using
either the NLSE or WNLSE methods. In particular, the
proposed model is more suitable for modeling the failure
datasets when using the WNLSE method rather than the
NLSE method.

4.4.2. Comparing the Performance of Various SRGMs for
Some Real Datasets. Since the proposed model is new
concerning the predication/estimation of software reliabil-
ity, we compared its accuracy with some well-known and
widely used SRGMs, namely, the GO model, delayed
S-shaped model, and inflection S-shaped model. Our
comparative study is based on five datasets, DS2, DS3, DS4,
DS5, and DS9, and used the WNLSE as the method of es-
timation. -e Kolmogorov–Smirnov test was used to check
and compare the fit between these datasets and our studied
reliability models. -e results are presented in Table 4. From
the table, we can observe the following:

(i) -eMSE values for all studied models are very close,
indicating that all studied models have the ability to
describe the five selected systems effectively with
minor differences between them in terms of their
performance. -e NHPP L model ranked the second
for DS2, DS3, and DS5 while it ranked the first for
DS4 and the third for DS9.

(ii) -e values for the coefficient of determination (R2)

for all studied models are close to 1. -erefore, it can

Table 1: References for the datasets.

Dataset References Number of faults
1 Hayakawa and Telfar [21] 30
2 Li and Pham [22] 14
3 Li and Pham [22] 60
4 Xie et al. [23] 30
5 Wang et al. [24] 21
6 Hurtado et al. [25] 23
7 Hurtado et al. [25] 15
8 Hurtado et al. [25] 14
9 Liu et al. [26] 31

Table 2: -e model names and MVFs.

Model name MVF
Goel–Okumoto
(GO) model
[4, 27]

m(t) � a(1 − e− bt)

Delayed S-shaped
model [5, 28] m(t) � a(1 − (1 + bt)e− bt)

Inflection
S-shaped model
[6]

m(t) � ((a(1 − e− bt))/(1 + βe− bt))

NHPP L model m(t) � a[((θ + 1) − (θ + 1 + θt)e− θt)/(θ + 1)]

where β> 0 is the inflection factor; a> 0 is the expected number of software
faults to be eventually detected; b is a constant of proportionality; and θ is
the shape parameter for the Lindley distribution.

Table 3: Estimated values of parameters and comparison criteria
results of the NHPP L model.

Dataset Method of
estimation

Estimated
parameters Evaluation criteria

􏽢a 􏽢θ MSE Variance R2

DS1 NLSE 33.230 0.160 2.264 2.418 0.989
WNLSE 28.085 0.205 1.632 3.887 0.978

DS2 NLSE 88.940 0.018 0.271 0.525 0.985
WNLSE 55.630 0.023 0.774 0.603 0.952

DS3 NLSE 67.500 0.026 13.077 13.985 0.956
WNLSE 61.170 0.031 3.543 16.947 0.988

DS4 NLSE 27.180 0.012 1.392 1.724 0.982
WNLSE 27.240 0.012 0.679 1.739 0.991

DS5 NLSE 29.490 0.014 0.747 0.924 0.983
WNLSE 27.090 0.015 0.486 0.944 0.988

DS6 NLSE 64.490 0.001 4.162 4.279 0.924
WNLSE 30.590 0.001 2.689 5.187 0.942

DS7 NLSE 17.540 0.002 1.903 1.744 0.926
WNLSE 15.017 0.002 1.134 2.446 0.955

DS8 NLSE 11.550 0.003 2.196 2.196 0.909
WNLSE 11.556 0.004 0.525 2.329 0.977
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Figure 7: Comparison between methods of estimation for the NHPP L model for (a) DS1, (b) DS2, (c) DS3, and (d) DS4.
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Figure 8: Comparison between methods of estimation for the NHPP L model for (a) DS5, (b) DS6, (c) DS7, and (d) DS8.
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Table 4: Comparison results of different models for different datasets.

Criteria Dataset Goel–Okumoto (GO) Delayed S-shaped Inflection S-shaped Proposed model (NHPP L)

MSE

DS2 1.316 0.909 0.458 0.774
DS3 6.505 2.303 4.491 3.543
DS4 3.686 0.689 1.055 0.679
DS5 0.545 0.546 0.291 0.486
DS9 4.216 0.753 0.658 0.774

Variance

DS2 2.635 0.667 0.608 0.603
DS3 17.760 15.910 12.310 16.940
DS4 4.099 2.355 2.442 1.739
DS5 1.065 1.483 0.685 0.944
DS9 5.296 2.327 2.473 2.429

R2

DS2 0.879 0.949 0.977 0.952
DS3 0.976 0.992 0.985 0.987
DS4 0.949 0.991 0.986 0.991
DS5 0.984 0.986 0.993 0.987
DS9 0.945 0.991 0.992 0.991
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Figure 9: Continued.
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be said that all studied models are suitable for
modeling the considered software projects.

Figure 9 illustrates the actual and prediction results
based on the four considered models. According to these
figures, we can see that all the selected models are well-fitted
to the studied failure data. In particular, the proposed model
is one of the most suitable for modeling the selected datasets.

5. Conclusions

In this article, we propose a new reliability model based on
the Lindley distribution. Several essential characteristics of
our proposed model, the NHPP Lmodel, were obtained.-e
considered model parameters were estimated using the
NLSE and WNLSE methods. -e performance of the esti-
mators for each studied method was evaluated using dif-
ferent criteria based on eight datasets. A comparative study
between the proposed model and three other common
models was conducted based on five real datasets. -e
WNLSEmethod was determined to have better performance
than the NLSE method for the chosen failure datasets. -us,
it is recommended that theWNLSEmethod be used with the
NHPP models. -e performance of the NHPP L model is
encouraging in comparison with other selected models. -e
present study can be extended by incorporating SRGMs with
learning effects to increase the flexibility of models and to
enhance their capability for accurately describing software
failure phenomena.
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NHPP: Nonhomogeneous Poisson process
PDF: Probability density function
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R2: Coefficient of multiple determination
NLSE: Nonlinear least square estimation
WNLSE: Weighted nonlinear least square estimation
MLE: Maximum likelihood estimation.
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