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Abstract. 
The anti-Ramsey number  is the maximum number of colors in an edge-coloring of  such that  contains no rainbow subgraphs isomorphic to . In this paper, we discuss the anti-Ramsey numbers , , and  of , where  denote the family of all spanning trees, the family of all perfect matchings, and the family of all Hamilton cycles in , respectively.

1. Introduction
Let  be a graph, a -edge-coloring of a graph  is a mapping , where  is a set of colors, namely,  [1]. A subgraph  of an edge-colored graph  is rainbow if all of its edges have different colors. An edge-colored graph is called rainbow graph if all the colors on the edges are distinct. A representing subgraph in an edge-coloring of  is a spanning subgraph obtained by taking one edge of each color. The anti-Ramsey number  is the maximum number of colors in an edge-coloring of  with no rainbow copy of . Rainbow coloring of graphs also has its application in practice. It comes from the secure communication of information between agencies of government. The anti-Ramsey number was introduced by Erds, Simonovits, and Ss in 1973 [2]. It has been shown that the anti-Ramsey number  is closely related to Turn number. The Turn number  is the maximum number of edges in a graph  on  vertices which does not contain any subgraph isomorphic to . Erds et al. conjectured that , for every fixed  [2]. The conjecture is proved completely for all  in [3] by Montellano-Ballesteros and Neumann-Lara. The anti-Ramsey numbers for some other special graph classes in complete graphs have also been studied, including independent cycles [4], stars [5], spanning trees [6], and matchings [7, 8]. The anti-Ramsey problems for rainbow matchings, cycles, and trees in complete bipartite graphs have been studied in [9–11]. Some other graphs were also considered as the host graphs in anti-Ramsey problems, such as hypergraphs [12], hypecubes [13], plane triangulations [14], and planar graphs [15].
It is natural to consider that the anti-Ramsey problems for rainbow matchings, cycles, and trees in complete -partite graphs. In this paper, we are interested in the anti-Ramsey numbers for spanning trees, perfect matchings, and Hamilton cycles in complete -partite graphs. A complete -partite graph is a graph whose vertices can be partitioned into  different independent sets, and any two vertices from different independent sets are connected by an edge. A complete -partite graph, with partitions , , is denoted by , without loss of generality; in the following, we always assume that , , . If ,  is a complete graph. Bialostocki and Voxman proved that , where  denotes the family of all spanning trees in  [6]. The maximum number of colors in an edge-coloring of  with no rainbow perfect matching (for even ) is , when  [8].
2. Main Result
The family of all spanning trees in  is denoted by . The maximum number of colors in an edge-coloring of  not containing any rainbow spanning tree is denoted by .
Theorem 1. If , , , then
Proof. Let  be a complete -partite graph with vertex set , , , .
The proof of the theorem is distinguished into the following two cases (see Figure 1): Case 1: . There is an edge-coloring of  using  colors such that  does not contain any rainbow spanning tree . Firstly, fix two vertices  from  and color all edges incident with  and  by some color, say , that is,  and , for all vertices . Since , the number of remaining edges which are not colored is . Then, color all other edges of  using  colors such that each appears on one edge. Assume that there is a rainbow spanning tree  of  in this coloring, and then the spanning tree  must contain two edges with the same color , one incident with  and the other incident with , a contradiction. Thus, Case 2: .If we use  different colors to color the edges of , then the  does not contain any rainbow spanning tree .
Fix vertices  from  and  from . Firstly, color the edges incident with  and  by color , that is, , for all vertices  and , for all vertices , then color the remaining edges of  using  colors such that each appears on one edge, and the number of colors is . Now, every spanning tree  of  has at least two edges of the same color . Thus,
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(b)
Figure 1: Two ways of coloring in case 1 and case 2.


Theorem 2. If , , , then
Proof. We consider an arbitrary edge-coloring of  using  different colors. We only show that there is a spanning tree  of . We choose a representing subgraph  from  with . Note that  is disconnected by deleting at least  edges. Thus,  is connected.  contains a rainbow spanning tree  since every connected graph has a spanning tree.
The family of all Hamilton cycles in  is denoted by .  is the maximum number of colors in an edge-coloring  not containing any rainbow Hamilton cycle.
In order to prove our main result, we need the following lemma.
Lemma 1. (Dirac’s theorem, see [1]). If  is a graph on  vertices such that , then  is Hamiltonian.
Theorem 3. Let  be a complete k-partite graph with  and ; if , then  must have a Hamilton cycle.
Proof. By assumption and the structure of , it is clear that , and according to Dirac’s Theorem, ,  have a Hamilton cycle. In fact, , namely, . The proof is finished.
Theorem 4. If , , , then
Proof. By assumption and Theorem 4,  is clear Hamiltonian. Now, we show that there is an edge-coloring of  using  colors such that  does not contain rainbow Hamilton cycle. Firstly, fix any one vertex  from , color all the edges incident with  by color , and then color all other edges of  using  colors such that each appears on one edge. Note that every Hamilton cycle of  must contain two edges incident with , and the two edges have the same color . So,  has no rainbow Hamilton cycle. Thus,In order to prove the next main theorem, we need the following definition.
Let  be a -partite graph with vertex set , if there are two vertices  and , , , , with , then add an edge  to . The closure of  is the graph obtained from  by repeating this step until there are no such pair of vertices, denoted by .
Lemma 2. (see [1]).  is a simple graph, and then  contains a Hamilton cycle if and only if its closure  is Hamiltonian.
Theorem 5. Let  be a -partite graph with . Suppose  are the vertex degrees of  of , all in nondecreasing order, where . If  for each , then  contains a Hamilton cycle.
Proof. By Lemma 2, we only need to prove that  is Hamiltonian.  is a -partite graph with vertex set . Suppose  are the vertex degrees of  of , all in nondecreasing order, where .  for . To the contrary, suppose  contains no Hamilton cycle, then  is not a complete -partite graph. Let  be two vertices in , , , , , and . If , set . ,  contains at least  vertices that are not adjacent to , and each of which has degree at most . Thus, we can find some vertex  whose degree is at most  in , which implies that , that is , a contradiction.
Theorem 6. If , , then
Proof. By Theorem 4, we can easily prove the lower bound. We consider an arbitrary edge-coloring of  using  different colors, and we will find a rainbow Hamilton cycle in . We choose a representing subgraph  with . Let  be the vertex degrees of  of , all in nondecreasing order. If  for each , , then  must contain a Hamilton cycle. If not, we assume that there exists  such that , . Without loss of generality, we assume that  and . We have , that is, . Set , , , . We conclude that  for each . Thus, we have  for each , . By Theorem 7,  must have a rainbow Hamilton cycle.
A matching in a graph is a set of nonadjacent edges. A perfect matching  is a matching which saturates every vertex of the graph. The family of all perfect matchings  is denoted by .  is the maximum number of colors in an edge-coloring of  not containing any rainbow perfect matching.
In [9], it has been shown that , , which is the maximum numbers of colors in an edge-coloring of  that contains no rainbow . Now, we consider the maximum numbers of colors in an edge-coloring of  not containing any rainbow perfect matching.
Tutte gives the sufficient and necessary condition of a graph with perfect matchings.
Lemma 3. (Tutte’s theorem, see [1]). A graph  has a perfect matching if and only if , for all , where  is the number of odd components of .
According to Tutte’s theorem, we give the following sufficient condition that completes -partite graph  have a perfect matching.
Theorem 7. If , ,  is even and , then the complete k-partite graph  must have a perfect matching.
Proof. Let  be a subset of , and we consider the following three cases according to the cardinality of . Case 1: . Note that  is disconnected by deleting at least  vertices. For , it is clear that  is connected. If  is even, then , and if  is odd, then , by assuming that  is even; thus,  is odd and  by the parity. So, . By Lemma 3,  has a perfect matching. Case 2: . If , , which meets Lemma 3, then  has a perfect matching. Case 3: .If , , which also meets Lemma 9, then  has a perfect matching.
Therefore, if  is even and ,  must have a perfect matching. 
In this section, we consider the anti-Ramsey problem of perfect matching in complete -partite graph .
Theorem 8. If , ,  is even and , then
Proof. The known conditions clearly met that  must have a perfect matching by Theorem 9. Now, we firstly show that there is an edge-coloring of  using  colors such that  does not contain any rainbow perfect matching . Fix two vertices  from , color the edges incident with  and  by coloring , and color the remaining edges of  using  colors such that each appears on one edge. It is clear that there is no rainbow perfect matching in . So, we have
Theorem 9. If , ,  is even, then
Proof. We consider an arbitrary edge-coloring of  using  different colors, and we choose a representing subgraph  from . By the proof of Theorem 6, we know that  must have a rainbow Hamilton cycle . Then, we can find a rainbow perfect matching from  since the number of vertices in  is even. So,The proof is completed.
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