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With the rapid expanding of big data in all domains, data-driven and deep learning-based fault diagnosis methods in chemical
industry have become a major research topic in recent years. In addition to a deep neural network, deep forest also provides a new
idea for deep representation learning and overcomes the shortcomings of a deep neural network such as strong parameter
dependence and large training cost. However, the ability of each base classifier is not taken into account in the standard cascade
forest, which may lead to its indistinct discrimination. In this paper, a multigrained scanning-based weighted cascade forest
(WCForest) is proposed and has been applied to fault diagnosis in chemical processes. In view of the high-dimensional nonlinear
data in the process of chemical industry, WCForest first designs a set of relatively suitable windows for the multigrained scan
strategy to learn its data representation. Next, considering the fitting quality of each forest classifier, a weighting strategy is
proposed to calculate the weight of each forest in the cascade structure without additional calculation cost, so as to improve the
overall performance of the model. In order to prove the effectiveness of WCForest, its application has been carried out in the
benchmark Tennessee Eastman (TE) process. Experiments demonstrate that WCForest achieves better results than other related
approaches across various evaluation metrics.

1. Introduction

Performance improvement and surveillance facilitation have
become increasingly important in industrial processes.
Accompanied by extreme conditions, modern industrial
processes are becoming more and more complex. In the case
of underdeveloped monitoring technology and lack of
historical fault data, diagnosis technology mainly consists of
two types of diagnosis methods based on process and
knowledge [1, 2]. (ey make the diagnosis results easy to
understand, but the use cost is too high for systems with
many devices and large state variables [3]. However, the
modern industries are developing in the direction of large
scale and complexity, and with the widespread use of
monitoring technology, large volumes of industrial process
data have been collected from broadly deployed sensors and
other control equipment. (erefore, to maximize use of
these massive data to further improve both accuracy and
speed of fault diagnosis is significant for a complicated
process monitoring system.

With the increase of storage capacity and computing
power, data-driven fault diagnosis methods have been
widely used in chemical processes [4, 5]. Among these
methods, the multivariate statistical method, mainly in-
cluding principal component analysis (PCA) [6, 7], partial
least squares (PLS) [8, 9], independent components analysis
(ICA) [10, 11], Fisher discriminant analysis (FDA) [12, 13],
random forest (RF) [14], canonical correlation analysis
(CCA) [15], exponential discriminant analysis (EDA) [16],
and their derivatives [17–22], have also made a rapid
progress. Although certain effects have been achieved by
these data-driven methods, there are still two shortcomings:
On one hand, most of these methods rely on an assumption
of a single data distribution (e.g., Gaussian distribution)
[23, 24]. But in actual industrial processes, data do not al-
ways strictly follow a certain distribution. (erefore, expert
experiences will be needed for these methods. Approximate
hypothesis can also be used to process these data, but di-
agnostic errors may be generated. On the other hand, in the
context of big data, the above methods are easy to be
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saturated for sample data; that is, when sample size increases
to a certain scale, it is difficult to further utilize the remaining
sample data to improve the fault diagnosis accuracy.

In order to maximize the use of massive data, in recent
years, deep learning (DL) has been applied to various fields
of big data, and a large number of DL based fault diagnosis
methods have emerged [25–28]. Xie and Bai [29] proposed a
hierarchical deep neural network (HDNN) to diagnose faults
in the benchmark Tennessee Eastman (TE) process. By
training a monitoring deep neural network (DNN), the
faults are divided into several groups. For each group, a
special DNN trained is triggered for further diagnosis.
Zhang and Zhao [30] presented an extensible deep belief
network- (DBN-) based fault diagnosis model. (e features
of fault data in spatial and temporal domains are extracted
by DBN subnet, and then fault classification is carried out by
the global back propagation network. Moreover, a deep
convolution neural network- (DCNN-) based fault diagnosis
method was also proposed [31], which achieves better results
than the former one. However, some shortcomings may
limit the application of DNN in fault diagnosis: (1) DNN is
mainly used to process the spectrogram of image and speech
recognition in computer vision, and in order to extract both
spatial and temporal features, the input data in fault diag-
nosis are usually processed to a two-dimensional data matrix
composed of a period of time [29–31]. So, it may result in a
low real-time performance. (2) It is well known that the
performance of DNN depends largely on parameter ad-
justment because of a large number of hyperparameters.

In order to alleviate the aforementioned shortcomings of
DNN, an alternative of DNN, gcForest [32], was proposed in
2017, which can achieve comparable or even better results
than DNN on several domains. gcForest has much fewer
hyperparameters than DNN and can be easily trained
without too many parameter-adjustment skills. However, in
gcForest, two key issues, the diversity of classifiers and the
power of each classifier, should be paid attention on. For the
former, different forests can be used, such as random forest,
completely random forest, and so on. For the latter, in this
paper, a weighted cascade forest (WCForest) model is
proposed. (e main idea of WCForest is to design a strategy
to set weight for each forest in cascade structure and to
improve the performance of the good forests and to restrain
the bad ones.

(e remainder of this paper is organized as follows.
Section 2 introduces the principle and mathematical model
of gcForest. (e WCForest-based fault diagnosis model is
proposed in Section 3. (e applications of WCForest in the
TE process and the comparisons with other fault diagnosis
methods are discussed in Section 4. Finally, conclusions are
drawn in Section 5.

2. Multigrained Cascade Forest

gcForest consists of two integrated components: the mul-
tigrained scanning and the cascade forest. (e multigrained
scanning adopts sliding window to scan local context from
high-dimensionality to learn representations of input data
by different forests. (e cascade forest learns more

discriminating representations under the supervision of
input representations at each level, so as to give a more
accurate prediction according to the ensemble of forests.

2.1.MultigrainedScanning. Inspired by feature relationships
of CNN, the cascade forest adopts a sliding window-based
multigrained scanning strategy. An illustration of its process
is given in Figure 1. Suppose that there are N instances of M

classes in the training dataset and the dimension of each
instance is m. A sliding window of size n is used to scan each
instance, and the (m − n + 1) n-dimensional feature vectors
can be generated by scanning each raw instance sequentially.
All feature vectors extracted from the raw instance are
regarded as derived instances of this class. For each n-di-
mensional derived instance, each forest generates M-di-
mensional class vector. (e (m − n + 1)-derived instances of
each raw instance are input into random forest and com-
pletely random forest to generate their class distribution
vectors and then to concatenate them into transformed
feature vector of 2M∗ (m − n + 1)-dimensional. As shown
in Figure 1, the training dataset includes three classes and
each raw instance has 400 dimensions and the sliding
window size is 100. (erefore, from the above process, a
feature vector of an 1806-dimensional transformed feature
vector corresponding to a 400-dimensional raw feature
vector is obtained. Compared with the raw vector, the
transformed feature vector has much more dimensions and
an enhanced feature representation.

2.2. Cascade Forest. In the cascaded forest, each cascade
layer assembles many decision forests, receives the features
processed by its previous layer, and inputs its processing
results to its next layer. In fact, each layer is designed to
include different types of forests to encourage overall di-
versity. Figure 2 shows the schematic of an example cascade
forest, in which two types of forests (random forest in green
and completely random forest in blue) are used.(e number
of forests per layer and the number of trees in each forest are
hyperparameters in practice. (e instances are input to the
cascade layer, and each forest produces an estimate of class
distribution. (e class distribution outputs of all forests in
the same layer form a class vector, which is then connected
with the raw vector as an input of the next cascade. Cross-
validation is used to evaluate the overall expansion per-
formance of the new layer. When there is no performance
improvement, the expansion progress will be automatically
terminated.

For each instance, each forest will generate an estimated
vector of class distribution by averaging classification
probability of all trees in the same forest. (e classification
probability of a tree is obtained by calculating the proportion
of different classes of training instances at the leaf node
where the concerned instance falls. (e process of the
distribution characteristics of random forests is shown in
Figure 3. Suppose the class-distribution vector obtained by
the ith tree in the forest is Xi � (x1i, x2i, . . . , xMi), where M

represents the number of classes and each forest contains t

trees, then the class distribution vector generated by the
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forest is X′ � (x1′, x2′, . . . , xM
′), where xj

′ � (1/t)


t
i�1xji, j � 1, 2, . . . , M; i � 1, 2, . . . , t.

3. WCForest-Based Fault Diagnosis Method

3.1. Weighted Cascade Forest. As a substitute for DNN, the
cascade forest learns hyperlevel representation in a low cost.
It does not learn hidden variables based on complex forward

or backward propagation algorithms in DNN. Instead, it
directly learns class-distribution features by assembling a
large number of decision-tree-based forests under the su-
pervision of input. (e layer-wise supervised learning
strategy makes cascade forests easy to be trained. Moreover,
the ensemble of forests can acquire more precise class-
distribution features, owing to its powerful ability in most
classification applications. However, in a standard cascade
forest model, all forests in each cascade structure contribute
equally to the final prediction, whichmay result in a sensitive
estimation of classification distribution to the amount of
forests fitting. In order to alleviate this problem, based on
cascade forest, this section introduces a new variant of
cascade forest, WCForest.

Inspired by weighted voting, we give higher weights to
excellent classifiers than poor classifiers in the training
process of the cascade structure. Obviously, it is difficult to
define rules to set weights to the forests in the cascade
structure. On one hand, the sample set of training forests are
random, but the result of a single classification is not suitable
for measuring the quality of the forest. On the other hand,
extensive calculation and estimation of weights may bring
additional costs. In this study, we attempt to set weights for
the forests as objectively as possible without additional costs.
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Figure 1: Illustration of multigrained scanning.
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Specifically, the performance of the forest can be mea-
sured by training results of different subtraining samples. In
order to mitigate the risk of overfitting, cross-validation is
used to evaluate the overall performance of each layer.
(erefore, the classification accuracy of cross-validation for
each forest can be used to estimate its weights. (e reasons
for using cross-validation to calculate weights are as follows:
(1) Cross-validation itself is a default way to evaluate the
performance of new layer in the cascade forest, so using it as
a strategy for calculating weights of forests does not incur
additional computational costs. (2) Cross-validation deter-
mines the weight of the forest classification quality through
multiple verifications, which eliminates the contingency of
verification.

Assuming that there are M classes in the training set, the
weight of each forest in each layer is estimated by k-fold
cross-validation.(e training set is divided into k subsample
sets, one of which is retained as a verification set, and the
other k − 1 subsample sets are used to train the forest. Cross-
validation is repeated k times. Each subsample set validates a
random forest at one time, leading to a classification ac-
curacy. After training and verifying each level of the cascade
forest, the classification accuracy matrix ACC can be gen-
erated as follows:

ACC �

acc11 acc12 · · · acc1k

acc21 acc22 · · · acc2k

⋮ ⋮ ⋱ ⋮

acct1 acct2 · · · acctk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where accij, i � 1, 2, . . . , t; j � 1, 2, . . . , k denotes the accu-
racy of the jth cross-validation of the ith forest, t represents
the number of random forests in each cascade structure, and
k is the number of cross-validations.

According to ACC, the average classification accuracy of
each forest is as follows:

acci �
1
k



k

j�1
accij, i � 1, 2, . . . , t, (2)

the weight matrix W is defined as follows:

W � w1 w2 · · · wt( 
T
, (3)

where wi(i � 1, 2, . . . , t) represented the weight of ith forest,
which is calculated as follows:

wi �
acci


t
i�1acci

. (4)

Given a new instance, each forest produces an estimate
of the class distribution as described in [29]. Assuming that
the class distribution vector obtained by the ith random
forest in a cascade forest is Xi � (xi1, xi2, . . . , xiM), then the
weighted class probability vector of the next cascade
structure is [w1X1, w2X2, . . . , wtXt] and is connected with
the raw vector together as an input to the next layer.

If the current layer is the last layer of the model, the class
distribution matrix of the cascade forest is as follows:

X �

x11 x12 · · · x1M

x21 x22 · · · x2M

⋮ ⋮ ⋱ ⋮

xt1 xt2 · · · xtM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

(e weighted class probability results can be calculated
as follows:

(WX)j � 
t

i�1
wi ∗xij , (6)

where (WX)j, j � 1, 2, . . . , M, represents the total proba-
bility of class j.

Finally, the class with the maximum probability is
chosen as the fault classification results, as shown in Figure 4.

Final(j) � argmax
j

(WX)j , j � 1, 2, . . . , M. (7)

3.2. WCForest-Based Fault Diagnosis Model. (e process
data of industrial processes are usually high-dimensional
and noisy. Generally, the original input space is mapped to
the feature space by feature extraction. However, the effect of
feature extraction will directly affect the performance of the
classifier. (e two randomness of random forest make it to
have better antinoise ability, and when the input data have
high dimensionality, the representative learning ability can
be further enhanced by multigrained scanning, which may
make WCForest have a context or structure awareness.
Based on the WCForest fault diagnosis model, the data
extracted from each monitor in the industrial process are
diagnosed and will get the evaluation status of data at each
time.

In this paper, the process of the model consists of two
parts: multigrained scanning-based feature extraction and
weighted cascade forest-based fault diagnosis. After the data
are collected, we use multigrained scanning to extract
representation vectors from training and testing sets. (en,
the weighted cascade forest classification model is trained by
the representation vectors of training set and validated by
the representation vectors of testing set. Finally, we obtain
the classification results of testing set. (e flow chart of the
model is shown in Figure 5. Its diagnostic procedures in-
clude offline modeling and online diagnosis, described as
follows:

Offline stage:

Step 1. Historical data are collected and preprocessed
from the chemical process.
Step 2. Data collected at each time are composed into
m-dimension vectors and labeled with their corre-
sponding classes, including “normal” and their fault
types.
Step 3. (e samples including their corresponding
labels are divided into the training set and the testing
set.
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Step 4. Given several different sets of windows, use the
training set to select a set of windows from them for
multigrained scanning.
Step 5. (e class probability vectors of training set and
testing set is obtained by multigrained scanning of
selected set of windows.
Step 6. In training set, the k-fold cross-validation is
used to train the WCForest model, and obtain the
weight vector W � w1 w2 · · · wt( 

T of each layer.
Verify theWCForest model using the class probability
vectors of testing set.
Step 7. (e fault diagnosis result is outputted and
visualized.

Online stage:

Step 1. Online data are collected from the chemical
process.

Step 2. Online sample vectors are input to the
WCForest, which can give a predicted diagnosis result
for each sample vector. (e diagnosis result is either
“normal” or one specific fault type.

4. Experiment Result

In this section, the proposed WCForest-based fault model is
applied to the TE process. Furthermore, the results of the
proposed method are compared with other decision tree-
based ensemble methods (RF, XGBoost, AdaBoost),
gcForest, and existing literature.

4.1. Tennessee Eastman Process. As a real industrial process-
based simulation platform, the Tennessee Eastman process is
widely used to evaluate the performance of monitoring

One layer weighted cascade forest
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methods in the field of data-driven fault detection research.
Figure 6 shows a flow diagram of the TE process.(e process
consists of 5 major unit operations: reactor, product con-
denser, vapor-liquid separator, recycle compressor, and
product stripper. In addition, the process consists of four
reactants—A, C, D, and E—and an inertia component B.(e
4 reactants and the inertia component are sent to the reactor,
and then the process produces liquid products G, H, and a
byproduct F. (e reaction process is irreversible, exother-
mic, and approximately first-order with respect to
concentrations.

(e TE process includes 41 measured variables and 12
manipulated variables. However, one of the manipulated
variables, reactor speed, is always constant, and does not
need to be analysed. (e remaining 52 variables are used as
research variables [33], which are all listed in Table 1. (e
first 41 variables are measured variables and the last 11
variables are manipulated variables.(e TE process contains
21 faults which are listed in Table 2. (e data used for faults
classification of TE simulation system can be downloaded
from http://web.mit.edu/braatzgroup. Each state (normal
state and 21 different fault states) is divided into training and
testing sections. (e data are sampled once every three
minutes. (e training data are sampled 500 times for 25
hours and faults are introduced after one hour, so the
simulation only uses the remaining 480 fault samples to a
fault diagnosis model. (e testing data are sampled 960

times for 48 hours, and faults are introduced after 8 hours;
that is, the fault samples were collected from the 161th
sampling point. With these normal sample set and fault
sample sets, a completed WCForest model can be trained
and tested.

4.2. WCForest Model for TE Process. (e WCforest model
suitable for TE process fault diagnosis is designed and
constructed, in which the construction of forest and the
setting of some hyperparameters need to be selected ex-
perimentally, such as the number of trees in each forest, the
number and types of forest, and the setting of feature
window. To find a suitable model, we tried the following
experiment.

In the process of constructing a decision tree, infor-
mation gain and Gini index are generally used as heuristic
functions for feature selection. In this paper, we tested these
two feature selection rules, respectively, and the test accuracy
obtained was not significantly different. (erefore, relatively
good Gini index was selected as the node splitting rule of the
random forest model in this paper.

For hyperparameters in the model, the numbers of RF in
the multigrained scanning and the cascade structure are set
according to the setting in the literature [29]. 2 random
forests (1 completely random forest and 1 random forest)
and 8 random forests (4 completely random forests and 4
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random forests) were set up in each layer of the weighted
cascade forest, respectively. However, the number of trees in
forest Ntree and the setting of scanning window have a great
influence on the diagnostic accuracy, so its parameters need
to be optimized. First of all, we discuss the value of Ntree,
which has little effect on the diagnostic accuracy when

400 ∼ 1000 trees. Considering the relationship of time
complexity, fixed Ntree � 500. It is a common issue that there
is no scientific guidance for the setting of windows. In order
to find a proper setting, we tried several window settings: [15,
30], [20, 45], [13, 30, 42], [18, 36, 45], [16, 27, 35, 42], and [18,
25, 36, 47].

Here the dataset samples with 400 samples of one class
are randomly selected; 80% of each class samples are training
dataset, and others are testing dataset. (e fault diagnosis
testing is on one sample each time. (e testing average
diagnostic accuracy and the training/testing time of the
different window settings are listed in Table 3. (e window
setting of [18, 25, 36, 47] has the highest testing average
diagnostic accuracy (75.9%) and takes 83.4 min for training.
With a little decrease of the testing average diagnostic ac-
curacy (75.6%), the window setting of [18, 36, 45] takes
20 min less than the setting of [18, 25, 36, 47]. In the fol-
lowing discussion, [18, 36, 45] is chosen as the best window
setting.

4.3. Fault Diagnosis Result. Experimental results of fault
diagnosis for display, two commonly used indicators, fault
detection rate (FDR) and false positive rate (FPR), are
considered to evaluate the diagnostic performance of the
model, and they can be calculated by the general confusion
matrix defined in Table 4, which are shown in the following
equation:

FDR �
TP

TP + FN
,

FPR �
FP

FP + TN
.

(8)

Table 5 shows the FDRs of 21 faults in the TE process
obtained by WCForest, gcForest, and three decision tree-
based integration methods: Random Forest (RF), XGBoost,
and AdaBoost. (e setting parameter of gcForest is the same
as WCForest. (e parameters of the remaining algorithms
are set as follows (which are all set by multiple parameter
adjustments):

(1) RF: 400 decision trees, Gini index as classification
rule.

(2) XGBoost: 400 decision trees, that is, the number of
iterations, learning rate� 0.1, softmax loss function
as objective function.

(3) AdaBoost: 500 decision trees, learning rate� 0.6.

Compared with the diagnostic results of RF, the FDRs of
most faults have increased in varying degrees, which is of
great significance in industrial production and theoretical
research. RF and XGBoost have a good performance for
faults with obvious feature differences, such as 1, 2, 6, 7, and
so on, and a low performance for well-known faults, such as
3, 9, and 15. AdaBoost generally has a low diagnostic rate,
with the exception of fault 2 reaching nearly 100%. gcForest
enhances the perception of differences between features in
cascade structure and improves the classification ability of
the model through multigrained scanning representation

Table 1: Measurement and manipulation variables of the TE
process.

No. Process measurements
1 A feed
2 D feed
3 E feed
4 Total feed
5 Recycle flow
6 Reactor feed rate
7 Reactor pressure
8 Reactor level
9 Reactor temperature
10 Purge rate
11 Product separator temperature
12 Product separator level
13 Product separator pressure
14 Product separator underflow
15 Stripper level
16 Stripper pressure
17 Stripper underflow
18 Stripper temperature
19 Stripper steam flow
20 Compressor work
21 Reactor cooling water outlet temperature
22 Separator cooling water outlet temperature
23 A in reactor feed
24 B in reactor feed
25 C in reactor feed
26 D in reactor feed
27 E in reactor feed
28 F in reactor feed
29 A in reactor feed
30 B in reactor feed
31 C in reactor feed
32 D in reactor feed
33 E in reactor feed
34 F in reactor feed
35 G in reactor feed
36 H in reactor feed
37 D in product flow
38 E in product flow
39 F in product flow
40 G in product flow
41 H in product flow
42 D feed flow valve
43 E feed flow valve
44 A feed flow valve
45 Total feed flow valve
46 Compressor recycle valve
47 Purge valve
48 Separator pot liquid flow valve
49 Stripper liquid product flow valve
50 Stripper steam valve
51 Reactor cooling water flow
52 Condenser cooling water flow

Mathematical Problems in Engineering 7



learning. And the weights in WCForest can improve the
robustness and sparsity of the model.

WCForest has the best performance in these five
methods, with an average FDR of 84.13%, which is about
62.18% higher than AdaBoost. (e FDR of fault 6, 7, and 21
increased by 100%, the highest improvement among all 21
faults, and the improvements of more than 70% faults exceed
50%. For RF and XGBoost, their diagnostic rates for all faults
are similar. (e average FDR increased by 24.21% and
15.77%, respectively. Compared with gcForest, the perfor-
mance of WCForest is improved by nearly 2%. (e FDR for
fault 2, 6, 7, and 21 is 100%, which means there are no false
alarms and missing alarms. Furthermore, the FDR for 11
faults exceed 90% and the FDR for 6 faults exceed 95%,
which is an important achievement.

A performance comparison of the five methods is shown
in Figure 7. Obviously, WCForest and corset outperform RF,
XGBoost, and AdaBoost. Compared with gcForest, the
performance of WCForest is slightly improved.

To further demonstrate the validity of WCForest for the
TE process, the FPR is shown in Table 6. In addition, RF,
XGBoost, Adaboost, and gcForest are compared.

In Table 5, WCForest has an average FPR of 2.45%, a
27.58% decrease compared to AdaBoost and a 0.37% de-
crease compared to gcForest. (e FPRs of fault 1, 2, 6, 7, 8,
17, 18, and 21 are zero, which is of great significance in
industry. In addition, the FAR of a half of faults is reduced by
more than 40% compared to AdaBoost. Figure 8 shows the
detailed comparison results.

In order to examine the performance of WCForest, we
compare it with methods listed in Table 7, which shows that
our fault diagnosis model has a better performance than the
others. Except for faults 3 and 15, the other 19 faults have a
diagnostic rate of more than 50%, especially faults 3 and 9
are 20% better than the other models (except literature [30]).
Compared with a DBN-based fault diagnosis model pro-
posed in [30], the FDRs of the 21 faults have no much
difference, so the average FDR is only 1.23% higher. It
should be noted that fault 15 has a relatively poor diagnostic
effect and needs to be further investigated.

To thoroughly evaluate the quality of the proposed
method, F1 score is selected as the evaluation indicator. It is a
classical index in machine learning field [38], which analyses
classifiers based on recall and precision and is calculated by
their harmonic means.

Table 2: Faults details of the TE process.

No. Description Type
1 A/C feed ratio, B composition constant (Stream 4) Step
2 B composition, A/C ratio constant (Stream 4) Step
3 D feed temperature (Stream 2) Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss (Stream 1) Step
7 C header pressure loss–reduced availability (Stream 4) Step
8 A, B, C feed composition (Stream 4) Random variation
9 D feed temperature (Stream 2) Random variation
10 C feed temperature (Stream 4) Random variation
11 Reactor cooling water inlet temperature Random variation
12 Condenser cooling water inlet temperature Random variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown Unknown
17 Unknown Unknown
18 Unknown Unknown
19 Unknown Unknown
20 Unknown Unknown
21 (e valve for Stream 4 was fixed at the steady state position Constant position

Table 3: (e testing average FDR and the training and testing time.

Window setting Testing average diagnostic accuracy (%) Training time (min) Testing time for one sample (ms)
[15, 30] 56.3 42.1 0.7
[20, 45] 68.7 38.3 0.5
[13, 30, 42] 72.4 70.6 1.3
[18, 36, 45] 75.6 61.5 1.1
[16, 27, 35, 42] 74.8 79.7 1.4
[18, 25, 36, 47] 75.9 83.4 1.6

Table 4: Confusion matrix.

Prediction value 1 Prediction value 0
Actual value 1 TP FN
Actual value 0 FP TN

8 Mathematical Problems in Engineering



From the general confusion matrix in Table 3, the for-
mulas for calculating recall and precision are as follows:

Recall �
TP

TP + FN
,

Precision �
TP

TP + FP
.

(9)

(us, the F1 score can be calculated as follows:

F1 �
2 × Rcell × Precision
Rcell + Precision

. (10)

(e F1 score of WCForest is shown in Table 8, reflecting
the diagnostic ability of the model. (e values of recall and
precision almost achieve 100% on faults 1, 2, 6, 7, and 21,

Table 5: FDR obtained by RF, XGBoost, AdaBoost, gcForest, and WCForest.

FDR (%) RF XGBoost AdaBoost gcForest WCForest Percentage increase of WCForest compared to RF
Fault 1 100 100 1.83 99.42 99.17 − 0.83
Fault 2 100 100 97.83 98.17 100 0
Fault 3 15.17 16.5 0 41.59 42.33 27.16
Fault 4 99.17 98.83 0 98.26 98.83 − 0.34
Fault 5 28.83 99.67 50.67 83.74 90.97 62.14
Fault 6 100 100 0 100 100 0
Fault 7 100 100 0 100 100 0
Fault 8 62.50 69.17 52.67 93.36 96 33.50
Fault 9 5.83 5 0 53.18 51.50 45.67
Fault 10 30.50 40.67 9.17 78.21 75.83 45.33
Fault 11 61.33 67.67 49.33 83.45 82.00 20.67
Fault 12 80.00 77.83 29 87.29 93.50 13.50
Fault 13 45.67 50.33 26.67 89.21 94.83 49.16
Fault 14 94.83 96.67 61.33 97.03 96.83 2.00
Fault 15 0.83 3.67 0 6.48 7.17 6.34
Fault 16 35.00 49.67 0 72.37 78.00 43.00
Fault 17 87.17 87.83 42.17 94.00 94.50 7.33
Fault 18 99.33 99.83 0.5 90.84 99.67 0.34
Fault 19 50.50 58 2.33 85.32 89.50 39.00
Fault 20 61.00 67.83 37.5 76.05 76.00 15.00
Fault 21 0.67 46.33 0 98.87 100 99.33
Average 59.92 68.36 21.95 82.23 84.13 24.21
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Figure 7: Performance of FDR on the TE process.
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which means the great performance of true positive rate and
false positive values. Finally, Figure 9 shows the recall and
precision ofWCForest which indicates the proposedmethod
has good performance.

4.4. Hierarchical Representation Learning Visualization.
In order to understand the characterization process of
WCForest and the hierarchical representation of its learning
process, it is very important to observe the diagnostic results

Table 6: FAR obtained by RF, XGBoost, AdaBoost, gcForest, and WCForest.

FPR (%) RF XGBoost AdaBoost gcForest WCForest
Fault 1 0 0 0 0 0
Fault 2 0 0 0 0.5 0
Fault 3 47.6 62.3 83.8 9.7 10.7
Fault 4 0.3 0 0.2 0 0
Fault 5 41.2 0.2 42 0.3 2.4
Fault 6 0 0 0 0 0
Fault 7 0 0 0 0 0
Fault 8 0 0 1.8 0.3 0
Fault 9 42.3 51.8 81.7 21.3 16.3
Fault 10 18.7 21.5 62 4.6 4.1
Fault 11 10.5 11.3 38 1.3 1.6
Fault 12 0 0 1 0.3 0.4
Fault 13 0 0 0 0 0
Fault 14 0 0 0 0 0
Fault 15 50.3 54.8 74.3 12.1 7.2
Fault 16 3.2 4.3 59.2 2.0 3.9
Fault 17 1.0 1.2 10.2 0.1 0
Fault 18 0 0 0 0.1 0
Fault 19 34.0 28.7 87.3 3.8 2.3
Fault 20 13.1 15.5 45.7 2.9 2.6
Fault 21 10.0 9.2 40.8 0 0
Average 12.96 12.42 30.03 2.82 2.45

90

80

70

60

50

40

30

20

10

FP
R 

(%
)

0
1 2 3 4 5 6 7 8 9 10 11 12 13

TEP faults
14 15 16 17 18 19 20 21

RF
XGBoost
AdaBoost

gcForest 
WCForest

Figure 8: Performance of FPR on the TE process.
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of each layer intuitively. As features learned are high di-
mensional, the diagnostic results of each layer are difficult to
be visualized. To address this problem, we use t-distributed
stochastic neighbour embedding (t-SNE) [39] as a tool to
visualize the hierarchical representation learning process of
the WCForest model.

(e t-SNE method is a variant of stochastic neighbour
embedding (SNE) [40]. It uses symmetric SNE to replace

conditional probability with joint probability between data
points in high-dimensional space and low-dimensional
space. Meanwhile, Gauss probability distribution is used in
high-dimensional space and t distribution with 1 freedom
degree is used in low-dimensional space, which solves the
problem of data point congestion in SNE. (erefore, t-SNE
can better express the complex nonlinear relationship be-
tween high-dimensional data in the process of dimension
reduction.

We use t-SNE method to embed high-dimensional
features of each layer into two-dimensional or three-di-
mensional space, which can be visualized in scatter plots.
(e feature learning process can be easily visualized by using
the 2D or 3D maps corresponding to each layer. (rough
experiments, we found that 3D maps are not suitable for
visualization of WCForest-based fault diagnosis models.
(erefore, the high-dimensional output features of each
layer are embedded in the 2D map and then plotted in the
subgraph of Figure 10.

600 samples of 22 classes (one normal and 21 faults) were
randomly selected from testing set for visualization. (e size
of input data is 600 × 52, and then these 52-dimensional
vectors are transformed into 600 vectors of 2-dimensional by
using the t-SNE method. In each subgraph of Figure 10,
these points are marked with their actual class labels,
“Normal” with “0” and “Fault 01” with “1,” and so on. In
addition, in order to distinguish clusters for viewing, dif-
ferent colors are used to represent their classes.(e output of
each layer is converted to a vector of 2-dimensional by using
t-SNE, so that it can be visualized in 2D (Figures 10(b)–
10(h)).

As shown in Figure 10(a), the raw process data samples
of all classes are mixed. Distribution of feature samples of

Table 7: Performance comparison of different faults diagnosis methods.

FDR (%) (a) (b) (c) (d) (e) (f )
Fault 1 99.87 96.37 100 100 99.88 99.17
Fault 2 97.87 97.62 99 99 99.13 100
Fault 3 2.37 20.62 6 95 6.13 42.33
Fault 4 100 82.75 100 98 100 98.83
Fault 5 99.87 96 100 86 99.88 90.97
Fault 6 99.5 100 100 100 100 100
Fault 7 100 100 100 100 100 100
Fault 8 96.62 96.87 99 78 97.00 96
Fault 9 3.37 12.12 3 57 5.75 51.50
Fault 10 82.25 88.25 84 98 92.13 75.83
Fault 11 64.75 73.5 82 87 74.00 82.00
Fault 12 99 93.62 100 85 99.75 93.50
Fault 13 95 72.25 95 88 95.63 94.83
Fault 14 100 95.87 100 87 100 96.83
Fault 15 9.75 21.12 17 0 10.25 7.17
Fault 16 81.62 78.12 89 0 90.00 78.00
Fault 17 84.87 80.25 96 100 97.13 94.50
Fault 18 89.5 86.37 90 98 90.25 99.67
Fault 19 76.12 96.12 52 93 92.00 89.50
Fault 20 66.37 86.75 88 93 85.25 76.00
Average 77.44 78.73 80 82.1 80.53 83.33
Note: (a) optimized variable selection-based PCA [34]; (b) supervised local multilayer perceptron [35]; (c) Bayesian method [36]; (d) DBN-based model [30];
(e) residual subspace associated with PCA [37]; (f ) WCForest-based model (proposed in this paper).

Table 8: (e F1 score of 22 states on WCForest.

Precision (%) Recall (%) F1 score

Fault 0 44.46 40.66 42.47
Fault 1 100 99.17 99.58
Fault 2 99.16 100 99.57
Fault 3 41.78 42.33 42.05
Fault 4 96.19 98.83 97.49
Fault 5 96.88 90.97 93.83
Fault 6 100 100 100
Fault 7 100 100 100
Fault 8 95.05 96 95.52
Fault 9 32.12 51.50 39.56
Fault 10 68.84 75.83 72.16
Fault 11 84.10 82.00 83.04
Fault 12 88.63 93.50 91.00
Fault 13 98.61 94.83 96.69
Fault 14 97.81 96.83 97.32
Fault 15 16.73 7.17 10.04
Fault 16 73.82 78.00 75.85
Fault 17 94.19 94.50 94.34
Fault 18 97.77 99.67 98.71
Fault 19 80.03 89.50 84.50
Fault 20 77.29 76.00 76.64
Fault 21 98.68 100 99.34
Average 80.56 82.15 81.35
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multigrained scanning is shown in Figure 10(b). (en, by
learning the representation of weighted cascaded forests at
different levels, we can find that the samples are clustered
gradually through class labels in t-SNE mapping (see
Figures 10(c)–10(f )). (is indicates that the nonlinear ex-
pression ability of the WCForest model increases with the
increase of the number of layers. WCForest maps the in-
divisible features to the nonlinear separable space by
deepening the number of layers in the cascade forest. It also
verifies the rationality of the WCForest model to deepen the
design of the forest layer. Finally, these subgraphs strongly
prove that the WCForest model is effective for fault diag-
nosis tasks.

4.5. Model Performance. Is the number of training samples
crucial for obtaining good diagnosis performance? To an-
swer the question, we compared the average accuracy for
training and testing on different training datasets with
10560, 8800, 6600, 4400, and 2200 training samples and 600
testing samples, and demonstrated the result in Figure 11.
(e figure shows that the test accuracy of the WCForest
model is greatly affected by the number of training samples,
especially in the early stage. Although the late rise is rela-
tively low, it has continued to increase, while the train

accuracy is not greatly affected by the number of training
samples.

5. Conclusions

In this paper, an improved deep forest model, WCForest, is
proposed for fault diagnosis of chemical processes to im-
prove accuracy, reduce false alarm rate, and process high-
dimensional and nonlinear data. (e main performance is
that, without increasing the computational complexity,
k-fold cross-validation is used to calculate the weight of each
forest in the cascade structure in order to boost the good
performance of forests and weaken the bad ones, so as to
improve the overall performance of the cascade random
forest.

To show the performance of the proposed model, RF,
XGBoost, AdaBoost, gcForest, and WCForest were applied
to the benchmark TE process, containing 16 known faults
and 5 unknown faults for testing. (e WCForest model
predicts an average FDR of 84.13% and a FPR of 2.45%, with
a high accuracy and a low false positive rate, which is
comparable to the average diagnostic rate reported in other
literatures. To provide more information about the per-
formance of the model, the F1 score is also chosen as an
evaluation measurement for the integrity and purity of the
classifier. Our work shows the validity and efficiency of
WCForest, which can predict fault diagnosis in the TE
process and can provide a reference for other chemical
processes. In addition, most data samples are clearly and
correctly clustered by WCForest in the t-SNE map.

Because of its excellent fault diagnosis rate and false
positive rate, this method has industrial prospects. (e data-
driven fault diagnosis methods depend on the collection of a
large amount of various process malfunction samples. In-
evitably, our WCForest-based fault diagnosis model suffers
from the same drawback. In the near future, research also
will be focused on fault diagnosis with limited number of
fault samples available.

Data Availability

(e data used to support the findings of this study are in-
cluded within the article.
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