Hindawi

Mathematical Problems in Engineering
Volume 2020, Article ID 5295627, 19 pages
https://doi.org/10.1155/2020/5295627

Research Article

Hindawi

Optimization of Accelerated Destructive Degradation Testing of
Cementitious Materials for Their Performances
Qualification under Aggressive Environments: The

Case of Carbonation

Weian Yan,"? David Bigaud ,! Nadare Matoiri Chaibati,"”> and Laurent Izoret’

Laboratoire Angevin de Recherche en Ingénierie des Systémes, LARIS, EA 7315, UNIV Angers, SFR MathSTIC,

62 Avenue Notre-Dame-du-Lac, 49000 Angers, France

2College of Transportation and Logistics, East China Jiaotong University, Nanchang, Jiangxi 330013, China
*A.T.IL.H.-Association Technique de I'Industrie des Liants Hydrauliques, 7 Place de la Défense, 92974 Paris la Défense, France

Correspondence should be addressed to David Bigaud; david.bigaud@univ-angers.fr

Received 23 November 2019; Revised 7 February 2020; Accepted 10 March 2020; Published 9 April 2020

Academic Editor: Giovanni Lancioni

Copyright © 2020 Weian Yan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to guarantee the performance or to qualify the risk of nonperformance of cementitious materials over time, a significant
number of experimental data obtained from tests mimicking various degradation mechanisms are required. The slowness of the
materials’ degradation under environmental service conditions is an issue, and thus, acceleration strategies are required to obtain
reliable and comprehensive results in a shorter time. The objective of this research work is to provide a generic framework for the
design of optimal accelerated destructive degradation tests (ADDTs) for cementitious materials qualification. The definition of the
optimal design of experiments depends on the capacity to capture the influence of data variability and uncertainty from any
sources; they are extracted either from physical models or from experimental tests. In this research, the evolution of carbonation
depth is characterized with the Wiener process formalism and the random effects related to the material heterogeneity are taken
into account. Once the process parameters are estimated through the maximum likelihood estimation (MLE), associated with the
expectation-maximization (EM) algorithm, we provide a step-by-step and detailed method to investigate the optimal design of
ADDTs. The latter is defined as the one for which we can estimate durability indicators such as mean-time-to-failure with the best
accuracy based on three criteria (D-V-A optimality) considering constraints of time, total number of samples, or limited costs. The
optimal total sample size for the accelerated carbonation test and the optimal sample size allocation proportions for each stress
level are determined, and the effects of the stress level on the objective functions and of test time duration constraint are also
discussed. A comparison of the relative efficiency of optimal three-level versus optimal two-level ADDT completes this work.

1. Introduction

Production and, by extension, qualification of concrete are
based on the EN 206 standard [1]. Considering 18 exposure
classes, this standard prescribes the mix designs in order to
guarantee a 50-year durability for buildings and 100-year
durability for engineering structures. Construction actors
have to consider new challenges such as dealing with en-
vironmental issues, seeking more resistant building mate-
rials, and reducing construction budget. Thus, this may lead

to using concrete with a composition that differs from that
recommended in EN 206. This alternative is acceptable if the
new concrete is at least as good as the concrete defined in the
standard, under the specific exposure class for which we
want to qualify the performance of the new concrete. This
approach called “performance-based” [2], based on the
demonstration of the performance’s equivalency, has gained
large success in many fields [3]. This demonstration can be
made through three different ways: by using durability in-
dicators, performance tests [4], or a proven physical model.
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Among the durability indicators, general indicators, “gen-
eral” because they are not related to a unique mechanism of
degradation (e.g., water porosity and water permeability),
are distinguished from specific indicators (e.g., carbon di-
oxide or chloride diffusion coefficients). The performance
test allows assessing directly the degradation process within
the concrete (e.g., carbonation depth evolution in order to
qualify the concrete performance under the XC exposure
class). The physical model allows modelling the degradation
phenomenon on the concrete. In that case, concrete is
qualified if the model proves that the concrete performs well
for a given environment. In our work, we propose a mixed
approach combining both a physical model and optimally
designed performance tests.

For cementitious materials, the carbonation phenome-
non evolves slowly over time under normal or service use. It
takes time to observe damage on the concrete within a short
test duration. In such a case, an accelerated degradation test
(ADT) by elevating the stress level can be used to obtain the
typical degradation process within an accurate test duration
and then to extrapolate the product’s lifetime information
under normal operating conditions. Generally, most of the
existing concrete durability tests are destructive but there are
also nondestructive tests under development and investi-
gation in order to resolve problems such as test duration and
high cost [5, 6]. In this paper, we focus only on the case of
destructive carbonation tests—which are the most highly
represented for carbonation tests—and we will talk here-
inafter about optimization of accelerated destructive deg-
radation tests (denoted by acronyms ADDT or A(D)DT if
the proposed theoretical developments can be applied either
on ADT or ADDT) which is less straightforward to deal with
ADT (i.e., nondestructive tests).

A(D)DT has become an efficient approach to reliability
assessment or lifetime prediction for degrading products [7].
Depending on the different stress loadings application, A(D)
DTs can be classified into constant-stress A(D)DT (CSA(D)
DT), step-stress A(D)DT (SSA(D)DT), and progressive-
stress A(D)DT (PSA(D)DT). In order to maximize their
efficiency-to-cost ratio, we must carefully design the A(D)
DT to obtain the lifetime information at the service con-
dition. Therefore, the optimal design problem of an A(D)DT
experiment received considerable attention from reliability
researchers and engineers [8]. Among them, CSA(D)DT is
the most popular method in practical applications. For
example, Duan and Wang [9] and Tsai et al. [10] address the
optimal design problems for CSADT-based gamma process.
Liuetal. [11] focus on Inverse Gaussian processes. Tang et al.
[12] and Chen et al. [13] deal with the optimal design for
degradation tests based on a nonlinear generalized Wiener
process with random effects. In a CSA(D)DT, all test samples
are divided into several groups, and each group of samples is
exposed to a severe stress level. Under each stress level, the
corresponding samples are inspected independently, and
their degradation paths are recorded at the prespecified
times. In the CSA(D)DT, the experienced stress level does
not change for each sample, which requires more samples
than for SSA(D)DT [14]. At the same time, the failure
mechanisms affected by stress level do not change, which
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makes CSA(D)DT easier to deal with than SSA(D)DT. For
the concrete, since samples are not expensive and can be
easily produced, to choose CSA(D)DT plans rather than
SSA(D)DT ones is definitely relevant.

This article provides a method for the design of optimal
(with constrained sample sizes, time measures, and costs)
CSADDT used to qualify concrete durability or reliability
indicators under normal service conditions. Additionally,
the data required for the implementation of our method can
come from either performance tests carried out in a labo-
ratory or using physical models, which can help to obtain
prior data in the absence of available experimental data.
Different types of physical models describing concrete
performances exist. They can be divided into three main
categories: empirical, semiempirical, and numerical. Among
these models, for the specific case of carbonation process,
which is the subject of the present article, we can mention
Papadakis, Duracrete, Houst-Wittmann, Yang, and Hyvert
models (all described in [15]). In our approach, a physical
model is used to generate data mimicking the degradation
process, while taking into account the uncertainties close to
those observed in reality. The aim is to find a prior optimal
design plan ADDT but not necessarily to have a model as fair
as possible; the important point is that the physical models
are merely used to generate prior data, which will be sub-
sequently processed through degradation models whose
formalisms are particularly suited for the design of optimal
ADDT plan. Due to the limited availability of experimental
data for carbonation tests, we went with the Hyvert car-
bonation model in order to simulate data tests. This model
takes into account the change of CO, pressure (which will be
the acceleration stress) applied on concrete, and most of its
input parameters have known statistical distribution laws
that allow simulating uncertainty of degradation data
(carbonation depth over time).

There are two main formalisms of degradation models:
stochastic process models and general path models. The
latter models are very easy to use; the theory has been well
established and is more robust than process-based models.
Lu and Meeker [16] and Pettit and Young [17] provide a
general discussion about this approach. The main issue in
performance tests is that the measured characteristics are
random variables. This is due to measurement errors, to the
inherent variability of concrete properties, and finally to the
environmental conditions (temperature, humidity, CO,,
etc.) which are random and time dependent. From this view,
both stochastic process models and general path ones can
effectively characterize the uncertainty of the degradation
process [18, 19]. For our generic approach, we use a physical
model to get prior alternative data with a degradation dy-
namic following a square root function of time (see Section
2.1 and equation (1)). It motivates the choice of stochastic
models which are more suitable for the consideration of
physical mechanisms.

In a study about the carbonation behavior of concrete
made of recycled aggregates, Zhang and Xiao [20] have
represented the evolution of degradation in the concrete by a
stochastic process. The evolution over time of the carbon-
ation depth is followed. This degradation process is
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monotonic, and they have chosen specifically the Gamma
process for its suitability to model progressive and mono-
tonic increasing damage. Even if it is not formally mono-
tonic, the Wiener process can also be used to model the
evolution of damage because it shows increasing degrada-
tion on average and that the possible negative increment of
degradation modelled for an infinitesimal time interval can
be hold physically accountable to measurements errors or to
the variability between two tested samples. For the latter case
indeed, as the carbonation tests are destructive, there is no
guarantee to observe a monotonic evolution of degradation
between two test times since the measurements are not made
on the same sample (they are destroyed during the test).
Thus, this stochastic degradation process is very flexible; it
not only can be used to model monotonic degradation
processes but also can be used to model nonmonotonic
degradation processes. In this regard, the Wiener process is
suitable for the carbonation process. The Wiener process has
also many nice properties; e.g., the random effects and
explanatory variables can be flexibly incorporated into the
model. If the distribution of the measured characteristic is
not normal, an “isoprobabilistic transformation,” which
consists in transforming the initial distribution law in an
equivalent normal one (with, for example, the same entropy
and median, or, the same median and a quartile, depending
on the properties we want to retain) can still be applied to
enforce the data to be pseudonormal.

To define precisely its objectives, as already mentioned,
our research work focuses on the development of a “generic”
method for the prescription of optimal CSADDT used to
qualify concrete durability. This method is called “generic”
since it can be applied for any degradation mechanisms. It
can exploit data either from experimental preliminary tests
or from proven physical models and can deal with any kind
of random degradation data with the nonlinear generalized
Wiener process. To demonstrate the relevancy of our
method, we apply it to the case of the degradation of the
concrete by carbonation. This is one of the most studied
degradation phenomena on the concrete. Concrete car-
bonation leads to the corrosion of reinforced concrete and
cause damages that destroy the structures. Thus, civil en-
gineers conduct many studies in the field of accelerated
carbonation tests, carbonation diffusion, and models in
order to understand this phenomenon and to predict the
lifetime of reinforced concrete structures [21].

The remainder of the paper is arranged as follows.
Section 2 will present the physical and stochastic carbon-
ation process modelling. Hyvert model, used in the first stage
of data generation, will be detailed before the presentation of
the nonlinear generalized Wiener process. The second stage
of our generic method consists in the maximum likelihood
estimations (MLEs) of parameters completed by the Ex-
pectation-Maximization (EM) algorithm (Section 3.1). The
third stage of durability estimation is developed in Section
3.2. Section 4 describes the fourth stage of the generic
method: how to design optimal CSADDT for the destructive
test. The proportion of units allocated to each stress level and
test stress levels will be determined based on three opti-
mization criteria. In subsequent Section 5, we propose to
apply our method to the case of the qualification of concrete
durability under carbonation, with the aim to show the
performance of the proposed methods. Section 6 concludes
the paper.

A graphical abstract is proposed to assist in the un-
derstanding of our approach (Figure 1).

2. Carbonation Process Modelling

As illustrated in Figure 1, the very first stage of our approach
is to collect data from degradation tests or from physical laws
and to model these data using a stochastic process formalism
suitable for the optimization of ADDT.

2.1. Probabilized Physical Model. As already mentioned,
availability of comprehensive experimental carbonation tests
data is limited. Use of a carbonation physical model can be
an option to get prior alternative data (stage 1 of the
graphical abstract). In the following, we have used the
Hyvert carbonation model in order to simulate data tests.
This model provides the value of the carbonation depth Y.,
as a function of time t. It explicitly involves the influence of
the CO, pressure at the concrete surface Py, which will be the
acceleration stress. The reason of the choice of the Hyvert
model is not only based on a criterion of accuracy, but it
relies more specifically on the fact that its main input pa-
rameters have known statistical distribution laws that allow
simulating uncertainty effect on the simulation of carbon-
ation depth value Yy, (#). This carbonation depth can be
estimated as

2.err1 ((D2,/Q1),f) - QL- Py - t -k, - k)

Ydata (t) =

with (DZ0,/Q1),e = 6.44 - 10712 . (36.4 - e~ *04fem)> when
D¢, is not available.

The meanings of the model parameters, their charac-
teristic values, and distribution statistical laws, if available,

used for the prior database generation are reported in
Table 1.

RT.(1+23.5C2" (Py/Pyyn)™ )(C2'10.67 + 1+ (Py/P,yy)"” +Q1)

(1)

2.2. Degradation Processes. The key point of the first stage
consists in modelling data through a formalism suitable for
optimization. Stochastic processes, with their capacity to
characterize the uncertainty and dynamics of the degrada-
tion process, have been used for this purpose. Stochastic
processes are increasingly used by engineers to predict the
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Concrete: EN 206/new formulation
Objective : qualification of new mix

Qualification test: carbonation accelerated test
Objective : acceleration of test and data collection

Building a database of carbonation degradation
Objective : provide date for stochastic process modeling

Is comprehensive experimental database available ?

Yes

I No

v

Collect data from
laboratory tests

v

Generate data from a probabilized
physical model = ¢f section 2.1

Statistical inference (= cf section 3.1)
Objective : derive the parameters of a stochastic process

Sub-stage 2.1 : maximum likelihood estimation of parameters
with explicit expressions = ¢f section 3.1.1

Sub-stage 2.2 : expectation - maximization algorithm for
estimation of complementary parameters =» cf section 3.1.2

Durability estimation (= cf section 3.2)
Objective : derive the mean-time-to-failure and its confidence interval

Sub-stage 3.1 : estimation of durability indicators (mean-time-to-failure,
guaranteed value of lifetime @ specified risk level) = c¢f section 3.2.1

Sub-stage 3.2 : interval estimation = ¢f section 3.2.2

Optimal and robust design of constant-stress ADT (CSADT)
Objective : find samples allocation, number, and frequencies of measures for an
optimal estimation of durability indicators.

Sub-stage 4.1 : optimization of a 2-level CSADT with study of the
effect of stress levels = cf section 4 for theoretical aspects and section 5.2, 5.3, and 5.5 for applications

Sub-stage 4.2 : robustness and sensitivity analysis =» c¢f section 5.4

FIGURE 1: Graphical abstract to illustrate the optimization of an accelerated carbonation test of cementitious materials.

reliability of products. There are different types of stochastic
models in the literature. Among them, the Wiener process
has received widespread attention in degradation data
analysis and performs well. The primary reason why we
select the Wiener process to model the carbonation depth
evolution is that from the physical standpoint, the degra-
dation phenomena can be viewed as an accumulation of
additive and irreversible damages caused by a sequence of
internal and external random shocks. Wiener process is very
suitable to model this.

We propose here to analyze the degradation by using a
nonlinear generalized Wiener process, which can be
expressed as

Y o (t) = A (t) + 0B (A(1)). (2)

where 7 is the degradation rate, which represents the speed
of product change from normal to failure. Generally
speaking, the greater the stress condition, the larger the #.
A(t) is the function of time, which is specified according to
degradation physics or empirical observations. For the
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TaBLE 1: Input parameters for the Hyvert model to generate data (from [15]).

h isti -
. o Characteristic Standard Statistic
Parameters Units Description values - e

. deviation distribution

(mean-variance)
errl — Error estimation of (D"COZ /Q1),e¢ 0.84 0.52 Lognormal
Do, m?/S Diffusion coefficient out of porous zone 114.1077 182.10°8 Normal
Q1 Mol/l Quantity of Portlandite Ca (OH), 2.19 — Deterministic
Sfemas MPa Compressive strength of the concrete 35 2 Lognormal
P, Pa CO, pressure on the concrete surface 30 — Deterministic
K, o Parameter taking into .a.ccount environmental 1 01 Normal
conditions

K, — Parameter taking into account thermal treatment 0.49 — Deterministic
Pim Pa The atmospheric pressure 10° — Deterministic
T K The temperature in Kelvin 293 — Deterministic
R J/K-mol The perfect gases constant 8.31 — Deterministic
c2' mol/l The quantity of CSH-hydrated calcium silicate 2.34 — Deterministic

concrete, the mechanism of concrete carbonation is studied
by several well-established models [22, 23] which demon-
strates that A (t) = /t.

According to the definition of Wiener process,
Y, oqa (A(t)) may decrease between two consecutive times
while, in fact, degradation process is constantly increasing
and monotonic. But, as we explain in the introduction, the
Wiener process can be applied to model the evolution of
damage because it shows increasing degradation on average
and that the possible decrease between two times can be used
to take into account the measurement errors and the var-
iability between two tested samples. Moreover, when #A ()
is “large” compared with o5\/A (1), e.g., nA(t) > o5/ A(t);
therefore, the probability that degradation increment is
negative becomes small and can be ignored. This is the case
in our situation. This tendency is enhanced when A(f)
increases over time [24]. Therefore, Wiener process can be
used to model the degradation path whether the degradation
process is monotonous or not.

2.3. Accelerated Carbonation Test. The accelerated stress is
the factor that accelerates the studied degradation phe-
nomenon. In our case, the stress used is the CO, concen-
tration P, and it is kept constant to be compliant with the
different standards on accelerated carbonation tests. The
optimization work will consist, among other parameters to
adjust, in determining the number of stress levels and
samples for each level in order to provide a better estimates’
accuracy under constraints of total sample size, total du-
ration of tests, or total costs.

In the model (equation (2)), # denotes the degradation rate
which obviously should change when the acceleration stress is
different. The link function between the degradation rate and
stress level can follow one of the three functions as follows:

(i) Power law relation: #(S;) = &,S,°
(ii) Arrhenius relation: #(S;) = &ye™ ¥/
(iii) Exponential relation: #(S,) = £,e%*

Here, £, and 9 are the constants to be determined and S is
the kth level of stress, stress considered here to be the CO,
pressure Py

Prior standardization of S; can be applied to obtain a
unique form of the degradation rate:

n(s;) = aef, (3)

where s; represents the kth standardized stress level, which is
defined as

( InS, —InS,

> for th 1 lation,
InS, —InS, or the power law relation

max

(1/8,) - (1/8,)

S =4 —t———4 for the Arrhenius relation,
g (1/Smax) - (I/SO)
S, -8
k20 for the exponential relation,
L Smax - SO

(4)

where Sy and S,,,.x, respectively, are the normal or service stress
and the maximum physically allowable stress, respectively.
Under the standardization, sy =0<s; <+ <s; <+ <. = 1.

For the «concrete, due to design tolerances,
manufacturing variation, and other uncertainties, reliability
of the same type of concrete may have inherent difference
called heterogeneity. In order to get a more accurate reli-
ability assessment result, it is necessary to incorporate the
heterogeneity into the degradation assessment model. This
measure has a theoretical value and practical engineering
significance, which has been confirmed by many studies
[16, 25]. In our case, the parameter « is assumed to follow
normal distribution and it is s-independent from stress
levels. After the transformation, the model can be expressed
as

{ Y od (t) = aePA(t) + oz B(A(L)), (5)

o~ N (po 03), A1) = VT,



where the unknown parameters of the process are
O = (Uy 02,3, 0%).

Once the parameters are determined, the Wiener process
can be used, for example, to find the statistical distribution of
the carbonation depth for a set value of time, or of the
duration for an allowable carbonation depth (see Sections
3.2 and 4.1, for the latter). But its main use will be to design
an optimal ADDT (see Sections 4 and 5).

2.4. Notations and Assumptions. To use Wiener process for
the purposes mentioned above, initial choices and as-
sumptions have to be put forward:

(1) We will use CSADDT for its operational conve-
nience. The number of stress levels is denoted by “d,”
and, thus, s;,k =1,2,...,d. The test is destructive,
i.e., a unit can only be tested once.

(2) The total number of units available for the test is N;
N, of them are allocated to the stress level s;, such
that ¥¢_, N, = N. Using a different unit allocation at
all levels of an accelerating variable is recommended
by Meeker et al. [8].

(3) Let m;. and f, respectively, represent the number
and frequency of measurements for units at the stress
level 5. Transformed time is A(fy;), such that
Alty)) =\/m And the c?nrresponding number of
samples is rj, such that )% m;; = Nj.. We assume
the same number of samples at each test time
My =My = .., = My, = 1y, such that mymy = Ny
And set py; = (n;/N) = pr. j=1,2,...,my, such
that Y, Y1 Prj = Yi ey = 1.

(4) Under each stress level s, k=1,...,d, the degra-
dation characteristic y,; of the ith unit
(i=1,...,m) follows normal distribution with
mean o jieﬁskA (i) and variance o3 A (t; ;) given that
the value of « is o j;. Since the test is destructive and
the initial degradation measurement is 0, then
degradation increment Ayy;; = yij;.

(5) A unit is assumed to fail at time t* when its deg-
radation Y4 (t*) crosses a predetermined failure
threshold w.

3. Process Parameters and
Durability Estimation

3.1. Parameter Estimation

3.1.1. Maximum Likelihood Estimation (MLE). The MLE
corresponds to substage 2.1 in the graphical abstract. It aims
in deriving process parameters with explicit expressions.

The unknown parameters of the nonlinear generalized
Wiener process have to be estimated from data provided by
actual (experiments) or simulated (Hyvert model)
accelerated carbonation tests. Following the argument in the
assumptions, given the value of a; j;, the PDF f (yy; | oy j;) of
degradation data y,; is normally distributed with mean
ockj,»eﬁskA(tkj) and variance U%A(tkj). Therefore, the likeli-
hood function of the proposed model is
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J(:O f(ykﬁ | “kﬁ) x f(ogj)dag.  (6)

Then, the log-likelihood function of ®, up to a constant,

1 & B; ii
l=lnL=—EZZZ<27kJ

InA(t;) +InBy,; |,
k=1 j=1i=1 A(tkj)Blkj+ n (k1)+ n 11<]>

(7a)

where By = 0p + 03¢ A(ty;) and By = yyji — ey,
Aty)).

In the particular case of partially CSADDT (where the
lower stress level used is the nominal standardized condition
s0), the log-likelihood function can be written:

2 .
; %+lnA<t(ﬂ%)>+1nB(1j/50)

LS B InB
_E Z Z A(fkj)Blkj o (tkj) T )
(7b)

where £ ;) corresponds to the specific time sequence of
tests at nominal standardized conditions sy, y ;s are the
associated i degradation data obtained at tj,, under s,
Byjys, = 05 + 0o At (jy5)> and Byjisey = ¥ jirsy) = alM(E (jrs))-

The MLEs of unknown parameters ® can be obtained by
maximizing log-likelihood function (7). But, generally
speaking, there are no explicit expressions for these un-
known parameters. Although the MLEs can be obtained
numerically, the log-likelihood function is rather sensitive to
parameter f3; thus, the estimates can substantially fluctuate.
At the same time, according to the recommendations given
by Mc Lachlan and Krishnan [26], the EM algorithm can
effectively provide the estimates of parameters and offer a
simpler framework for computation of the MLEs. Therefore,
the EM algorithm is adopted to obtain the MLEs of un-
known parameters.

3.1.2. EM Algorithm. This section corresponds to substage
2.2 of the generic approach illustrated in the graphical ab-
stract. The EM algorithm is an iterative algorithm, which
includes the expectation step (E-Step) and the maximization
step (M-Step). The E-step gives the Q-function by taking the
expectation of complete-data log-likelihood function. The
M-step maximizes the Q-function to update the parameter
estimates, which often have a simple closed form. The EM
algorithm is efficient in finding the MLEs when computation
of the expectation and the maximization is easy to perform
[26].

The joint PDF of y; and o is f(yjm i) =
S (ijilogji) - f (g ;). Then, the conditional distribution of
aj; can be obtained by integrating y, ;; out of the joint PDF,
which yields f (a i | yx;i) that follows normal distribution
with mean gy, = (4,05 + 02eP% yy )/ (03 + 02 A (t;)
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and variance aiﬁyé (Giaé)/(cr% +0 ez/gskA(tk )). Therefore,
E(“k]l ka]l) :uk]ly and E((xkﬂ |yk]1) #k]ty +0k]1y which
can be used to calculate the Q-function at the E-step of the
EM algorithm.

Based on the observed degradation data, as well as the
random effect oy ;;, the complete-data log-likelihood func-
tion, up to a constant, is

my 1

. i Zﬁ{ln% FInA(ty) +

(v — e A(ty,))’
O‘%A(tkj)

(8)

In the following, the EM algorithm is used to compute
the estimator of the model parameter vector:

E-step: calculate the Q-function, which is the expec-
tation of /. Assume that the current value of the model
parameter vector is @ " = (uM, g2(M B, aB(h)) then,
the Q-function is

2 9)

( k]1|yk]z> 2u, d_my

M-step: compute the first derivative of Q (© | ® ") with
respect to ®, and set its value to be zero. Then, e+
can be derived from the following system of equations:

ey 1 LS
~(h+
a N Z ZE<“kji|ykji>’ (10)
k=1 j=1i=1
a1 S Y 2 (h+1)
~ + +
a N Z E(‘iji|ykji> (.“a ) , o (11)
k=1 j=1i=1
d ~(h+1) ~(h+1)
k=1
d my M 2 ~(h+1)
- 1 Yiji
2(ht1) j :
o =N 3 ﬁ_zyk]ze SkE(‘xkjilykji)
k=1 j=1 i=1 ( kj)
~(h+1)

(13)

where Akl Z 21 1 yk]lE((xk]l | )’k]z) and Ak2 - Z anl
A E@2 | Y k= 1,2

The parameter § can be obtained according to the
MATLAB function “fzero” or be approximately estimated as

DIDIPN: <“kﬂ|yk,,) 1\252}

ak1]1;1

my Mij

~ d 1
ﬁM EZS_[IH<;;)’@ <(xk]1|yk]1>>
(14)

B ln<§k: nzkjl A(tk])E<06sz |J’kﬂ> )}

It is worth noting that equation (12) is a one-dimensional
equation-solved problem. Hence, it is easier than the direct
solving of the likelihood function in equation (7).

To sum up and detail substage 2.2 of our generic method,
the solution process of the EM algorithm is as follows
(Algorithm 1):

3.2. Durability Estimation

3.2.1. Estimation of MTTF. The third stage of our generic
method consists in the estimation of durability indicators
from the stochastic process modelling.

To guarantee the durability of the concrete, it is im-
portant to know the failure time (substage 3.1 in the
graphical abstract). The concept of first passage time (FPT) is
often used to get the failure time. The durability of the
concrete can be defined as the first time at which the car-
bonation reaches the steel rebars depth w, a critical value
representing the distance between the concrete surface and
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Step 2: obtain 7" according to equation (10)

Step 3: put "
Step 4: B(}Hl)

into equation (11) to obtain

Step 6: repeat Ny, time from steps 2 and 5

iter

Step 1: set the initial value of the parameters (u(?, ¢(?, B, 0‘2(0)) and number of iterations N
ai(}Hl)
can be obtained by solving equation (12), or can be approximated by using (14)

~(ht1
Step 5: put ﬁ( Y into equation (13) to obtain aé(}”l)

iter

ALGORITHM 1: Solution process of the EM algorithm.

the reinforcements. The first passage time represents the
durability (T') of the concrete and is defined by

T = inf{t| Y, .4 (t) > w}. (15)

w

fr()=

The durability T conditioning on & under a stress level s,
follows a transformation-inverse Gaussian distribution.
Considering random effects in accelerated model (4), that is,
a ~ N (4y,02), the PDF of T by integrating a out of
transformation-inverse Gaussian distribution becomes

(16)

Then, the durability of the concrete under normal
conditions of carbonation is

2w? e :
e )]

where D (z) = exp (-2?) J(Z) exp (u?)du is the Dawson inte-
gral for all real z. According to the approximate property of
Dawson integral, for large z, D(z) = (1/(2z)). Therefore,
when (u,/V20,) is large enough, Typrr can be approxi-
mated as Typp = (0*/p).

The MLE Ty of the durability for the concrete can
be obtained by substituting estimated parameters ®,, into
equation (17).

(17)

3.2.2. Interval Estimation. Once the MLE is carried out, the
confidence interval of Ty rp can be obtained using its as-
ymptotic normality. Unfortunately, it is not easy to carry out
due to the complexity of Fisher information matrix. A more
attractive alternative is to use the bootstrap method [27].

To sum up substage 3.2 of our generic method, the
detailed procedure of the percentile bootstrap (PB) method
and the bias-corrected percentile bootstrap (BCPB) method
are outlined below in seven steps:

PB

\2r (At (£)02 + A° (1)

ex (w- /"aeﬁskA (t))2
) P 2(eXPs A (t)o2 + A(t)o3) |

Step 1: generate n samples a;, ay, . ..
C . . ~ =2

distribution N (g, 07,).

Step 2: substitute «; into the model (2), and use the

property of independent increments to generate n

simulated degradation paths.

, &, from normal

Step 3: use the n simulated degradation paths to esti-
mate the parameters of model (5). Denote the bootstrap
estimates of parameters as @ (where “B” index cor-
responds to the current Bootstrap repetition).

Step 4: substitute the bootstrap estimates @5 into (8)
and then obtain the bootstrap estimate of durability
Tyrres = Turrr (©p).

Step 5: repeat B (B is a large number, e.g. B = 3000
times from step 1 to step 4)

Step 6: sort TMTTF,B from small to large, and denote as
Tyirre,, 1) Tmrre s, 2> -+ > Tvrte B, (8)-

Step 7: the confidence interval of approximate 100 (1 —
()% for the PB method and the BCPB method are,
respectively, expressed as

[TMTTF,B,LPB’ TMTTF,B,UPB] = [TMTTF,B,((*B)’TMTTF,B,(B—(*B)]>

(18)

BCPB [TMTTF,B,LPCPB)TMTTF,B,UBCPB] = [TMTTF,B,(I)’TMTTF,B,(u)]’

where I =Bx® Q20 (p*) + D ' ({/2)), u=Bx ®Q20!
(p*) +£D’1(1 - ({/2))), and p* is the proportion of the B
values Tyyprpp that are less than Typprp

3.3. Sample Size Estimation. It is supposed that the sample
size N is determined by using the following condition:

P{(1 - &) Ty < Tyirrem < (1 + &) Torps} 26, (19)
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where ¢ is a positive constant, which can be assimilated to
obtain accuracy, and satisfied 0 <e<1, and ¢ which cor-
responds to the confidence level and is also a positive
constant (see Figure 2 for a better understanding of pa-
rameters ¢ and ¢).

Since TMTTF o can be approximated as a normal dis-
tribution with mean Ty and variance Avar(TMTTF Mmh
therefore, we have

P TMTTF,M B TMTTF

“Z(-g)2 S = SZag ¢ (20)
- Avar(TMTTF’M) -
where z (;_y)), is the ((1- ¢)/2)‘h quantile of the standard
normal distribution (in other words, (1 — ¢)/2 is the con-
fidence level).
Comparing equations (19) and (20), the minimum
sample size can be approximately determined as

_H'G ' (®H(z, o)
52(TMTTF)

where  H' = (0T yirre/0ty)> (0T \irre/002), (T yirre/9P),
and (0T yp/00%)) and G(@) = (1/N)I(®), which is the
Fisher information matrix, whose detailed expressions are
listed in the Appendix.

According to (17), H' can be expressed as

’ aTMTTF _ 2\/5(‘)2 D He 2:"101
oy, o3 V2a,) 32

*

(21)

MTTE>

2
] T \rrre _ Ho

2~ 4 MTTF
oa? o

1 V2 pw? U
__T _ o D o ,
o2 MITE o ( Vo,

aTMTTF _ aTMTTF _

op d0%

(22)

TC(nys .. osfigs frr-es

where C,, denotes the operation cost of a unit per time, C,,,,
denotes the unit cost for each measurement, and C,; denotes
the unit cost for each sample.

4.2. Optimization Criteria. A-,D-,and V-optimality are three
commonly used optimality criteria based on the Fisher in-
formation matrix I (®) (see detailed expression in Appendix).
These criteria optimize the objective function from different
theoretical perspectives. We will see below that A-optimality
and D-optimality emphasize the estimation accuracy of the
model parameters from the perspective of variance and
confidence interval, respectively. V-optimality focuses on the
accuracy of the estimated durability by minimizing the

faomp...,my) =

4. Optimal Design of Accelerated Carbonation
Destructive Test Plan

Following the argument in the assumptions (see Section 2.4),
for 1 <k <d, n; indicates the number of units assigned to the
stress level s, and p;, = (1, /N) denotes the proportion of test
units that is allocated to s, where Zk 1 M = N. The number
of measurements is m; under stress level s;. There are #y;

units assigned to the test time A(fy;), such that
> j1 Mej = M. A unit can only be tested only once, since the
test is destructive. The total time on test (TTT) is my fy,
where f, is the inspection frequency under stress level s,
and satisfies fj = A(ty;) — A(fy(jop)-

In this section, we consider the optimization problem of
determining the allocation of the units (n,,n,,...,n,) or the
proportion (p;, py»---» Pg)> the inspection frequency (f4),
and the number of measurements (#1;) according to opti-
mization criteria under normal operating conditions subject
to a prefixed budget.

4.1. Constraints

(1) The test time t;,,, .k = 1,...,d should not exceed the

specified test duration t,

(2) The sample size Zizl n, = N should not exceed the
number of test units available N 4

(3) The total test cost T'C should not exceed the prefixed
budget C,

The total cost of conducting a CSADT can be expressed
as

op Z fkmk + (Cmea + Cd) Z 1y, (23)
k=1 k=1

asymptotic variance of the estimated durability. V-optimality
is most used in engineering applications where we are in-
terested more in estimating a reliability indicator (such as
MTTF, a p-quantile), a probability of failure, or to guarantee a
performance/a lifetime with a given level of risk.

In essence, the A-, D-, and V-optimality criteria cannot
be judged as good or bad. It depends on what we focus on. If
we are interested to guarantee an indicator related to du-
rability, we can choose V-optimality. If we focus on the
accuracy of the model, for example, to find a maintenance
strategy, we can choose D-optimality or A-optimality.

In the first simulations we will carry out, we compare the
results given by the three criteria for the optimal CSADDT
plans (see Section 5.2.1). But, since we focus mainly on a
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F1GURE 2: [llustration of the relationship between TMTTF) > & and ¢ (see equation (19)). (a) Ilustration of varying ¢ with a constant value of ¢.
(b) Ilustration of varying € with a constant value of ¢ (values taken as ¢; = 0.9 and &; = 10%, have been chosen here only for illustrative purpose).

durability indicator in our case, only V-optimality will be
considered for the following simulations (from Section 5.2.2
up to the end).

Before proceeding further, we briefly review the defi-
nitions of these commonly used optimality criteria.

Criterion 1 (A-Optimality). This criterion is based on the
minimization of the inverse Fisher information matrix trace.
A-optimality focuses on the accuracy of parameters esti-
mation, which is the same as the D-optimality. Unlike
D-optimality, A-optimality uses the variance of parameters
estimation as the accuracy. Due to the fact that the inverse of
Fisher information matrix is the asymptotic variance-co-
variance matrix, to minimize this trace is equivalent to
minimize total variance of the parameter estimates. The
A-optimization problem can be formulated as follows:

Min trace(I" (@ |ny,....105 f1o s far M- .. my)),
subjectto  TC(ny,....04 f1,. .o frmy,...,my) <Cy,
NEN b, <tay k=1,....d

(24)

Criterion 2 (D-Optimality). This second criterion is based
on the maximization of the Fisher information matrix de-
terminant. Actually, we first need to estimate the parameters
of the model when we analyze the reliability of concrete. The
accuracy of model parameter estimation will affect the ac-
curacy of concrete reliability. D-optimality focuses on the
accuracy of parameter estimation. The principle of this
criterion is based on the fact that the overall volume of the
asymptotic joint confidence region of ® = (y,, 02,3, 0%) is
proportional to |17} (®)]1? [28, 29]. Motivated by this,
maximizing the determinant of the Fisher information
matrix is equivalent to minimizing asymptotic joint confi-
dence ellipsoid of ® and then maximizing the joint precision

of the estimators of ®. The D-optimization problem can be
formulated as follows:

Max det(I(®|ny,...., 04 f1,...s frmy,....,my)),
subjectto  TC(ny,...,04 f1,-- s farmyy...,my) <Cy,
nSNA,tk’mkStA, kzl,...,d.

(25)

Criterion 3 (V-Optimality). This optimality criterion is
based on the minimization of the asymptotic variance of the
estimated durability at use condition. For the concrete, the
durability is an important index. We need to estimate the
durability at the normal or service stress level with maxi-
mum precision. Therefore, we can use the asymptotic var-
iance of durability at normal or service stress as the
optimality criterion. The asymptotic variance of durability
can be obtained by using the delta method, and the for-

mulation can be expressed as
o faomy...smy) = H'T (©)H.

(26)

Avar(TMTTF|n1,...,nd,f1,..

Therefore, the V-optimization problem can be formu-
lated as follows:

Min Avar(TMTTF|n1,...,nd,fl,...,fd,ml,...,md),
subjectto  TC(ny,....04 f1,. s farMys...,my) <Cp,
n<Nyty,, <ty k=1,....d.
(27)

It is difficult to obtain the analytic expression of the
optimal solution since there are random effects. Consider the
feature that the variables n, f, and my_ are integers. We can
obtain the optimal solution after finite number of steps
(Algorithm 2).
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(1) Set 1y, = min ((Cy — 2dC,,)/ (2d (Cpppeq
when f, =1 and m; =2 for Vk

(2) for n; =ny;,: ny,,, do

3)

(4) for n; = ny;: 1y, do

(5)

ny is fixed and my;, = 2 for Vk

(6) for f, =1: f,. do

(7) .

(8 for f;=1: f . do

9) for m, =2: (t,/f,) do
(10) e
(1) for my =2: (t,/f4) do
(12) if TC<Cy, Y, mm <N, then
13) if det(I(®))>1,, (D-optimality) then
(14) Planpy = (ny,...,05 f1,- o> fr My, -
@15) end
(16) if Avar (Tygprg) < Avar,,, (V-optimality)
(17) Plany = (ny,..., 05 f1,- - far My ..
(18) end
(19) if trace (17! (®)) < trace,;, (
(20) Plan, = (ny,...,05 f1>. .5 fas™Mys ..
(21) end
(22) end
(23) end
(24) end
(25) end
(26) end
(27) end
(28) end

+C,)), (N 4/(2d))), x is the floor of x, and n,,,, is the largest possible number for 7,

Set f o = min(((Cy, = 2(Cppea