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In common stock loan, lenders face the risk that their loans will not be repaid if the stock price falls below loan, which limits the
issuance and circulation of stock loans. .e empirical test suggests that the log-return series of stock price in the US market reject
the normal distribution and admit instead a subclass of the asymmetric distribution. In this paper, we investigate the model of the
margin call stock loan problem under the assumption that the return of stock follows the finite moment log-stable process (FMLS).
In this case, the pricing model of the margin call stock loan can be described by a space-fractional partial differential equation with
a time-varying free boundary condition. We transform the free boundary problem to a linear complementarity problem, and the
fully-implicit finite difference method that we used is unconditionally stable in both the integer and fractional order. .e
numerical experiments are carried out to demonstrate differences of the margin call stock loan model under the FMLS and the
standard normal distribution. Last, we analyze the impact of key parameters in our model on the margin call stock loan evaluation
and give some reasonable explanation.

1. Introduction

Stock loan is a contract that the holders of securities take
these securities as collateral to obtain loans from commercial
banks. Xia et al. [1] quantified the stock loan, established the
mathematical model of the stock loan with infinite maturity
by assuming that the logarithm price of risk assets obeys
geometric Brownian motion, and opened the door of re-
search on the pricing of the stock loan.

.e common stock loan does not have any restrictions
on the borrower. When the total price of the stock runs
below the loan, the rational borrower will default and the
lender will bear the loss, which brings the risk to the lender
and reduces the supply and circulation of the stock loan. In
order to control the risk, Liang et al. [2] studied the infinite
maturity stock loan with automatic termination clause, limit,
and additional margin. .ey found that the unlimited stock
loan would make the lender unable to obtain the maximum
interest income, and the borrower could not borrow enough
funds when he pledged the assets, so that the allocation
efficiency of funds could not be maximized. Grasselli and
Gómez [3] studied the trading restrictions on the stock

holders in the incomplete market. According to the utility
function of the fund borrower, the limited maturity stock
loan is priced, and the limited maturity stock loan is priced
according to the variational inequality. Wong [4] studied the
optimal stop time problem of the infinite maturity stock loan
similar to a permanent American option driven by the index
Levy process and uses variational inequality to solve the
problem. Cai and Sun [5] studied the infinite maturity and
limited maturity stock loan models under the super index
jump diffusion model..e accuracy of the solution is proved
by numerical examples. Wong et al. [6] studied the case that
stock volatility is a stochastic process. When the interest rate
is negative, the optimal stop time of an American call option
is considered.

.rough the research and empirical test, scholars found
that the classical B–S framework does not conform to the
actual situation, and the logarithmic distribution of risk asset
prices often has a “peak thick tail” phenomenon, which is
consistent with the fact that the stock price is an autocor-
relation process. Carr et al. [7] studied the volatility smile of
asset prices through empirical research and found that the
FMLS process model can better describe asset price changes.
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As a special Levy process, the FMLS process can well reflect
the large jump of risk asset price and the situation that the
logarithm distribution of risk asset price is often biased. In
the framework of FMLS, the α steady-state process is used as
the driving process to describe the autocorrelation of asset
price changes and ensure the stability.When α< 2, the FMLS
model is in good agreement with the phenomenon that the
logarithm distribution of risk asset prices has thick tail. Because
of its good properties, finite moment log steady state processes
are more and more used to simulate asset price movement. Yu
et al. [8] derived the equations and the boundary conditions
satisfied by the Gerber–Shiu function, the expected discounted
capital injection function and the expected discounted divi-
dend function by assuming that the observation interval and
claim amount are exponentially distributed, respectively. Yu
et al. [9] considered a class of social optimal mean field control
problem of the population growth model. Zhang et al. [10]
focused on valuation of the products with guaranteed mini-
mum death benefit (GMDB). .e benefit amount is linked to
the performance of the underlying asset, which is modeled by
an exponential Levy process. Yu et al. [11] used the Fourier
cosine series expansion (COS) method to value the guaranteed
minimum death benefit (GMDB) products. Peng et al. [12]
modeled the insurance company’s surplus flow by a perturbed
compound Poisson model.

Under the finite moment log-stable (FMLS) model, the
partial differential equation of option pricing is not easy to
get because of a fractional operator. Cartea [13] first gave the
proper partial differential equation of European option
pricing under the framework of FMLS by the Fourier
transform. Chen et al. [14] gave the analytical solution of
European option under the framework of FMLS through the
Fourier integral transform on the basis of Cartea, and they
studied the numerical solution of an American call option
pricing under the framework of FMLS through the pre-
diction correction method [15], in which the moving
boundary problem was transformed into the fixed boundary
problem through coordinate transformation. Zhang et al.
[16] studied the numerical solution of European double
barrier options driven by the Levy process, including FMLS,
using the second-order implicit difference scheme. Chen
[17] studied the second-order finite difference scheme and
obtained the numerical solution of the American option in
the form of penalty function.

Based on the previous research, we found that under the
framework of FMLS, nobody studied the margin call stock
loan. In the actual economic activities, the demand for the
margin stock loan is increasing constantly.

.e rest of this paper is arranged as follows. In the
Section 2, we establish the mathematical model of the stock
loan with margin call, transform the moving boundary
problem into the fixed boundary problem through coor-
dinate transformation, and finally transform it into the linear
complementarity problem. In Section 3, we obtain the
numerical solution of the linear complementarity problem
by the finite difference method. In the Section 4, the validity
of the numerical solution and the parameter analysis are
verified by numerical examples. Finally, we draw the con-
clusion in the Section 5.

2. Pricing Model

.emargin call stock loan: the borrower pledged stock S and
got loan K from lender. .e borrower can choose to repay
the loan at any time. However, the borrower needs to pay a
certain amount of interest while paying the loan K, so the
borrower chooses the repayment amount at time t as Kect

when St <Kect; rational people will not repay, and his
payment at time t is (St − Kect)+. In order to control the risk,
the margin call stock loan has set a lower bound SB; when the
stock price St at t moment runs below SB (generally
SB � Kect), the lender have the right to require the borrower
to recover the funds of ΔKectq , where Δ is the share to be
recovered, and then, the remaining loan is (1 − Δ)Kect.
After the payment is made, the margin call stock loan be-
comes a nonrecourse stock loan with a maturity of T − t;
therefore, the value of the stock loan after recovery is
R(t) � V(xB, 0; (1 − Δ)Kect) − ΔKect, where Vis the value
of the nonrecourse stock loan with a maturity of T − tq and
strike price of (1 − Δ)Kect.

.e margin call stock loan stipulates a lower bound of
the stock price. When the stock price reaches the lower
bound, the stock loan is suspended, and the lender has the
right to require the borrower to recover part of the loan.
After the borrower recovers the loan, the stock loan with
recourse is converted into a stock loan without recourse until
the maturity date.

In conclusion, there are two stages in the margin call
stock loan: the stage with recourse and the stage without
recourse. .is is similar to an American call option with a
change barrier in the first stage and an American call option
with a change strike price in the second stage, as shown in
Figure 1.

.e value of themargin call stock loan is Vmc(margin call
[18]), where V is the nonrecourse stock loan. Let xt � ln St,
and under the risk neutral measure, the stock price under the
framework of FMLS obeys the following stochastic differ-
ential equation:

dxt � (r − D − a)dt + σdL
FMLS
t , (1)

where r is the risk-free interest rate, D is the continuous
dividend rate of stock, σ is volatility, dLFMLS

t is the α-steady
state stochastic process, dLFMLS

t ∼ Lα(0, dt1/α, − 1), a is the
convex adjustment, and a � − σαsec(απ/2). According to the
above assumptions, the partial differential equation and
boundary conditions of the pricing of the margin call stock
loan can be obtained as

zVmc(x, t)

zt
� rVmc(x, t) − (r − D − a)

zVmc(x, t)

zx

− a− ∞D
α
xVmc(x, t).

(2)

Boundary condition 1: terminal condition.

Vmc(x, T) � e
xT − Ke

cT
􏼐 􏼑

+
. (3)

Boundary condition 2: when St � SB � Kect, i.e.,
xt � xB, the borrower needs to recover ΔKect, where
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Vis the nonrecourse stock loan with the execution price
of (1 − Δ)Kect and the maturity date of T − tB. So,

R(t) � Vmc(x,t) � V x,0;(1 − Δ)Ke
ct

,T − tB􏼐 􏼑 − ΔKe
ct

.

(4)

In order to reduce the error of fractional order nu-
merical calculation, take

R(x, t) � Vmc(x, t) � V x, 0; (1 − Δ)Ke
ct

, T − tB􏼐 􏼑

− ΔKe
ct

, x ∈ − ∞, xB( 􏼁.

(5)

WhenΔ � 0, the margin call stock loan becomes a stock
loan without recourse.
Boundary condition 3: when the stock price approaches
the free boundary,

Vmc xf, t􏼐 􏼑 � e
xf − Ke

ct
􏼐 􏼑

+
. (6)

Boundary condition 4: when the stock price approaches
the free boundary, it should be kept smooth.

zVmc xf, t􏼐 􏼑

zx
� e

xf . (7)

In conclusion, the partial differential equations and
boundary conditions of the nonrecourse stock loan pricing
with variable strike price under the framework of FMLS are
as follows:

zVmc(x,t)

zt
� rVmc(x,t) − (r − D − a)

zVmc(x,t)

zx
− a− ∞D

α
xVmc(x,t), x ∈ − ∞,xf􏼐 􏼑, t ∈ [0,T], 1<α<2,

Vmc(x,t) � R(x,t), x ∈ − ∞,xB( 􏼁,

Vmc(x,T) � exT − KecT( 􏼁
+
,

zVmc xf,t􏼐 􏼑

zx
� e

xf .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Coordinate transformation for (8)
yt � xt − ct,

τ � T − t,

V(y, τ) � e− αtV(x, t).

⎧⎪⎪⎨

⎪⎪⎩
(9)

.e final value problem with moving boundary is
transformed into the initial boundary value problem with a
fixed boundary.

First, the coordinate transformation of the fractional
order operator is

− ∞D
α
xVmc(x, t) �

1
Γ(n − α)

dn

dxn
t

􏽚
xt

− ∞

Vmc(z, t)

xt − z( 􏼁
α− n+1 dz

�
1
Γ(n − α)

dn

dxn
t

􏽚
xt

− ∞

eαtVmc(y, τ)

xt − z( 􏼁
α− n+1 dz

�
eαt

Γ(n − α)

dn

d yt + ct( 􏼁
n 􏽚

x

− ∞

Vmc(y, τ)

yt + ct − z( 􏼁
α− n+1 dz

�
eαt

Γ(n − α)

dn

dyn
t

􏽚
yt

− ∞

Vmc(y, τ)

yt − z( 􏼁
α− n+1 dz,

(10)

Stock
price

Keγt

t
TtB

Vmc

S0

V

Figure 1: Two stages of the margin call stock loan.
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zVmc(y, τ)

zτ
� (r − c − D − a)

zVmc(y, τ)

zy
+ a− ∞D

α
yVmc(y, τ) − (r − c)Vmc(y, τ), y ∈ − ∞, yf􏼐 􏽩, τ ∈ [0, T], 1< α< 2,

Vmc(y, 0) � ey0 − K( )+,

Vmc(y, τ) � V(y, τ; (1 − Δ)K, τ) − ΔK, y ∈ − ∞, yB( 􏼃,

Vmc yf, τ􏼐 􏼑 � eyf − K( )
+,

zVmc yf, τ􏼐 􏼑

zy
� e

yf .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Next, we transform (11) from the free boundary problem
into a linear complementarity problem:

min
zVmc

zτ
− LyVmc, Vmc − e

y
− K( 􏼁

+
􏼠 􏼡 � 0,

y ∈ R, τ ∈ [0, T],

Vmc(y, 0) � ey0 − K( )+, y>yB,

Vmc(y, τ) � V(y, τ; (1 − Δ)K, τ) − ΔK,

y ∈ − ∞, yB( 􏼃, τ ∈ [0, T],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where

LyVmc � (r − c − D − a)
zVmc(y, τ)

zy

+ a− ∞D
α
yVmc(y, τ) − (r − c)Vmc(y, τ).

(13)

So far, we derive the partial differential equations and
boundary conditions for pricing contracts with recourse under
the framework of FMLS, where the lower boundary is relatively
special due to the limitation of recourse. .en, the final value
problem with variable boundary is transformed into the initial
value problem with fixed boundary by coordinate transfor-
mation. Finally, the free boundary problem is transformed into
a linear complementarity problem, and a simpler and more
convenient linear complementarity problem is obtained. In the
next section, we will use the finite difference scheme to give the
numerical solution of equation (12).

3. Numerical Format of the Model

Before numerical calculation, it is necessary to establish grid
and approximate PDE. First, we divide the domain. Suppose
yB is the ordinate corresponding to the barrier price. Let
0≤ τ � nΔτ ≤T, n � 0, 1, . . . , N;L≤y≤R,Δy �(R − yB/
M),ym � L + iΔy, m � 0, 1, . . . , M; and V

n
mc ≈ Vmc(ym,

τn, α), and yB � L + bΔy is the ordinate corresponding to the
margin call boundary.

.e initial value and boundary conditions are as follows.
Initial value condition:

V
0
mcm

� e
ym − K( 􏼁

+
, m � b, 1, . . . , M. (14)

Boundary condition 1:

V
n

mcm
� V ym, τn; (1 − Δ)K, τn( 􏼁 − ΔK,

n � 0, 1, . . . , N, m � 0, 1, . . . , b.
(15)

Boundary condition 2:

V
n

mcM
� e

ym − K, n � 0, 1, . . . , N. (16)

We use the central difference scheme to approximate the
first-order time and space partial derivatives:

zVmc ym, τn( 􏼁

zτ
�

V
n+1
mcm

− V
n
mcm

Δτ
+ O(Δτ),

zVmc ym, τn( 􏼁

zy
�

V
n+1
mcm+1

− V
n+1
m− 1

2Δy
+ O Δy2

􏼐 􏼑.

(17)

We use the modified Grunwald–Letnikov formula to
approximate the space-fractional derivative [19]:

− ∞D
α
yVmc ym, τn( 􏼁 �

1
Δyα 􏽘

m+1

k�0
w

(α)
k V

n+1
mcm− k+1

+ O Δy2
􏼐 􏼑,

(18)

where

w
(α)
k � (− 1)

k
α

k

⎛⎝ ⎞⎠ �
(− 1)kΓ(α + 1)

Γ(k + 1)Γ(α − k + 1)

�
α(α − 1) · · · (α − k + 1)

k!
,

(19)

is called the Grunwald–Letnikov coefficient. In numerical
calculation, in order to save memory, the iterative algorithm
is generally used to calculate w

(α)
k . From the above formula,

we found that the fractional derivative is related to all the
values before m + 1, which means the fractional derivative is
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a nonlocal operator, which can well explain that the un-
derlying asset price movement is related to the previous
historical price.

We get the implicit difference scheme of equation (11)
based on the modified Grunwald–Letnikov formula
approximation:

V
n+1
mcm

− V
n

mcm

Δτ
�
1
2

(r − c − D − a)
V

n+1
mcm+1

− V
n+1
mcm− 1

2Δy
+

V
n+1
mcm+1

− Vn+1
mcm− 1

2Δy
⎛⎝ ⎞⎠

+
1
2

a
1
Δyα 􏽘

m+1

k�0
w

(α)
k V

n+1
mcm− k+1

+
1
Δyα 􏽘

m+1

k�0
w

(α)
k V

n+1
mcm− k+1

⎛⎝ ⎞⎠

−
1
2

(r − c) V
n+1
mcm

+ V
n
mcm

􏼐 􏼑.

(20)

In reference [19], the scheme has been proved to be
unconditionally stable. Equation (20) is sorted out as
follows:

− h1 􏽘

m+1

k�3
w

(α)
k V

n+1
mcm− k+1

+ h2 − h1w
(α)
2􏼐 􏼑V

n+1
mcm− 1

+ 1 − h1w
(α)
1 + h3􏼐 􏼑V

n+1
mcm

− h1w
(α)
0 + h2􏼐 􏼑V

n+1
mcm+1

� h1 􏽘

m+1

k�3
w

(α)
k V

n

mcm− k+1
+ h1w

(α)
2 − h2􏼐 􏼑V

n

mcm− 1
+ 1 + h1w

(α)
1 − h3􏼐 􏼑V

n

mcm
+ h1w

(α)
0 + h2􏼐 􏼑V

n

mcm+1
,

(21)

where

h1 �
1
2

aΔτ
Δyα,

h2 �
1
4

(r − c − D − a)
Δτ
Δy

,

h3 �
1
2

(r − c)Δτ.

(22)

Write (21) in matrix:

AV
n+1
mc � BV

n
mc, (23)

where

A �

1 − h1w
(α)
1 + h3 − h1w

(α)
0 + h2􏼐 􏼑 0 · · · 0 0

h2 − h1w
(α)
2 1 − h1w

(α)
1 + h3 − h1w

(α)
0 + h2􏼐 􏼑 · · · 0 0

− h1w
(α)
3 h2 − h1w

(α)
2 1 − h1w

(α)
1 + h3 · · · 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

− h1w
(α)
M − h1w

(α)
M− 1 − h1w

(α)
M− 2 · · · 1 − h1w

(α)
1 + h3 − h1w

(α)
0 + h2􏼐 􏼑

− h1w
(α)
M+1 − h1w

(α)
M − h1w

(α)
M− 1 · · · h2 − h1w

(α)
2 1 − h1w

(α)
1 + h3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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B �

1 + h1w
(α)
1 − h3 h1w

(α)
0 + h2 0 · · · 0 0

h1w
(α)
2 − h2 1 + h1w

(α)
1 − h3 h1w

(α)
0 + h2 · · · 0 0

h1w
(α)
3 h1w

(α)
2 − h2 1 + h1w

(α)
1 − h3 · · · 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

h1w
(α)
M h1w

(α)
M− 1 h1w

(α)
M− 2 · · · 1 + h1w

(α)
1 − h3 h1w

(α)
0 + h2

h1w
(α)
M+1 h1w

(α)
M h1w

(α)
M− 1 · · · h1w

(α)
2 − h2 1 + h1w

(α)
1 − h3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V
n+1
mc � V

n+1
0 , V

n+1
1 , V

n+1
2 , . . . , V

n+1
M􏼔 􏼕,

V
n

mc � V
n

0, V
n

1, V
n

2, . . . , V
n

M􏽨 􏽩. (24)

Since BV
n

mc is known in numerical calculation, we can
make qn � BV

n

mc, that is, AV
n+1
mc � qn. It can be obtained by

Gauss elimination [A | qn]⟶ [A′ | qn′], where [A′ | qn′] is
the simplest step matrix, so we get

V
n+1
mcm

�
qn′

m

Am,m
′

, m � M,

V
n+1
mcm

�
qn′

m − Am,m+1′ V
n+1
m+1

Am,m
′

, m � M − 1, M − 2, . . . , b.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Formula (12) and the stock loan have their own char-
acteristics. Formula (20), (21), and (25) are equivalent, and
they are only established in area m � 0, 1, . . . , mf, where mf

is the point corresponding to the asset price closest to the
free boundary. Obviously, mf is a positive integer less than
M. Due to the fact that the stock loan can be repaid at any
time, obviously V

n+1
m should be greater than or equal to

(eyf − K)+. .erefore, the value of the stock loan on each
approximation grid point should be expressed as

V
n+1
mcm

� max
qn′

m − Am,m+1′ V
n+1
m+1

Am,m
′

, e
yf − K, 0⎛⎝ ⎞⎠,

m � M − 1, M − 2, . . . , 0,

V
n+1
mcm

� max
qn′

m

Am,m
′

, e
ym − K, 0􏼠 􏼡, m � M.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

According to the conclusion of reference [20], backward
calculation V

n+1
mcm

in (26), it will be more accurate to calculate
the value of the stock loan from M. Because backward
calculation defaults V

n+1
mcm

� (eym − K)+ when m≥mf. When
m<mf, the value of stock loan is determined by partial
differential equation (11).

4. Numerical Example

4.1.ModelValidation. Generally, the pledge rate of the stock
loan is less than 0.6. We set the parameters of stock loans

with recourse as follows: initial stock price S0 � 100, loan
K � 60, expiration date T � 3, risk free interest rate r � 0.05,
dividend rate D � 0.1, volatility c � 0.1, tail index α � 1.5,
and recovery factor Δ � 0.4, and let Smax � 150, SB � Kect.
Due to yt � ln St − ct, St � eyt+ct, corresponding ymax � 5
and yB � 4.094. If St is used as the boundary, it will cause the
boundary moving, so we use the final result Vmc of model
(11) as the inverse coordinate transformation to get V,
Vmc(x, t) � eα(T− t)Vmc(y, τ), and eα(T− τ) is always bigger
than 1.

Figure 2 shows that the margin call stock loan is cut off at
the barrier price yB. It can be seen from the lower boundary,
the longer the maturity, the greater the value of the non-
recourse stock loan, and the greater the value of barrier yB,
the higher the corresponding function image. Under the
price of yB, the margin call stock loan is transformed into a
stock loan without recourse. In this paper, we mainly discuss
the nature of the margin call stock loan through numerical
experiments.

Figure 3 shows that when the pledge rate Δ � 0, margin
call stock loans equals no recourse stock loans.

4.2. Parameter Analysis. .e risk of the margin call stock
loan is more controllable for the lender, so the lender is more
willing to improve the pledge rate to borrow more money
and obtain more interest. With the increase of pledge rate,
the borrower also gets more funds in the controllable range,
which improves the allocation efficiency of funds.

Figure 4 shows the impact of different recourse shares ∆ on
the value of the margin call stock loan. .e right side of the
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barrier indicates the contract value of the margin call stock
loan..e left side of the obstacle isV(x, 0; (1 − Δ)K, T) − ΔK,
which means, the value of the nonrecourse stock loan with a
maturity of Tand loan amount of (1 − Δ)K minus the value of
recourse currency at time 0. Figure shows that the lower the
share of recourse, the higher the contract value of the stock
pledge loan with recourse, which is confirmed by the actual
economic activities. And from formula (4), nomatter how high
the recourse share ∆ is, the contract value of the margin call
stock loan is always bigger than zero at the obstacle.

Figure 5 shows the effect of different loan interest rates c

on the contract value of the margin call stock loan under the
condition that other parameters remain unchanged. We
found that the higher the loan interest rate c is, the lower the
contract value of the margin call stock loan is because in
practice, the higher the loan interest rate is, the higher the
interest the borrower needs to pay and the faster the barrier

price will rise, so the corresponding contract value of the
margin call stock loan will be lower.

Figure 6 shows the effect of different maturity dates T on
the contract value of the margin call stock loan under the
condition that other parameters remain unchanged. .is is
because in the actual economic activities, on the one hand,
due to the existence of volatility, the longer the time is, the
higher the stock price is likely to reach; on the other hand, the
loan interest rate and dividend rate are greater than the risk-
free interest rate, so the longer the time is, the greater the risk
the fund lender bears. In conclusion, the longer thematurityT

is, the higher the value of the margin call stock loan is.
Figure 7 shows the effect of different volatility σ on the

margin call stock loan under the condition that other
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parameters are unchanged. It can be seen from the figure that
the margin call stock loan increases with the volatility σ
because the nonrecourse stock loan is similar to an American
option. Due to the increase in the value of the American
option with the increase of volatility σ, the increase of vol-
atility σ will give a higher initial value to the recourse stock
loan. On the other hand, the margin call stock loan is similar
to an American barrier option, and the larger the volatility σ,
the higher the value of the margin call stock loan.

Figure 8 shows the effect of different risk-free interest
rates r on the contract value of the margin call stock loan
under the condition that other parameters remain

unchanged. .e figure shows that the value of the margin
call stock loan increases with the increase of the risk-free
interest rate r. Which means the higher the risk-free interest
rate is, the higher the contract value of the margin call stock
loan is.

Because the risk of the margin call stock loan is more
controllable for the lender, in order to obtain more interest
income, the lender is willing to increase the pledge rate,
which means to provide more loans. Figure 9 shows the
effect of different loan amounts K on the contract value of
the margin call stock loan. Because the higher the loan
amount is, the easier the stock price is to reach the lower
bound, the lower the contract value of the corresponding
margin call stock loan is.
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Figure 6: Effect of different maturity dates T on Vmc.
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5. Conclusion

In this paper, we analyze the pricing process of the margin
call stock loan under the framework of FMLS. We take the
value of the nonrecourse stock loan as a boundary condition
of the barrier of the recourse stock loan and study the pricing
of the recourse stock loan. .e partial differential equations
and boundary conditions for the pricing of the margin call
stock loan are obtained, and then, the unconditionally stable
numerical scheme for the linear complementarity problem is
given. And through numerical experiments, we verify the
nature of the margin call stock loan, especially when the
recourse share Δ � 0, and the margin call stock loan is
equivalent to the stock loan without recourse. Finally, we
give the influence of different parameters on the stock loan
with recourse through numerical experiments, especially the
influence of different recourse shares Δ, which are unique to
the stock loan with recourse, and explain the economic
significance behind it.
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