Hindawi

Mathematical Problems in Engineering
Volume 2020, Article ID 5713137, 13 pages
https://doi.org/10.1155/2020/5713137

Research Article

Hindawi

A Point Cloud Simplification Method Based on Modified Fuzzy
C-Means Clustering Algorithm with Feature

Information Reserved

Yang Yang ®,' Ming Li®," and Xie Ma®"?

'Key Laboratory of Intelligent Manufacturing and Robotics,

School of Mechatronic Engineering and Automation Shanghai University, Shanghai 200072, China
2School of Mechanical and Electrical Engineering College, Ningbo University of Finance and Economics, Ningbo 315175, China

Correspondence should be addressed to Yang Yang; mryyfi@i.shu.edu.cn

Received 17 April 2020; Accepted 24 August 2020; Published 21 October 2020

Guest Editor: Ching-Hsin Wang

Copyright © 2020 Yang Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To further improve the performance of the point cloud simplification algorithm and reserve the feature information of parts point cloud,
anew method based on modified fuzzy c-means (MFCM) clustering algorithm with feature information reserved is proposed. Firstly, the
normal vector, angle entropy, curvature, and density information of point cloud are calculated by combining principal component
analysis (PCA) and k-nearest neighbors (k-NN) algorithm, respectively; Secondly, gravitational search algorithm (GSA) is introduced to
optimize the initial cluster center of fuzzy c-means (FCM) clustering algorithm. Thirdly, the point cloud data combined coordinates with
its feature information are divided by the MFCM algorithm. Finally, the point cloud is simplified according to point cloud feature
information and simplified parameters. The point cloud test data are simplified using the new algorithm and traditional algorithms; then,
the results are compared and discussed. The results show that the new proposed algorithm can not only effectively improve the precision

of point cloud simplification but also reserve the accuracy of part features.

1. Introduction

The development of digital measurement technology pro-
vides an efficient and accurate method for the scanning
process of mechanical parts. Laser scanning technology has
enriched the inspection methods, which can quickly and
accurately show the shape information of the parts through
the point cloud data obtained by the equipment [1].
According to the data form of the point cloud, it mainly
includes line scan, triangular grid, uniform grid, and scat-
tered point cloud data [2]. Among them, scattered point
cloud is a kind of widely used data form. Although there are
different point cloud data types, the essence of point cloud
data is to represent geometric information of parts by
obtaining discrete coordinates on parts’ surfaces. On the
basis of coordinate information, relevant algorithms of point
cloud data were adopted for postprocessing analysis, so as to
analyze and evaluate the actual state of parts quickly, ac-
curately, and completely.

As mentioned in the above research background, point
cloud is one of the basic measurement data sources at this
stage and has been widely used in various industries such
as 3D-LiDAR [3], additive manufacturing [4], and un-
manned aerial vehicle [5]. However, the point cloud
obtained by laser scanner has a lot of redundant data,
which affect the point cloud computing analysis process.
The large amount of point data will lead to lower work
efficiency and heavy workload. Therefore, initial point
cloud data need to be simplified during the preprocess of
point cloud. For the simplified process, the traditional
irregular point cloud simplification algorithm will affect
the reconstruction of features to some extent. Therefore,
in order to improve the simplification performance and
the accuracy of the reconstruction model, it is necessary to
simplify the point cloud data on the basis of ensuring the
geometric characteristics of parts. Moreover, according to
the distribution of point clouds, the point cloud simpli-
fication algorithm is also different. At present, the classic
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point cloud simplification methods include curvature
sampling method [6], point spacing algorithm [7], and
bounding box algorithm [8] according to the form of
point cloud. Generally, a good point cloud simplification
method can use the least number of points to reflect the
characteristics of the measured object. In the field of point
cloud simplification algorithms, different types of point
cloud data have different simplified algorithms, compared
to other more regular point cloud data, the simplification
algorithms that suitable for scattered point cloud data still
need to be studied in depth. In this paper, the simplifi-
cation algorithm for scattered point cloud is studied and
designed. The main contributions of this paper are as
follows:

(1) The initial clustering center of FCM is optimized by
GSA to improve the clustering accuracy and avoid
algorithm falling into local optimization. In addition,
related algorithms are used to obtain the normal
vector, angle entropy, curvature, and density in-
formation of point cloud, to provide geometric
feature information data for point cloud
simplification.

(2) On the basis of the above data calculated in point (1),
the strong feature information of point cloud is first
reserved, and then the multidimensional point cloud
data is divided through the MFCM, so as to simplify
the point cloud based on point cloud feature in-
formation and simplified parameters. The data vol-
ume of point cloud is reduced while the point cloud
features are reserved.

(3) We carried out simulation experiments and com-
pared the results with the related algorithm. The
results showed that the algorithm is effective to some
extent.

The rest structure of this article is as follows. In Section
2, the related work of point cloud simplification algo-
rithms are introduced. In Section 3, the experimental data
of point cloud simplification are described. In Section 4,
the geometric information of point cloud data are cal-
culated in detail in the part. In Section 5, the simplification
method based on MFCM algorithm is presented. The
simulation experiments of the proposed algorithms are
carried out in Section 6. In Section 7, the conclusion of
this work is summarized and the future work is
prospected.

2. Related Work

For point cloud simplification algorithms, Lee et al.
implemented the point cloud simplification process based
on geometric information and proved the advantages of the
algorithm through experimental data [9]. Dyn et al. sim-
plified the point cloud by using an adaptive refinement
strategy, and experiments proved the effectiveness of the
algorithm [10]. Shi et al. designed an adaptive point cloud
simplification method based on k-mean clustering algorithm
[11]. On the basis of data accuracy, Wang et al. applied
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Akima spline interpolation algorithm to the line point cloud
simplification method, which can ensure the accuracy while
reducing the amount of point cloud data [12]. Based on the
fuzzy entropy iterator, Sun and Da designed a point cloud
simplification algorithm, which was claimed to have the
advantage of preserving the details of the parts and ensuring
the computational speed of data simplification [13]. Han
et al. simplified point cloud data by constructing the to-
pology of the points and adopted different sampling strat-
egies based on point location [14]. Chen et al. proposed a
point cloud simplification algorithm based on the normal
vector included angle local entropy model, and the exper-
imental results showed that the algorithm can achieve the
optimal computational accuracy and efficiency [15]. Wang
et al. built a vehicle size measurement platform based on
improved point cloud simplification algorithm. This plat-
form designed three point cloud preprocessing data algo-
rithms, which were said to be able to simplify point cloud
data in a large scale and maintain part features and model
quality [16]. Zang et al. proposed a point cloud simplification
algorithm based on multilevel adaptation, which can be
evaluated through the constructed point cloud grid, and the
effectiveness of the algorithm is proved by experiment [17].
By designing a new sampling rule, Zhang simplified the
point cloud data and ensured the sampling quality of the
point cloud [18]. Xuan et al. first obtained the angle between
the normal vectors of each point, then introduced the in-
formation entropy to determine the importance of each
point, and finally achieved the simplification process of point
cloud by reserving the important points with certain sim-
plified rules [19]. Chen et al. designed a point cloud sim-
plification algorithm based on dynamic k-nearest neighbors
(k-NN) search to improve the simplification accuracy of
point clouds [20]. Sayed et al. designed a point cloud
simplification algorithm based on weighted graph, which
simplified the point cloud by preserving feature points [21].
Markovic et al. adopted support vector machine to simplify
scanning point cloud data in different regions [22]. Wang
et al. designed a point cloud simplification algorithm based
on feature perception, which can reduce the simplification
error while ensuring the original geometric accuracy of
parts [23]. Chang et al. explained that k-means clustering
was applied to point cloud simplification process and
modified the simplification process by combining the
boundary extraction algorithm [24]. Ji et al. designed a point
cloud simplification algorithm based on k-NN search with
multifeature measurement, which can guarantee the sim-
plification accuracy and improve the simplification effi-
ciency [25]. Mahdaoui et al. combined k-NN and clustering
algorithm to simplify the point cloud and achieved
good results [26]. Li et al. designed a point cloud simplifi-
cation algorithm based on k-means and Hausdorff distance
[27].

Based on the above literatures, many scholars have
conducted in-depth studies on point cloud simplification;
among them, the clustering algorithm which is represented
by k-means has been widely applied to simplify the point
cloud [11, 26]. At present, FCM has better clustering results
as a soft clustering algorithm compared to other clustering
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algorithm. As to the point cloud simplification process, it
can be seen that, although there are a lot of research results
on point cloud simplification algorithm; it is necessary to
consider not only the removal of redundant information but
also it need to reserve the feature information of the point
cloud, so further studies are needed. Therefore, based on the
FCM clustering algorithm, this paper firstly optimized the
initial clustering center through GSA, then combined the
point cloud coordinates with feature information to divide
the point cloud, finally reserved strong feature information,
and simplified the point cloud data in different regions. Four
groups of commonly used point cloud data are applied to the
final simulation experiment process.

3. Materials

For the point cloud simplification process, different
simplification algorithms will have different simplifica-
tion results. However, for the comparison and verifica-
tion process of the algorithm, the same point cloud data
should be used as standard dataset, which can objectively
test the simplification performance of the proposed al-
gorithm. Therefore, in order to better verify the effec-
tiveness of the simplified algorithm designed in this
paper, the four groups of classical point cloud data are
adopted for experimental verification in this paper, as
shown in Figure 1.

Figure 1(a) is the Bunny data and the number of points is
35947. Figure 1(b) is the Chair data and the number of
points is 49960. Figure 1(c) is the Dino data and the number
of points is 23982. Figure 1(d) is the Gargo50 K data and the
number of points is 25038. The above models are classic
point cloud test data, with the rich characteristic properties;
this paper will use the above model and combined them with
the relevant simplified algorithms for comparison and
verification analysis.

4. Point Cloud Geometric
Information Calculation

In order to reserve point cloud data feature information, it
not only needs the spatial coordinate value of point cloud
but also the geometric information of point cloud. The
geometric information is mainly divided into the normal
vector and curvature of points; in addition, angle entropy
and point cloud density are added in our method. Scattered
point cloud obtained by optical measuring equipment
usually has no topological relations between points.
Therefore, the normal vector, curvature, angle entropy, and
density of point clouds need to be estimated by related
algorithms.

4.1. K-d Tree and k-NN. From the existing research results,
the point cloud data can greatly improve its computational
analysis efficiency through the data structure to establish a
relationship [14, 27], and k-d tree [28] is one of the most
commonly used at this stage, where k represents the di-
mensions of data. For three-dimensional point cloud data,
the k-d tree construction process is as follows: calculating the
mean value of x-directional coordinate for the three-di-
mensional dataset P; (x;, y;,2;), then finding the point data
which is closest to the mean value, and using a plane to
divide the space into two parts; then, each part of y is split by
the same principle as shown in x-directional coordinate, z-
direction is the same method, then x direction is split, and so
on. All points in the space are divided into the subspaces
which they belong to.

When point cloud is the research object, it is necessary
to obtain the neighborhood information of points, which
is the basis for analyzing point cloud data. The most
commonly used method is to calculate the distance d
between one point cloud and other point cloud data and
then select the nearest k points as the neighborhood of the
selected point, which is also known as the k-nearest
neighbor algorithm [28], as shown in point g in Figure 2.
Generally, Euclidean space is selected for distance oper-
ation:where (x,, y,,z,) and (x, y,,2,) are the three-di-
mensional Euclidean space coordinates of point a and
point b, respectively. d is the Euclidean distance between
the two points. The normal vector and curvature infor-
mation of each point can be calculated and obtained
through its k-NN data structure.

d= \/(xa - xb)2 +(¥a - )’b)2 + (2, - Zb)z) (1)

4.2. Point Cloud Normal Vector and Curvature Calculation.
Principal component analysis (PCA) is a classical point
cloud normal vector calculation method which is pro-
posed by Hoppe [29]. The method constructs the co-
variance matrix through the neighborhood information of
the point, so as to obtain the geometric information of the
point. At present, the k-NN data structure of the point can
be used to obtain its normal vector. For point cloud set
P = (p,,Py-..pp) > a certain point p; constructs its k-
nearest neighbor through k-d tree, to build the least
square fitting plane, which can obtain the normal vector
information of the point cloud, as shown in formula (2).
The eigenvectors corresponding to its minimum eigen-
value are the normal vectors of the point. At the same
time, due to the randomness of the normal vector di-
rection of the point cloud, it is necessary to adjust the
normal consistency through formula (3):



Mathematical Problems in Engineering
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FIGURE 1: Experimental data in this paper. (a) Bunny. (b) Chair. (c) Dino. (d) Gargo50 K.
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where k is the number of the nearest point; x;, y;, and z; are
the coordinates values of point p;; p is the mean value of the

= (pl,pz,...,pk) y is the normal vector before the
ad)ustment y' (h,m,n) is the adjusted normal vector; and !
is the location of the view.

For point cloud curvature, it can be obtained by com-
bining the eigenvalues of formula (2) on the basis of PCA
which is used to solve the point cloud normal vector [30].
The curvature of point p; is shown as

To

Loy tT 4T, (4)

where 0, is the point cloud curvature and 7,, 7y, and 7, are
the eigenvalues of formula (2) which satisfy 7, <7, <,.

4.3. Point Cloud Angle Entropy. In addition, angle entropy is
a new geometric parameter proposed by Chen et al [15]. By
building the k-NN of the point p; and combining the normal
vector of each internal k point, the mean value of the normal
vector deviation between p; and the points in its k-neigh-
borhood is calculated [31], as shown in formula (5).
Then, calculate the angle entropy of the point according to
formula (6):
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where y; is normal vector of p;, 0, is the angle of point p;, 0 F
is the angle of point in k-NN of p;, and En; is the angle
entropy of point p;.

4.4. Point Cloud Density Calculation. Point cloud density also
can reflect its location to a certain extent. Generally speaking,
the number of points in the feature area is large, so is the
density of point cloud. On the contrary, the number and
density of noncharacteristic regions are smaller. At the same
time, for point cloud data, it is a three-dimensional spatial
data. Therefore, the spatial density can better reflect its density
information. This paper introduced the point cloud density
calculation formula proposed by Yang et al. [32] for

4k

- 3nd>

Pi (7)

where the p; is the density parameter and d,,,, is the farthest
distance in the k-NN.

5. The Proposed Point Cloud
Simplification Algorithm

5.1. Reservation of Point Cloud Strong Features. For each set
of measurement point cloud data, strong features can reflect
its unique nature of the point cloud. These points not only
can reserve the overall characteristics of the point cloud but
also affect the quality of point cloud reconstruction; in order
to retain these points, this paper uses the point cloud cur-
vature o; as the evaluation parameter and adopts the sta-
tistical principle in the way of reservation.

The curvature o; of each point p; is obtained from the
above calculation, for the point set P(py, p,, ..., p,), the
average curvature o; of all point cloud, and the standard
deviation 04, as shown in the formulas,

S

0= 0> (8)

1
n¢«
i

Y (3-0) 9)

Ostd = >

determines whether the curvature o; of each current p; is
greater than the set threshold ,. When 0, > 0, the retention
point p; as a strong feature point, as shown in the formula,

0y =0+ B X044 (10)

where f is a constant from 1 to 5.

5.2. Basic Gravitational Search Algorithm. The GSA is a new
heuristic optimization algorithm proposed in 2009 [33].
The idea of GSA is derived from the law of universal
gravitation and Newton’s second law in physics. In GSA,
every particle not only has a certain mass but also can
move without resistance under the gravitational force
between particles in the solution space. For the whole
population, the particle will move to the one with a larger
mass, until it reaches the position of the maximum mass,
which is the optimal location of the problem. The flow of
basic GSA is shown below:

Step 1: define algorithm parameters and initialize
population. The particles in the solution space can be
described as

x,-z(x,-,l,xi)z,...,xi,d), i=12,...,n, (11)

where i is the sequence number of particles in the
population; n is size of the population; and d is the
dimension of the problem.

Step 2: calculate the fitness function value of each
particle. The fitness value is generated by the target
function of the problem. Update universal gravitational
constant, and find the worst and the best particle in the
population. For the minimization problem, the cal-
culation of relevant parameters is shown in formulas
(12)-(14), respectively:

G(1) =Gy x e, (12)
best, (x) = minf,(x;), i=12,...,n, (13)
worst, (x) = maxf,(x;), i=12,...,n, (14)

where G(t) is the universal gravitational constant;
G,=100; T is the maximum number of itera-
tions; t is the current number of iterations; and
a=20.

Step 3: calculate the mass and acceleration of each
particle. The mass of each particle is calculated by the
worst and best particles, as shown in formulas (15) and
(16). The acceleration of each particle is calculated
according to formulas:

_ S (%) — worst, (x)

m (x;) = best, (x) — worst, (x)’ (15)
M, (x;) = % (16)
F{i(x) = G(t) x %(ﬁ () -x @), 17)
F?(x) = il randeZ(x), (18)
=
j#i



d
F; (x
al = L, (19)
M, (x;)
where e is a constant value, a¢ is the acceleration of
particles in dimension d, and R, (i, j) is the Euclidean
distance between i and j.

Step 4: update the velocity and position of the particle
under the action of the acceleration as

vt"d (x;) = rand; x v, (x;) + a, (x;), (20)
xp = x; + v (%), (21)

where rand; takes a value of 0 to 1.

Step 5 (judgment of stop criteria): if the algorithm
reaches the maximum iterative times, the algorithm
terminates and outputs the optimal solutions; if not,
return to Step 2. GSA algorithm flow chart is shown
in Figure 3.

5.3. Data Clustering Based on MFCM. FCM 1is a soft
computing clustering algorithm which is widely used in
many  fields [34-36]. Suppose  point  set
p=1{pi>Pr-->Pub> its subsample data is
pi= {Pi,1>Pi,2> - ,pi,j}; when the value of membership
function F(p;) is close to 1, it means the
pi= {pi,l,pi,z,. . ,pi,j} belong to the same set. Otherwise,
the data need to be regrouped until the threshold re-
quirement of clustering is met. However, FCM algorithm
also has problems such as unstable initial clustering
center, easy to fall into local optimal, resulting in poor
clustering results [37]. Therefore, GSA algorithm is in-
troduced into FCM in this paper to optimize the initial
clustering center of FCM, which has strong global search
capability, thus further improving the clustering accuracy
of FCM, and the flow of the MFCM algorithm is as
follows.

Step 1 (parameter definition): input dataset
p =1{pi> P2 --->pu}. Define population number N,
dimension of the problem d, G,=100, « =20,
number of cluster ¢, fuzzy index m, iteration number
t and T, random initialization of the cluster center
V={v,v,...,v.}, which is c¢xd vectors, and
membership matrix F = [ fj;].,, which need to sat-
isty the formula

C n
fa€l0 1LY fu=1 0<) fu<n,
k=1 i=1

Vi=1,2,...,n,Vk=1,2,...,c

(22)

Step 2: calculate the initial cluster center by GSA as
shown in Section 5.2, where the objective function is
shown in formula
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FIGURE 3: GSA algorithm flow chart.

Y= 1 - , 1m .
J(F, V) Zk=1 Zi=1 fkipi ~ Vi

(23)

Step 3: input the initial clustering center obtained by
Step 2, and update the membership matrix according to
formula

1
Yk (dij/dkj

fij )Z/m— I (24)

Step  4: update the new cluster center
V' ={v,v, ..., v}

B Z?ﬂ f:;lPi

e U LA 25
O (29

Step 5: judge whether the calculation process meets the
threshold requirements. When the number of iterations
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reaches the set requirements, the calculation process is
completed and the clustering result is output. Other-
wise, return Step 3 until the termination condition is
met.

The MFCM calculation process is shown in Figure 4.

5.4. The Proposed Point Cloud Simplification Algorithm Flow.
From what has been discussed above, the process of the new
proposed point cloud simplification algorithm is shown
below.

Step 1: import the point cloud dataset
P=(py,p,s- ..pk)T; then, go to step 2.

Step 2: build the k-d tree and k-NN data structures of
point cloud data as described in Section 4.1; then, go to
step 3.

Step 3: obtain the normal vector by PCA and k-NN,
according to formulas (2) and (3). Then, the curvature
information and angle entropy of point cloud are
calculated by combining the normal vector information
of point cloud as described in Sections 4.2 and 4.3,
respectively. In addition, point cloud density p; is
obtained by formula (7), which calculation process is
described in Section 4.4; then, go to step 4.

Step 4: reserve the strong feature points of the point
cloud as described in Section 5.1; then, go to step 5.

Step 5: firstly, coordinate information and geometric
feature information obtained in step 3 of point cloud
are built into a nine-dimensional data structure of point
cloud p'(x, y, z, h, m, n, 0, En,, p;). Secondly, FCM
is optimized by GSA to obtain the optimal initial
clustering center as described in Sections 5.3. Then, the
constructed multidimensional data point cloud is
segmented by MFCM; then, go to step 6.

Step 6: according to the point cloud simplification
parameters and percentages in different characteristic
region, the point cloud data in different regions are
simplified to complete the simplification process of
point cloud based on the angle entropy in each region;
then, go to step 7.

Step 7: complete the simplification process and export
the simplified point cloud.

The simplification algorithm flowchart is shown in
Figure 5.

6. Results and Discussion

To validate the performance of the point cloud simplification
algorithm proposed, this section provided comparative
experiments and analysis through four groups of point cloud
data and related point cloud simplification algorithms.
Experimental data are shown in Section 3. The platform for
the experiment is Windows 10 system and Intel (R) Core
(TM) i5-7300 processor. The point cloud simplification
algorithms included grid sampling [38], Poisson-disk
sampling [39], and algorithm in literature [11]. The

Start

A 4
Define algorithm
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A 4

Initialize the cluster
center and membership 4
matrix

Output the results

Y

Calculating the fitness
function value

Iteration condition

h 4

Calculating the mass
and acceleration

v N Update the cluster
N Update the speed and center
location A
Output the optimal
cluster center Update the membership
—» matrix
Iteration condition Y-

FIGURE 4: MFCM algorithm flow chart.
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Normal vector
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FiGure 5: Flowchart of simplification algorithm.

experiment had a 91% simplification rate, which represents
the only 9% of the original point cloud data is reserved.
Figures 6-9 show the simplification results.

Figures 6-9 show the simplification results of point
cloud in Section 3 using different simplification algorithms
on the vision. In Figures 6-9, (a) is the original data, (b) is
the calculation result by grid sampling algorithm, (c) is the
calculation result of Poisson-disk sampling, and (d) is the
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() (d)

FIGURE 6: Bunny simplification results. (a) Bunny. (b) Grid sampling. (c) Poisson-disk sampling. (d) MFCM.

(a)

FiGure 7: Chair simplification results. (a) Chair. (b) Grid sampling. (c) Poisson-disk sampling. (d) MFCM.

calculation result of MFCM algorithm. The simplification
result by grid sampling distributed evenly cannot reserve the
feature information accurately as shown from (b) in
Figures 6-9. Poisson-disk sampling has a better simplifi-
cation effect than grid sampling and can reflect the feature
information of point cloud in a certain degree. Hence, our
algorithm can reserve the feature information, especially
strong feature information.

However, these experimental results cannot reflect the effect
of the simplification postprocessing of point cloud. Therefore,
inspired by the literature [25], Geomagic Studio 12 is used to
reconstruct the point cloud to observe the reconstruction re-
sults. The reconstructed models are shown in Figures 10-13.

Figures 10-13 show the simplified point cloud re-
construction diagram by different algorithms. As shown
in Figures 10-13, at a reduction ratio of 91%, the tradi-
tional point cloud simplification results have a large area
of holes in reconstruction model, while our algorithm
also has holes in Figures 11-13, but the area is relative
smaller than other algorithms. In order to evaluate the
effect of point cloud simplification algorithm more ac-
curately, we analyze the 3D deviation of the reconstructed
model. The results are shown in Figures 14-17 and
Table 1.

Figures 14-17 show the 3D deviation cloud diagram of
the original point cloud and the reconstructed surface. For
the 3D deviation result of point cloud, we choose the av-
erage distance and standard deviation as the error evalu-
ation basis shown in Table 1. It can be seen that MFCM has
the smallest 3D deviation for the simplified bunny and
Dino, which means it has the highest simplification ac-
curacy on these models. However, for the chair and
gargo50k, Poisson sampling and grid sampling perform
better.

In order to further compare the effectiveness of the
algorithm, this paper compares the simplified results with
literature [20]. The data for comparison are bunny and chair.
The error calculation method is shown in literature [11],
which is a classical point cloud error calculation method. The
calculation results are shown in Table 2.

As can be seen in Table 2, for the simplified point cloud data,
the MFCM algorithm performs better in bunny by comparison
with the error calculation; the maximum error (0.042 mm) and
average error (0.015mm) are smaller than the algorithm in the
literature [20]. However, for the chair model, the error of the
algorithm in this paper is worse than the calculation results in the
literature [20]. Therefore, the effect of the algorithm still needs to
be further improved. In combination with the reconstructed
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(a) (b) (c) (d)

FIGure 8: Dino simplification Results. (a) Dino. (b) Grid sampling. (c) Poisson-disk sampling. (d) MFCM.

FIGURE 10: Point cloud reconstruction for Bunny. (a) Bunny. (b) Grid sampling. (c) Poisson-disk sampling. (d) MFCM.
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(@ (®) (© (d)

FiGure 11: Point cloud reconstruction for Chair. (a) Chair. (b) Grid sampling. (c) Poisson-disk sampling. (d) MFCM.

(b) ()

(d)

FIGURE 13: Point cloud reconstruction for Gargo50 K. (a) Gargo50 K. (b) Grid sampling. (c) Poisson-disk sampling. (d) MFCM.
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FiGure 15: Point cloud 3D deviation for Chair. (a) Chair. (b) Grid sampling. (c) Poisson-disk sampling. (d) MFCM.
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F1Gure 16: Point cloud 3D deviation for Dino. (a) Dino. (b) Grid sampling. (c) Poisson-disk sampling. (d) MFCM.
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TaBLE 1: Comparison of results (/mm).

Data Parameters Grid sampling Poisson-disk sampling MFCM
Bunn Mean value —0.00012 —0.00012 —0.00010
Y Standard deviation 0.00066 0.00065 0.00064
Chair Mean value —5.246 —-1.459 -3.893
Standard deviation 7.604 2.161 6.400
Dino Mean value —-0.00086 —-0.00079 —-0.00026
Standard deviation 0.00271 0.00266 0.00211
Mean value —-0.351 -0.379 —-0.388
Gargo50K Standard deviation 1.329 1.252 1.311
TaBLE 2: Comparison of results (/mm).
Data Simplification rate (%) Bunny Chair

Literature [20]
91
MFCM

Max error: 0.044
Mean error:0.017
Max error: 0.042
Mean error:0.015

Max error: 6.2186
Mean error:3.2151
Max error: 6.4039
Mean error:3.4442

model, it is necessary to further retain the feature information
from the model.

7. Conclusion and Future Work

To further improve the performance of the point cloud sim-
plification algorithm and ensure the accuracy of the features, a
new algorithm based on modified FCM with feature infor-
mation reserved algorithm is proposed. By constructing the
data structure of the point cloud, the geometric feature in-
formation of the point cloud were calculated, and then the
point cloud was divided by the MFCM algorithm to provide a
simplified data basis for the point cloud. Finally, the point cloud
was simplified according to the simplification rules. The point
cloud test data were simulated by using the simplified algo-
rithm and the results were compared, and the results showed
that our proposed algorithm can effectively improve the
precision of point cloud simplification results and ensure the
accuracy of part features.

Simplifying point cloud data is usually the first step of
point cloud preprocessing. When this process is com-
pleted, further operations are required, such as registra-
tion process. Therefore, how to accurately move point
cloud data into the actual working coordinate system is
the next topic.
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