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Grid-based Generalized Voronoi Diagrams (GVDs) are widely used to represent the surrounding environment of intelligent
agents in the fields of robotics, computer games, and military simulations, which improve the efficiency of path planning of
intelligent agents. Current studies mainly focus on square-grid-based GVD construction approaches, and little attention has been
paid to constructing GVDs from hexagonal grids. In this paper, an algorithm named hexagon-based crystal growth (HCG) is
presented to extract GVDs from hexagonal grids. In addition, two thinning patterns for obtaining one-cell-wide GVDs from
rough hexagon-based GVDs are proposed. On the basis of the principles of a leading square-grid-based algorithm named
Brushfire, a hexagon-based Brushfire algorithm is realized. A comparison of the HCG and the hexagon-based Brushfire algorithm
shows that HCG is much more efficient. Further, the usefulness of hexagon-based GVDs for the path planning tasks of intelligent
agents is demonstrated using several representative simulation experiments.

1. Introduction

Spatial representation is considered to be a fundamental
subject in the fields of robotics, computer games, and
military simulation. In applications in these fields, one or
more intelligent agents frequently implement spatial rea-
soning tasks such as route planning, self-localisation, and
collision avoidance. Generally speaking, the representation
method of the underlying working space significantly in-
fluences the efficiency of spatial reasoning algorithms of the
intelligent agents. +erefore, a sparse and well-structured
spatial representation is needed for these agents.

+ere are many ways to represent the spatial environ-
ment, such as regular and irregular grids [1], waypoint
graphs [2], probabilistic roadmaps [3], and GVDs [4]. GVDs
can represent the sparse skeleton of the entire spatial en-
vironment, which reduces the search space and improves the
efficiency of path planning algorithms. In addition, GVDs
provide the maximum clearance in regions with obstacle so
that robots can avoid them. Because of these advantages,
research on efficiently constructing the GVDs has recently
drawn significant attention.

Triangles, squares, and hexagons are the only regular
polygons that can be used to tessellate a continuous two-di-
mensional (2D) environment [5]. Among them, square grids
are the most commonly used, and several GVDs construction
algorithms based on them have been proposed, e.g., the
Brushfire algorithm [6] and its improved versions (the dy-
namic Brushfire algorithm [7] and the method developed by
Lau et al. [8]). However, the Brushfire algorithm provides no
efficient mechanism for updating partial areas where local
changes occur; it abandons the existing GVDs and builds a
new one from scratch, making it unacceptable in a dynamic
environment. To solve this problem, Kalra et al. proposed the
dynamic Brushfire algorithm [7], and Lau et al. developed a
novel method (referred to as the BL algorithm in this paper)
[8]. Both algorithms can efficiently update GVDs when the
underlying environment changes. An algorithm named dy-
namic topology detector (DTD)was proposed byQin et al. [9].
In addition to generating GVDs, it extracts the connectivity
among the edges and vertices of the GVDs and provides an
efficient repair mechanism to dealing with local changes.

As one of the three 2D regular girds, hexagonal grids
have been well studied and widely used in many fields. For

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 5750739, 13 pages
https://doi.org/10.1155/2020/5750739

mailto:youarexiong@163.com
https://orcid.org/0000-0002-5606-5482
https://orcid.org/0000-0002-2683-1879
https://orcid.org/0000-0002-3753-4001
https://orcid.org/0000-0001-8395-6830
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5750739


example, the hexagonal grid has long been known to be
superior to the more traditional rectangular grid system in
many aspects in image processing and machine vision
fields [10]. In [11], a hexagonal image processing frame-
work was proposed, advantages and disadvantages of
which were also explained. In [12], a simple formula was
derived for the distance between two points on a hexagonal
grid, in terms of coordinates with respect to a pair of
oblique axes. In [13], the binary tomography recon-
struction problem of images on the hexagonal grid was
studied and a (near) optimal solution was found. In ad-
dition to the applications in image processing, hexagonal
grids have important applications in other fields. For
example, Quijano and Garrido [14] simulated robot ex-
ploration algorithms based on hexagonal grids. +ey
proved that these algorithms outperform those on qua-
drangular grids for both single and multiagent problems.
Chrpa and Komenda [15] proposed a method to smooth
the trajectory of a helicopter based on hexagonal grids and
extended their method to multiagent pathfinding [16]. A
number of computer games, e.g., Wartile and World of
Warships, use hexagonal grids to represent the game
world. In military simulations, the Joint +eater Level
Simulation (JTLS) system of the United States also uses
hexagonal grids to represent the terrain of the battlefield.
Hexagonal grids have many advantages over square grids.
First, when dividing the same area, hexagonal grids pro-
vide a higher spatial resolution than square grids [17].
Second, each cell in a hexagonal grid has six neighbours
whose cell centroids are at the same distance [18], as seen
in Figure 1. +ird, hexagonal grids suffer less from ori-
entation bias and sampling bias from edge effects since the
distances to the centroids of the six adjacent cells are the
same [19].

+e square-grid-based GVDs generated from square-
grid-based map can help to improve the efficiency of path
planning tasks of intelligent agents. However, methods
that employ this GVDs construction technique are not
used in robotics, computer games, and military simula-
tions, where the environments are represented with
hexagonal grids. To date, there are no related studies that
have focused on hexagon-based GVD generation for the
path planning of intelligent agents. Pathfinding tasks on
hexagonal grids are quantitatively implemented by intel-
ligent agents in these fields, with the Morris [20], A∗, and
iterative deepening A∗ (IDA∗) [21] algorithms being the
most commonly used. However, their time and space
complexities dramatically increase when the search area
becomes larger or the number of hexagonal grids in-
creases. In order to improve the efficiency of path planning
tasks in a hexagon-based environment, the ability to
construct hexagon-based GVDs is crucial for an intelligent
agent that moves in a large area.

+e main focus of this paper is to construct GVDs
from a preexisting hexagon-based representation of an
environment. An algorithm named hexagon-based crystal
growth (HCG) is presented, which extracts GVDs from a
hexagonal grid map. Further, two thinning patterns are
proposed to obtain one-cell-wide GVDs from rough

hexagon-based GVDs. +en, HCG is compared to the
hexagon-based Brushfire algorithm. +e usefulness of
hexagon-based GVDs for the path planning tasks of
agents is also demonstrated with some simulation
scenarios.

+e outline of this paper is as follows: First, existing
GVD construction algorithms are briefly reviewed. Among
the leading algorithms for extracting GVDs from square grid
maps, the Brushfire algorithm is the most fundamental.
Owing to geometric differences between square and hex-
agonal grids, the Brushfire algorithm cannot be directly
applied to hexagon-based GVD construction and needs to be
modified to accommodate hexagonal grids. Next, the process
of constructing a hexagonal grid occupation map is detailed.
+en, the data structure employed by the presented algo-
rithms is presented. After that, the hexagon-based Brushfire
algorithm, HCG, and two thinning patterns are presented,
all of which are illustrated through pseudocode. Next, HCG
is compared with the hexagon-based Brushfire algorithm,
and the usefulness of hexagon-based GVD metrics for path
planning tasks is tested. Finally, the conclusions are
presented.

2. Related Work

Voronoi diagrams, named after Georgy Voronoi, have been
used to address different problems in various fields, in-
cluding anthropology, archaeology, astronomy, biology,
cartography, chemistry, computational geometry, geogra-
phy, robotics, and planning [22]. To address the complexity
of real-world problems, a number of advanced Voronoi
diagrams have been developed, e.g., weighted Voronoi di-
agrams [23], city Voronoi diagrams [24], and GVDs [4]. In
the field of robotics, GVDs have been extensively used to
plan a path that stays as far away from obstacles as possible.
As a reduced search space, it can help to reduce computation
time significantly.

Existing algorithms for building 2D GVDs can be
roughly divided into two types according to the type of input
data: vector data and raster data, which are called vector- and
raster-based algorithms, respectively [25]. GVDs built by
vector-based algorithms are accurately and sparsely repre-
sented as a set of parametric lines or curves, which separate
different sites in space [26, 27]. +ere are also local update
mechanisms for various local changes, e.g., moving sites [28]
and inserted or deleted sites [29]. Despite these advantages,
vector-based algorithms are not suitable for robots whose
working spaces are represented as grid maps.

Raster-based algorithms are very practical for grid maps,
and they have received a significant amount of attention. As
discussed in the previous section, most existing raster-based
algorithms, e.g., the Brushfire, dynamic Brushfire, BL, and
DTD algorithms, are based on square-grid maps. Although
the performance and application scenarios of these algo-
rithms are different, similarities in their algorithmic prin-
ciples exist. +ey all need to generate three metric matrices
(dists, obsts, and voros) to represent a GVD. +e matrix dists
stores the discrete or actual Euclidean distance between an
arbitrary entry (denoted by s) and the site cell from which s
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propagates. +e matrix obsts registers the site identifier and
the coordinates of the exact site cell to which s is currently
the closest. Finally, the matrix voros is a Boolean matrix that
indicates whether s is a GVD cell [9]. Figure 2 shows the
three matrices. Some other researchers have improved some
of these algorithms. For example, Scherer et al. propagated
the actual Euclidean distance instead of the grid steps used
by the dynamic Brushfire algorithm from the exact source
cell to greatly reduce the relative error [30]. By using the
“thinning patterns” proposed in [31], Lau et al. provided
additional thinning steps to obtain one-cell-wide edges,
which makes the resulting GVD edges sparser.

3. Construction of a Hexagonal-Grid
Occupation Map

Hexagonal grids are used to discretise the maximum active
space of intelligent agents. As illustrated in Figure 3, the
maximum manoeuvring range of an agent is a rectangular
area, the length and width of which are denoted by L and W,

respectively. +e length of the edge of each hexagon is
denoted by r, and the distance from the centre of a hexagon
to its edge is denoted by h.

+e hexagonal grid is indexed as “ColID–RowID,” where
“ColID’ and ‘RowID” are the indices of the column and row
in the grid, respectively. Given the maximum ColID col and
maximum RowID row, r can be calculated by

r � min
2 × L

3 × col + 1
,

W
�
3

√
× row

 . (1)

For the cells in the even columns, the coordinates of the
centre point of each hexagonal grid can be calculated by

x � int
ColID

2
  × 3 + 1  × r,

y � (2 × RowID + 1) × h.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

For the cells in the odd columns, the coordinates of the
centre point of each hexagonal grid can be calculated by

(a) (b) (c)

Figure 1: Square grids with (a) four and (b) eight neighbours. (c) Hexagonal grid with six neighbours.
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Figure 2: +ree GVD matrices constructed by the Brushfire, dynamic Brushfire, BL, and DTD algorithms, (a) corresponding dists matrix,
where each entry stores the integral distance to its nearest site cell, (b) corresponding obsts matrix, where each entry stores the site identifier
and the exact coordinates (not represented here) of its nearest site cell, and (c) corresponding vorosmatrix, where each entry shows whether
the site cell belongs to the GVD (registered as 1) or not (registered as 0). +is figure is cited from [9].
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x � int
ColID

2
  × 3 + 2  × r +

r

2
,

y � (2 × RowID + 1) × h.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

As illustrated in Figure 3, the grey and white hexagons
represent obstacles and free cells, respectively. In this paper,
we use a raster-based occupation map, which represents the
working space of intelligent agents, as the data source for
constructing a hexagonal map. For intelligent agents, the
black part in the occupation map is impassable, and the
white part is passable.+emain processes for hexagonal map
construction are the generation of the hexagonal grid that
overlies the occupation map and the calculation of the area
of an obstacle that falls into each hexagon in the hexagonal
grid. If the ratio of the obstacle area to the area of the
hexagon is larger than a preset threshold, then the hexagon is
set as an obstacle that is impassable. In contrast, if the ratio is
smaller than the preset threshold, the hexagon is set as a free
hexagon that is passable. In this paper, the threshold is set as
50%.

ArcGIS 10.6 (a geographic information system) is used
to convert the raster-based occupation map into a hexagonal
map owing to its powerful spatial analysis capabilities.
Figure 4 shows the whole construction process. First, by
using the ArcGIS tool “Raster to Polygon,” the raster oc-
cupation map is converted into a vector map. +en,
according to the range of the generated vector map, the
ArcGIS 10.6 tool “Generate Tessellation” is used to generate

a hexagonal grid, which is also in a vector format. Using the
generated vector map and the hexagonal grid as input data,
the ArcGIS 10.6 tool “Intersection” is employed to retrieve
the intersections of the obstacles and the hexagonal grid. At
the same time, the area attribute of each intersection can be
obtained. All intersections whose areas are larger than 30%
of the area of a single hexagon are selected by the ArcGIS
10.6 tool “Select by Area” and are exported as a new polygon
feature layer, which is further converted into a point feature
using the ArcGIS 10.6 tool “Feature to Point.” Using the
point feature layer and hexagonal grid as input data, the
ArcGIS 10.6 tool “Spatial Joining” is employed to obtain the
hexagonal grid occupation map, whose “Joint_Count” at-
tribute indicates whether a hexagon is impassable (if the
value of “Joint_Count” in the attribute table is 0) or passable
(if the value of “Joint_Count” in the attribute table is 1).

4. Employed Data Structure

A data structure is employed to represent the components of
GVDs, as shown in Figure 5. Hash tables are used to store the
components that are extracted during the construction of
GVDs to ensure efficient retrieval. Each component instance
inserted into a table is assigned with a unique identifier. For
example, vertices are identified by their coordinates in the
hexagonal grid map, and edges are identified by the ID pairs
that indicate the two sites it divides. +e semantics of the
related data objects and their attributes that will be quoted by
the two algorithms are listed in Table 1.
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Figure 3: Example hexagonal-grid map.
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Figure 4: Process of constructing a hexagonal grid occupation map using ArcGIS 10.6.
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Figure 5: Class diagram for the data structure employed by DTD.
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5. Algorithms

In this section, on the basis of the principles and steps of the
Brushfire algorithm based on a regular quadrilateral gird,
this algorithm is adaptively adjusted to achieve GVD gen-
eration on a regular hexagonal grid, and a hexagon-based
Brushfire algorithm is realized. After that, the HCG algo-
rithm is proposed to generate GVDs on a hexagonal grid. A
comparison between these two algorithms is also made to
determine which one is more efficient.

5.1.Hexagon-BasedBrushfireAlgorithm. Figure 6(a) shows a
flowchart of the main steps of the hexagon-based Brushfire
algorithm. In Step 1, the distsmatrix, where each entry stores
the integral distance to its nearest site cell, is built. In Step 2,
the obsts matrix, where each entry stores the site identifier
and the exact coordinates of its nearest site cell, is built. In
Step 3, the Edgesmatrix, where each entry shows whether the
site cell belongs to the GVDs (registered as 1) or not
(registered as 0), is built. +e width of the generated initial
rough GVD edges may be 1, 2, or more cells. In Step 4, by
thinning the rough result obtained in Step 3, the one-cell-
wide GVD edges are generated. Figure 6(b) shows the
transitions of the GVDs in order from Step 1 to Step 4.

In the hexagon-based Brushfire algorithm in Algo-
rithm 1, bfQueueList is initialised as a list of cells that are
adjacent to all of the sites in the working space and is sorted
in ascending order according to the distance from the cell to
its nearest obstacle. +at is, a higher rank is given to a cell
closer to the obstacle. If bfQueueList is not empty, the first

cell s (lines 1-2) in it is removed. Dists is the distance from s
to its nearest obstacle. If dists is not 0 (which means that s is
not a site cell), then the six cells adjacent to s are added to the
list adjCellList (which stores the neighbouring cells of the
cells in bfQueueList) and are sorted in ascending order of
distance from each cell to its nearest obstacle (lines 3–5). On
this basis, the neighbouring cell n with the smallest distance
to its nearest obstacle can be taken from adjCellList; then, the
attributes of s, including the distance to the nearest obstacle
dists, the nearest obstacle obsts, and the parent cell parents
can be updated according to the attributes of cell n (lines
6–9). For each cell in adjCellList, if it is not an obstacle cell, if
its distance to the nearest obstacle is the initial value
MAXDIS, and if a is not in the list bfQueueList, then the
nearest obstacle is Obsts and will be added to the list
bfQueueList (lines 10–15). After the above process, the lists
dists and obsts can be obtained.

+e function markBrushfireRoughGVDEdges() (line
16) is used to determine whether a cell is a GVD edge cell on
the basis of the site identifier of each cell. +e attribute values
of bEdgeCell for all cells are initialised as false, which means
each cell in the working space is not a GVD edge cell at first.
For each cell s in allCellList, the six cells adjacent to s are
removed. For each adjacent cell n of s, if the site identifiers to
which s and n belong are different and cell s is not a site cell,
then the attribute of bEdgeCell is set to true, which means that
s is a GVD edge cell (lines 17–21). +en, cell s is added to the
boundary cell list. After that, it is necessary to determine the
GVD edge that s belongs to and add it to the list of cells that
make up the GVD edge. However, if the GVD edge to which s

Table 1: Semantics table of the related data structure employed by DTD.

Class Attribute Semantics

HexGridCell

Dist:float +e Euclidean distance to the nearest site cell
posX:int X coordinate of the grid cell in the grid map
posY:int Y coordinate of the grid cell in the grid map
voro:bool A mark indicating if the grid cell belongs to the GVD
obstX:int X coordinate of the nearest site cell
obstY:int Y coordinate of the nearest site cell
sID:int Identifier of the nearest site, determined by the sequence that the site is created

toRaise:bool A mark indicating the propagation type of this grid (raised or lowered)

EdgeCell
ID:int +e index of the edge cell in the hash table

sIDp1:int Identifier indicating one of the two sites divided by this edge cell
sIDp2:int Identifier indicating the other site divided by this edge cell

Edge

ID:int +e index of the edge in the hash table
cMap :HexGridCell A hash table storing the edge cells indexed by their coordinates

vIDp1:int Identifier indicating one of the two vertices of the edge
vIDp2:int Identifier indicating the other vertex of the edge
sIDp1:int Identifier indicating one of the two sites divided by this edge
sIDp2:int Identifier indicating the other site divided by this edge

Vertex

ID:int +e index of the GVD vertex in the hash table
posX:int X coordinate of the GVD vertex
posY:int Y coordinate of the GVD vertex

eIDs:list<int> A list storing the IDs of the edges that are connected to the vertex
sIDs:list<int> A list storing the IDs of the sites that are connected to the vertex

GVD

gMap:array<HexGridCell> A unique 2D array managing GVD matrices
eMap:EdgeMap A unique hash table storing the instances of GVD edges
vMap:VertexMap A unique hash table storing the instances of GVD vertices
sMap:SiteMap A unique hash table storing the corresponding spatial object of GVDs
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belongs does not yet exist, a new edge needs to be created, and
s is added to the newly generated edge (lines 22–28). In order
to refine the initial boundary in the future and to ensure a
logically consistent single-cell-wide GVD boundary, cell s is
added to the priority list roughQueue, and the distance from s
to the nearest obstacle is increased (line 29).

5.2. Crystal-Growth Algorithm on Hexagonal Grid. +e
function GenerateCrystalGrowthRoughGVDEdges() in
Algorithm 2 is used to generate the initial GVD edges, the
width of which may be 1, 2, or more cells.UnCrystalCellList
is a list of all cells except the site cells in the working space,
which remain unhandled. BoundCellList is a list of adjacent
cells of all site cells. For list sbcl in boundCellList, each cell s
is removed. For each adjacent cell n of s (lines 1–4), if n is
not a site cell and is not occupied, the attribute values typen,
obstn, and distn of n are reset (lines 5–9). +en, cell n is
added to the temporary surrounding cell list tempSBC and
is removed from boundCellList (lines 10–11). However, if n
is not a site cell but is already occupied and if the site
identifier s is different from that of n, then the type of n is
set as EDGE (lines 12–14). After the above process, the list
tempSBC is added to the new surrounding cell list
newSBCL, and newSBCL is used to replace boundCellList
(lines 15–17). At this point, a round of growth is finished,

and the growth process will not stop until all of the cells in
the working space are handled. +e function markCrys-
talGrowthRoughGVDEdges() determines whether a
cell is a GVD edge cell on the basis of the site identifier of
the cells. +e list allCellList is a list of all of the cells after the
previous stage (lines 1–16). First, all of the cells in all-
CellList are traversed to check whether the type of cell s is
EDGE. For all EDGE cells, their corresponding edge e is
queried. If edge e does not exist, a new edge e is created, and
one of the site identifiers of edge e is set equal to obsts. +en,
edge e is added to the edge list (lines 18–24). After that,
EDGE cell s is added to edge e. +e function insert-
Queue(roughQueue, s, dists) inserts s into roughQueue
with priority dists (lines 25–26). To refine the initial
boundary in the future, cell s is added to the priority list
roughQueue, which is sorted in ascending order by the
distance from s to the nearest site.

5.3. 4inning the Rough Edges. Two thinning patterns
(shown in Figure 7) are proposed and are employed by the
function pruningEdgeCell() in Algorithm 3 to obtain one-
cell-wide hexagon-based GVD edges. +e input for thinning
is roughQueue, which involves all hexagonal edge cells
created by GenerateBrushfireRoughGVDEdges() or Gen-
erateCrystalGrowthRoughGVDEdges(). All cells in
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Figure 6: (a) Flowchart of the process of building a hexagon-based GVD. (b) Transitions of the hexagon-based GVDs from Step 1 to Step 4.
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roughQueue are processed in two phases. First, for each cell s
in the priority queue roughQueue, if s matches the two
thinning patterns in Figure 7, then s is retained and the next
one in roughQueue is processed (lines 1–3). Second, if s does
not satisfy the two thinning patterns in Figure 7, it is re-
moved from the edge list to which s belongs. After all of the
cells in the roughQueue are processed, the one-cell-wide
GVDs are obtained (lines 4–6). Following the entire de-
scription of the above thinning process, the details of the two
thinning patterns will be introduced.

+e function thinningPatternOne(s) in Algorithm 3 is
used to realise thinning pattern one. For each edge cell s in
the roughQueue, if cell n, one of the six cells adjacent to s, is
an edge cell, and the two cells a and b, which are both
adjacent to n and s, are both unoccupied, then s will be
retained in roughQueue (lines 7–11). +is means that s
belongs to the final one-cell-wide GVD edge. +e function
thinningPatternTwo(s) is used to realise thinning pattern
two. For each edge cell s in the roughQueue, if cell n, one of
six cells adjacent to s, is a not edge cell, and the two cells a
and b, which are both adjacent to n and s, are both occupied
(one of them is an edge cell, and the other is an edge cell or a
site cell), then s will be retained in roughQueue (lines 12–17).
+is means that s belongs to the final one-cell-wide GVD
edge.

6. Experiments and Analysis

In this section, statistical methods are employed to compare
the hexagon-based Brushfire and HCG algorithms for some
simulated scenarios. +e usefulness of the hexagon-based
GVDs for high-level path planning tasks is also demonstrated.

6.1. Comparison to the Hexagon-Based Brushfire Algorithm.
We compared the HCG and hexagon-based Brushfire al-
gorithms for seven scenarios, as shown in Figure 8. All
scenarios are located in a static environment with a fixed size
but with seven different hexagonal grid resolutions, which
are 72×100, 108×150, 144× 200, 180× 250, 216× 300,
252× 350, and 288× 400. In each scenario, all sites are
predefined and fixed, and two algorithms were executed 10
times for each scenario. All tests were carried out with
Python implementations of the algorithms running on an
Intel Xeon processor.

Comparisons of the performance of the two algorithms
are presented in Table 2 and Figure 9 for the computation
time. From these tables and figures, it is concluded that (1)
the GVD construction time of both the hexagon-based
Brushfire and HCG algorithms increases in proportion to
the hexagonal grid resolution for a fixed-size environment

GenerateRoughBrushfire GVDEdges()
(1) while bfQueueLis≠Ø do
(2) s⟵ pop(bfQueueList)
(3) if dists≠ 0 then
(4) adjCellList⟵Adj6(s)
(5) sort(adjCellList)
(6) n⟵ pop(adjCellList)
(7) dists � distn+ 1
(8) obsts � obstn
(9) parents � n
(10) for all a ∈ adjCellList do
(11) if typea≠OBST then
(12) if dista � �MAXDIS then
(13) if a ∉ bfQueueList then
(14) obsta � obsts
(15) insert(bfQueueList, a)
(16) markBrushfire RoughEdge()
markBrushfire RoughGVDEdges()
(17) for all s ∈ allCellList do
(18) bEdgeCell⟵ false
(19) for all n ∈Adj6(s) do
(20) if obsts≠ obstn ∧ types≠OBST then
(21) bEdgeCell⟵ true
(22) if bEdgeCell then
(23) e⟵ findEdge(s)
(24) if e� �Ø then
(25) e⟵Edge()
(26) obste⟵ obsts
(27) insertEdge(e)
(28) insertCell(e, s)
(29) insertQueue(roughQueue, s, dists)
(30) pruningEdgeCell()

ALGORITHM 1: Pseudocode for the hexagon-based Brushfire algorithm.
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Figure 7: Patterns used by edge thinning, (a) pattern one; (b) pattern two.

GenerateCrystalGrowthRoughGVDEdges()
(1) while unCrystalCellList≠Ø do
(2) for all sbcl ∈ boundCellList do
(3) for all s ∈ sbcl.cSiteCells do
(4) for n ∈Adj6(s) do
(5) if typen≠OBST then
(6) if typen � �EMPTY then
(7) typen⟵OCCUPY
(8) obstn⟵ obsts
(9) distn⟵ dists+ 1
(10) insert(tempSBC. cSiteCells, n)
(11) unCrystalCellList.pop(n)
(12) else if typen � �OCCUPY then
(13) if obstn≠ obsts then
(14) typen⟵EDGE
(15) insert(newSBCL, tempSBC)
(16) boundCellList⟵ newSBCL
(17) markCrystalRoughEdge()
markCrystalGrowthRoughGVDEdges()
(18) for all s ∈ allCellList do
(19) if types � �EDGE then
(20) e⟵ findEdge(s)
(21) if e� �Ø then
(22) e⟵Edge()
(23) obste⟵ obsts
(24) insertEdge(e)
(25) insertCell(e, s)
(26) insertQueue(roughQueue, s, dists)
(27) pruningEdgeCell()

ALGORITHM 2: Pseudocode for the hexagon-based crystal-growth algorithm.
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and (2) the HCG algorithm is much more efficient and
requires less time than the hexagon-based Brushfire algo-
rithm for each scenario with the same grid resolution.

6.2. Application Test for Path Planning. In order to dem-
onstrate the usefulness of our algorithm for path planning
tasks, seven mobile robots operating in a fixed-size map with

(a)

(b)

Figure 8: Original raster map and seven hexagonal grid maps with different resolutions. (a) First line, left to right: the original raster map
and grid maps with resolutions of 72×100, 108×150, and 144× 200. (b) Second line, left to right: grid maps with resolutions of 180× 250,
216× 300, 252× 350, and 288× 400.

Table 2: Comparison of the computation time for seven hexagon-based GVD construction scenarios. Construction from a fixed-size map
with seven different resolutions.

Algorithm
Resolution

72×100 108×150 144× 200 180× 250 216× 300 252× 350 288× 400
Hexagon-based Brushfire 7.5838 22.2965 51.6161 111.6368 182.0032 294.6933 448.1999
Hexagon-based crystal growth 1.4945 3.5701 7.3051 14.7915 23.5950 37.4815 57.4377

pruningEdgeCell()
(1) for all s ∈ roughQueue do
(2) if fitPatternOne(s) ∨ fitPatternTwo(s) then
(3) continue
(4) else
(5) e⟵ findEdge(s)
(6) e.remove(s)
thinningPatternOne(s)
(7) for all n ∈Adj6(s) do
(8) if typen � �EDGE then
(9) a, b⟵ commonAdj(s, n)
(10) if typea � �EMPTY ∧ typeb � �EMPTY then
(11) return true
thinningPatternTwo (s)
(12) for all n ∈Adj6(s) do
(13) if typen � �EMPTY then
(14) a, b⟵ commonAdj(s, n)
(15) if typea � �EDGE ∧
(16) (typeb � �EDGE ∨ typeb � �OBST) then
(17) return true

ALGORITHM 3: Pseudocode for obtaining one-cell-wide hexagon-based GVD edges using the two thinning patterns in Figure 7.
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seven different resolutions (shown in Figure 10) were
simulated.+e starting points of the seven robots were at the
same absolute coordinates at the bottom left of the map. For
each search task, each robot was given a unique destination
point with the same absolute coordinates at the top right of

the map. However, despite the same absolute coordinates,
the hexagonal grid coordinates of the seven starting points
were different owing to the different resolutions. +e grid
coordinates of the starting and destination cells of the seven
agents are listed in Table 3.

(a)

(b)

(c)

Figure 10: (a) First line, left to right: hexagon-based GVD maps with resolutions of 180× 250, 216× 300, 252× 350, and 288× 400, (b)
second line, left to right: path planning results adopting A∗ for entire hexagonal grid maps with resolutions of 180× 250, 216× 300,
252× 350, and 288× 400, and (c) third line, left to right: path planning results adopting A∗ for hexagon-based GVDmaps with resolutions of
180× 250, 216× 300, 252× 350, and 288× 400.

Hexagon-based Brushfire algorithm
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Figure 9: Comparison of the average computation time for constructing hexagon-based GVDs at different resolutions.
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+e search space adopted by these agents was (1) the entire
grid map and (2) the hexagon-based GVD metrics generated
by HCG. +e A∗ algorithm was employed by the agents to
search routes. +e simulation results are listed in Table 4. We
can see that the agents that adopted the A∗ algorithm to search
the entire hexagonal grid map have a higher computation time
and more cell visits than those that adopted the A∗ algorithm
to search the hexagon-based GVD metrics. +e entire hex-
agonal grid map provides no further information about the
maximum clearance to sites, making the resulting paths (in
yellow in Figure 10) contain several cells near the sites, which
will lead to collisions when the physical size of the agent
exceeds the limited clearance. +e agents that adopted the A∗
algorithm to search the hexagon-based GVD metrics only
explore the hexagon-based GVD edge cells, significantly re-
ducing the computation time. Each of the resulting paths (in
yellow in Figure 10) consists of (1) an initial route from the
starting cell to the nearest hexagon-based GVD cell, (2) a set of
connecting hexagon-based GVD edges ensuring the reach-
ability of the hexagon-based GVD departure cell, which is
nearest the destination cell, and (3) a final route from the
hexagon-based departure cell to the destination cell. +e path
planning results of the seven simulation scenarios suggest that
the ratio of the computation time for searching the whole map
with the A∗ algorithm to that searching the GVD metrics
increases as the hexagonal grid resolution increases. +e same
result is also obtained for the ratio of the number of cells visits
for searching the whole map with the A∗ algorithm to that
searching the GVD metrics. +is means that A∗ searching of
the GVDs becomes more efficient than searching the entire
hexagonal grid map as the hexagonal grid resolution increases.

7. Conclusions

In this paper, an algorithm named HCG was proposed to
construct GVDs from hexagonal grid maps. Several

simulation experiments were conducted to compare the
HCG algorithm with the hexagon-based Brushfire algo-
rithms (a leading grid-based GVD construction algorithm),
and the results suggest that, in a hexagonal grid map with the
same range and resolution, the HCG algorithm is much
more efficient, requiring less time and fewer cell visits to
construct hexagon-based GVDs. Moreover, two thinning
patterns for obtaining one-cell-wide GVDs from rough
hexagonal GVDs were proposed and were applied to both
the hexagon-based Brushfire and HCG algorithms. +e
usefulness of the hexagonal GVD metrics in path planning
was further illustrated using several representative simula-
tion scenarios, and we found that it can significantly improve
the efficiency of path planning of intelligent agents.

+e proposed HCG algorithm could be applicable to the
path planning of intelligent agents in fields of robotics,
computer games, and military simulations, where high
computing performance needs to be guaranteed. In the
future, a dynamic HCG algorithm will be further explored to
efficiently construct GVDs from hexagonal grid maps in
which local changes may occur.
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