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Abstract. 
It is well known that the algebraic connectivity of a graph is the second small eigenvalue of its Laplacian matrix. In this paper, we mainly research the relationships between the algebraic connectivity and the disjoint vertex subsets of graphs, which are presented through some upper bounds on algebraic connectivity.

1. Introduction
A graph  is often used to model a complex network. The vertex set and the edge set of graph  are denoted by  and , respectively. A network is represented as an undirected graph  consisting of  nodes and  links, respectively.
Graph theory has provided chemists with a variety of useful tools, such as in the topological structure [1–3]. The Laplacian matrix of a graph  is denoted by , and , where  is a diagonal matrix whose diagonal entries are its degrees and  is the adjacency matrix of . The Laplacian eigenvalues of a graph  are the eigenvalues of , denoted by , which are all real and nonnegative. The second smallest Laplacian eigenvalue  of a graph is well known as the algebraic connectivity, which was first studied by Fiedler [4]. The algebraic connectivity [5] of a graph is important for the connectivity of a graph [6], which can be used to measure the robustness of a graph. It has been emerged as an important parameter in many system problems [7–18]. Especially, the algebraic connectivity also plays an important role in the partitions of a complex network. For the literature on the algebraic connectivity of a graph [19], the reader is referred to [20, 21]. In this work, the relationships are researched between the algebraic connectivity and disjoint vertex subsets of graphs, which are presented through some upper bounds.
2. Preliminaries
Let  be a vector. Let  be an incidence matrix of . Then, . For any vector , the inner product of  and  is defined as . Two upper bounds on the algebraic connectivity are given as follows.
Lemma 1 (see [20]). For any vector , the Rayleigh inequality is as follows:where ,  is a constant, and ,  is the vector  for the node .
Lemma 2 (see [20]). For any vector , we havewhere  is the vector  for the node .
Let  and  be two disjoint subsets of , respectively. The distance between two disjoint subsets  and  of  is denoted by . For continence,  takes the place of . Let  be the distance between the node  and , which is the shortest distance of the node  to a node of the set . Suppose  and . A result on the algebraic connectivity and two partitions of graphs is presented by Alon [22] and Milman [20] below.
Lemma 3 (see [23]). For any two disjoint subsets  and  of , it holdswhere  and  are the number of links in the sets  and , respectively.
Moreover, the next step consider the case of three disjoint vertex subsets of graphs [24].
3. Main Result
Let , , and  be the subsets of , respectively, where their numbers of nodes are, respectively, , , and . Assume . Let  be the distances from the node  to subsets  of , respectively. Suppose . Now, we construct a function  related to node  as follows, where the constructed function is referred to the book [25]:
Let , where . It is easy to check that , where  is a constant function [26–30]. Meanwhile,  can be checked. Thus, the following cases need to discussed.
Case 1. If the node  belongs to any one subset of , then
Case 2. If the node , then we can see thatBy Case 1 and Case 2,  holds. In contrast, if , then  for each  and , which is a contradiction with . From the definition , for any two adjacent nodes , we haveOur main result is as follows.
Theorem 1. Let  be three disjoint subsets of . Let  and  and  be the numbers of links in the sets A and B and C, respectively. Then,
Proof. For subsets , and , by Lemma 2, we haveFrom (2) andwhere , and since the coordinates of the center of gravity of the three regions are the average of the triangle region, then the vectors . The sum of the vectors of the center of gravity of the triangle to the vertices is equal to 0 [25]. The center of gravity is analogous to the mean or average from statistics [6, 31, 32]:By the above inequalities and Lemma 2, it arrives that
Example 1. Figure 1 describes the graphs  and , each with  nodes,  links, and a diameter . For  subsets, . For  subsets, . Their algebraic connectivity [33] and their upper bounds on (11) are as follows. For the  and  aplacian matrixes,For , the algebraic connectivity is 0.6338, and the algebraic connectivity of  is 0.5858. For  upper bounds on .
For  upper bounds on .
A graph with the second smallest Laplacian eigenvalue  is thus more robust, in the sense of being better connected.


	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
		
		
		
			
		
		
			
		
			
		
			
		
			
		
		
		
			
		
			
	

Figure 1: The graphs  and .


Proposition 1. Let  be three disjoint subsets of . Suppose  and . Let , , , and  be the number of links in the sets , and , respectively. Then,wherein which  is the average of the  field.
Proof. For subsets , and , by Lemma 2, we havewhere links of the sets in the node sets , , , and  are , , and , respectively. From (2), we obtainBy direct computation, we haveBy the above equalities and Lemma 2, inequality (17) holds.
But, we note that the algebraic connectivity [34, 35], , should not be seen as a strict disconnection or a robustness metric [36].
Example 2. For example, Figure 2 describes the graphs  and , with , , and diameter 6. By direct calculation, for  subsets, , and for  subsets, . Their algebraic connectivity  is 0.4798 and  is 0.4817, respectively. Their Laplacian matrices  and , for  upper bounds on  and for  upper bounds on .
Theorem 1 and Proposition 1 are two completely different situations. The theorem hypothesis is that  be three disjoint subsets of . The proposition supposes that  be three disjoint subsets of  and  and . In other words, the proposition has constraints. Moreover, it is not the same as the four disjoint subsets of .


	
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
		
			
			
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
		
			
		
		
		
			
		
			
		
			
	

Figure 2: The graphs  and .
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