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+e distributed drive articulated steering vehicle (DDASV) has a broad application prospect in the field of special operations. It is
essential to obtain accurate vehicle states for better effect of active control. DDASV dynamic model is presented. To improve
robustness, an adaptive strong tracking algorithm is applied to the singular value decomposition unscented Kalman filter
(SVDUKF). Divided by yaw rate sensors and the tire models, two multistage estimators are established for DDASVs. Stable
steering condition is simulated to investigate the influence on the estimated accuracy about the sensors and tire models. +e
velocities and tire forces are the key parameters to be estimated. +e performance of each estimator regarding the practicability
and accuracy is compared. +e results show that all estimators are practicable. However, the accuracy of the estimated velocities
based on yaw rate sensors is better and the transient tire model can improve the accuracy of estimated lateral forces more
effectively for the estimator established with yaw rate sensors.

1. Introduction

+e distributed drive articulated steering vehicle (DDASV)
is a kind of articulated steering vehicle, which can realize
active control and energy efficiency. It has a bright prospect
on mine haulage, construction, and agriculture machinery
[1, 2]. Accurate state estimation of the key parameters like
velocities and tire forces is more beneficial for vehicle
control [3]. DDASVs have a smaller turning radius and
better flexibility, and state estimation of DDASVs can im-
prove the manipulation property, especially on the steering
condition.

It is mature for passenger vehicles and trailers to estimate
state values such as velocities, yaw rate, and tire forces [4, 5].
Electronic stability program (ESP) sensors (yaw rate, longi-
tudinal acceleration and lateral acceleration, wheel speeds) are
the key to get the measurement parameters. An improved
adaptive unscented Kalman filter was developed to estimate
the longitudinal and lateral velocities with ESP sensors [6]. In
references [7, 8], the tire forces were estimated with the

measurement vector combined with ESP sensors. In reference
[9], the tire forces are estimated with the measurement of yaw
rate, longitudinal acceleration, and lateral acceleration only,
with a difficulty that the observer gains were necessary but
inaccessible. +e lateral tire forces were estimated by neural
network based on the simulated data from IPG CarMaker in
reference [10]. It could realize the estimation without sensors
but need more rigorous experimental data. For state esti-
mation of articulated vehicles, the studies are focused on the
free articulated vehicle like a tractor with a trailer.+e sideslip
based on Cheng and Cebon’s linear single-track 5-DOF yaw-
roll model was estimated in reference [11].+e lateral velocity
and yaw rate for articulated heavy vehicle were estimated in
reference [12].

Kalman filter (KF) is taken as a basis. +e KF obtains the
feedback gain to correct the forecast error. For the nonlinear
vehicle model, unscented Kalman filter (UKF) can develop
the feasibility. UKF approximates the probability density
distribution of nonlinear function by sampling method
which realizes Bayesian recursion.

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 5921285, 16 pages
https://doi.org/10.1155/2020/5921285

mailto:jxwang@jlu.edu.cn
https://orcid.org/0000-0003-4085-6041
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5921285


+ere exist two potential problems for UKF. One is for
the error covariance matrix, which may be negative on
Cholesky decomposition. Here are some methods for this
problem such as SR decomposition [13], singular value
decomposition (SVD) [14], and adaptive noise variance [15].
SVD is more robust than SR decomposition and less
complex than the adaptive noise variance method, so it is
adopted in this study [16]. +e other problem is to restrain
the divergence of the error covariance matrix and improve
the accuracy. Two methods are presented for this problem.
One is taking the strong tracking filter, like the freezing K(k)

method and the S method [17, 18]. +e other is taking the
adaptive unscented Kalman filter (AUKF) [19], which takes
more computing resources. Strong tracking filter methods
need less CPU resources, but the optimal tracking coefficient
is difficult to be confirmed.

An adaptive strong tracking filter is applied for singular
value decomposition unscented Kalman filter (SVDUKF).
+e SVDUKF overcomes the disadvantages of traditional
AUKF and strong tracking UKF.

An 8-DOF DDASV model is presented for state esti-
mation on the steering condition. +e adaptive strong
tracking SVDUKF is taken as the filter algorithm. Based on
the vehicle dynamic model and the filter algorithm, two
multistage estimators are established to estimate the ve-
locities and tire forces. Two multistage estimators divided by
the yaw rate sensors and the tire models are presented to
estimate the velocities and tire forces of the DDASV. +e
performances regarding the estimated accuracy are com-
pared, and conclusions are presented in the end.

2. Creating of Vehicle Dynamic Model

2.1. *e Vehicle Model. +e dynamic model of the DDASV
with longitudinal, lateral, yaw, and articulated steering
motions is presented, as shown in Figure 1. In this model, the
vertical, roll, and pitch motions are omitted. +e driving of
each wheel is independent.

+e longitudinal motion is expressed as follows:
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+e lateral motion is expressed as follows:

ay �
1
m

􏽘

2

j�1
Fxj − Rxj􏼐 􏼑sin δ + Fyj cos δ􏽨 􏽩 +

1
m

􏽘

4

j�3
Fyj􏼐 􏼑􏽨 􏽩,

(3)

ay �
mf

m
_vyf + vxf φf + φ􏼐 􏼑􏽨 􏽩 +

mr

m
_vyr + vxr φr + φ( 􏼁􏽨 􏽩.

(4)

According to the rigid body kinematics,
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+e yaw dynamic motion is expressed as follows:
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+e vertical tire forces can be expressed as
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Figure 1: An 8-DOF DDASV model.
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+e assistant geometrical parameters Δlf′, lf′,Δlr′, lr′ are
expressed as follows:
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2.2. *e Quasistatic and Transient Tire Models. +e quasi-
static tire model of Dugoff is adopted in this study. +e
longitudinal tire force Fx and lateral tire force Fy can be
given as

Fx � Cσ
σx

1 + σx

f(λ), (20)

Fy � Cα
tan(α)

1 + σx

f(λ), (21)

where λ is given as follows:

λ �
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􏽨 􏽩
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and f(λ) is given as

f(λ) �
(2 − λ)λ, λ< 1,

1, λ≥ 1.
􏼨 (23)

+e transient tire model to calculate the lateral tire forces
can be expressed as follows:

_Fy �
v

τ
−Fy + Fy􏼐 􏼑, (24)

where v denotes the longitudinal velocity of the wheel, τ
denotes the relaxation coefficient, and Fy denotes the lateral
tire force from the quasistatic tire model of Dugoff.

3. Singular Value Decomposition Unscented
Kalman Filter with Adaptive Strong Tracking

3.1. Singular Value Decomposition Unscented Kalman Filter.
Unlike the extended Kalman filter (EKF), the UKF ap-
proximates the probability density distribution of nonlinear
functions by sampling, which realizes the Bayesian esti-
mation too. +is makes it imperative for UKF to sample and
weight. With measurement error and system disturbance,
the error covariance matrix might lose positive semidefinite,

which makes Cholesky decomposition fail during sampling
and weighting.

With no limit of positive definiteness of the decomposed
matrix, the SVD has higher robustness. +e process of
SVDUKF can be expressed via the following equations.

+e system state function and measurement function
can be expressed as follows:

X(k + 1) � φ[X(k), W(k), k], (25)

Z(k) � h[X(k), V(k), k]. (26)

Initial conditions:

􏽢X(0) � E[X(0)], (27)

P(0) � E [X(0) − 􏽢X(0)][X(0) − 􏽢X(0)]
T

􏽮 􏽯. (28)

Sampling and weighting based on SVD are expressed as
equations (29)–(35).

+e error covariance matrix P can be expressed by the
decomposition matrix U, S, and V:

P
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0 0
􏼢 􏼣V

T
, (29)

x0(k − 1) � X(k − 1), (30)
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��
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√
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���
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√
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where ρ is the sigma coefficient. +e weighting values Wm
0 ,

W
p
0 , Wm

i , W
p
i can be expressed as follows, and λ is a con-

version coefficient, λ � α2(n + κ):

ρ � α
�����
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√
, (33)

W
m
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λ
(n + λ)
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W
m
i � W

p
i �

1
2(n + λ)

, i � 1, . . . , 2n. (35)

For equation (29), S � diag(s1, s2, . . . , sn). Generally, the
error covariance matrix is a symmetric matrix, which means
U � V, and the matrix eigenvalue is [s21, s22, . . . , s2n]. +ere-
fore, the eigenvectors of the error covariance matrix can be
substituted by UUT. For Gaussian noise distribution, when
the state variable is a single variable, κ � 2. When the state
variable is multivariable, κ � 3.

+e time update function can be expressed as follows:
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+e measurement update function can be expressed as
follows:
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P
k
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􏼠 􏼡 � P

k
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T
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3.2. Adaptive Strong Tracking Algorithm. Because of the
nonlinear model and the deviation between the mathe-
matical model and the physical vehicle model, the theo-
retical mean square error and the Kalman filter gain
become smaller over time. When the new data are used to
correct the previous step estimation for extrapolation, the
added weight decreases; meanwhile, the weight of the
previous data increases. +is results in the increase of
cumulative error, eventually leading to data saturation and
divergence.

According to the closed circuit, the strong tracking al-
gorithm takes the fading factor ξ into the propagated

covariance P(k | k − 1). +e fading factor increases the
proportion of measurement in state estimation and sup-
presses filter divergence.

+e propagated covariance P(k | k − 1) based on the
adaptive strong tracking algorithm is expressed as follows:

Innovation v(k) can be expressed as follows:

v(k) � Z(k) − 􏽢Z
k

k − 1
􏼠 􏼡. (46)

Covariance matrix correctional parameter ξ(k) can be
calculated as follows:
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if v
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For equation (47), r is a reserve coefficient and r≥ 1. +e
covariance matrix of system noise Q∼ can be expressed as
follows, where qi is the element of system noise matrix Q:

Q
∼

�
1
n

􏽘

n

i�1
h qi( 􏼁 − h(Q)􏽨 􏽩 h qi( 􏼁 − h(Q)􏽨 􏽩

T
. (49)

3.3. Establishing Multistage Estimators. +e multistage es-
timators are set as in Figure 2.+e estimators B1, C1, and D1
are established without yaw rate sensors while the estimators
B2, C2, and D2 are established with yaw rate sensors. +e
estimators B1 and B2 are established based on the quasistatic
tire model while the estimators D1and D2 are established
based on the transient tire model.

4. Simulation Results and Analysis

4.1. Initial Settings and Simulation Conditions. To evaluate
the performance and compare the estimated accuracy of
different estimators, computer simulation is implemented
and the estimate algorithms are established. +e process is
shown in Figure 3.+e noise is added at the road.+e vehicle
parameters are set as in Table 1.

+e simulation condition is steering based on a stable
longitudinal velocity at 3 (m/s). +e target and actual ar-
ticulated steering angles are shown in Figure 4.

4.2. Results Analysis. +e estimated results of the DDASV
steering on the simulation condition can be shown as
follows. Maximum absolute error (MAE) and root mean
square error (RMSE) are adopted to compare the

Control variables: [δ, Tm, Tj]

Estimator B1
Based on the quasistatic tire model
Without yaw rate sensors
State variables [Fyj, φ, φf, φr]

Measurement variables [ax, ay]

Estimator C1
Without yaw rate sensors
State variables [vx, vy]

Measurement variables [ax, ay]

Estimator D1
Based on the transient tire model
Without yaw rate sensors
State variables [Fyj]

Measurement variables [ax, ay]

Estimator B2
Based on the quasistatic tire model
With yaw rate sensors
State variables [Fyj]

Measurement variables [ax, ay, φ, φf, φr]

Estimator C2
With yaw rate sensors
State variables [vx, vy]

Measurement variables [ax, ay, φ, φf, φr]

Estimator D2
Based on the transient tire model
With yaw rate sensors
State variables [Fyj]

Measurement variables [ax, ay, φ, φf, φr]

Estimator A
State variables [Fxj]

Measurement variable [Wxj]
[Fxj] [Fxj]

[Fxj, Wxj]

[φ, φf, φr, φ, φf, φr]

[φ, φf, φr]

[vx, vy]

[Fxj, Wxj]

[vx, vy]

Measuring without yaw rate sensors Measuring with yaw rate sensors

Figure 2: Block diagram of the comparison of multistage estimators.
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estimated accuracy of different estimators. Because of the
zero-crossing point of the actual value, the mean absolute
percentage error and the symmetric mean absolute
percentage error cannot be applied to evaluate the
practicability of different estimators. Evolution mean
square percentage error (EMSPE) is taken as a replace-
ment for mean absolute percentage error and the sym-
metric mean absolute percentage error. +e EMSPE can
be expressed as follows:

EMSPE �

�������������������������������������

1
n

􏽐
n
i�1 (estimated value − actual value)2

􏽐
n
i�1 (actual value)2

100%.

􏽶
􏽴

(50)

As shown in Figure 5, the estimated errors of the lon-
gitudinal tire forces converge at about 0.15 s. +e estimated

Table 1: Parameters of the DDASV model.

Parameter Unit Value
Gross mass m (kg) 2600
Mass of the front part vehicle mf (kg) 1300
Mass of the rear part vehicle mr (kg) 1300
Front wheel track Bf (m) 1.4
Rear wheel track Br (m) 1.4
Distance from articulated point to front axle lf (m) 1.2
Distance from articulated point to rear axle lr (m) 1.2
Distance from articulated point to the center of front vehicle gravity lmf (m) 0.3
Distance from articulated point to rear axle lmr (m) 0.3
Centroid height h (m) 0.4
Wheel radius r (m) 0.397
Vehicle rotational inertia about z-axis Iz (kg × m2) 26000
Front part vehicle rotational inertia about z-axis Izf (kg · m2) 13000
Rear part vehicle rotational inertia about z-axis Izr (kg · m2) 13000

Measurement 
values

Control values

DDASV model
Target velocity

Target articulated steering angle

Noise

Sensors

Multistage estimators

Figure 3: Block diagram of the simulation system.
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Figure 4: Target and actual articulated steering angles.
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errors jump with the sudden of the actual values. +e
EMSPEs of the estimated longitudinal tire forces are
0.0336%, 0.0419%, 0.0435%, and 0.0418%, which, respec-
tively, denote the results of the front left, front right, rear left,
and rear right tires.

Figure 6 shows the estimated yaw rates based on the
estimator B1. +e EMSPEs of the estimated yaw rates are

0.0063%, 0.0543%, and 0.0507%, which, respectively, denote
the results of the yaw rate of the DDASV, articulated yaw
rate of the front DDASV, and articulated yaw rate of the rear
DDASV.

Figure 7 shows the estimated lateral tire forces based on
the estimator B1. Figure 8 shows the estimated lateral tire
forces based on the estimator B2. +e EMSPEs of the
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Figure 5: Estimated longitudinal tire forces based on the estimator A. (a) Front left longitudinal tire force. (b) Front right longitudinal tire
force. (c) Rear left longitudinal tire force. (d) Rear right longitudinal tire force.

8 Mathematical Problems in Engineering



–0.05

0.00

0.05

0.10

0.15

Ya
w

 ra
te

 (r
ad

/s
)

1 2 3 4 50
Time (s)

Error

Estimated
Actual

(a)

–0.05

0.00

0.05

0.10

0.15

A
rt

ic
ul

at
ed

 y
aw

 ra
te

 (r
ad

/s
)

1 2 3 4 50
Time (s)

Error

Estimated
Actual

(b)

–0.05

0.00

0.05

0.10

0.15

A
rt

ic
ul

at
ed

 y
aw

 ra
te

 (r
ad

/s
)

1 2 3 4 50
Time (s)

Error

Estimated
Actual

(c)

Figure 6: Estimated yaw rates based on the estimator B1 (estimator B1 is based on the quasistatic tire model without yaw rate sensors). (a)
Yaw rate of the DDASV. (b) Articulated yaw rate of the front DDASV. (c) Articulated yaw rate of the rear DDASV.
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Figure 7: Continued.
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Figure 7: Estimated lateral tire forces based on the estimator B1 (estimator B1 is based on the quasistatic tire model without yaw rate
sensors). (a) Front left lateral tire force. (b) Front right lateral tire force. (c) Rear left lateral tire force. (d) Rear right lateral tire force.
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Figure 8: Continued.
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Figure 8: Estimated lateral tire forces based on the estimator B2 (estimator B2 is based on the quasistatic tire model with yaw rate sensors).
(a) Front left lateral tire force. (b) Front right lateral tire force. (c) Rear left lateral tire force. (d) Rear right lateral tire force.
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Figure 9: Estimated velocities based on the estimator C1 (estimator C1 is without yaw rate sensors). (a) Longitudinal velocity. (b) Lateral
velocity.
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Figure 10: Estimated velocities based on the estimator C2 (estimator C2 is with yaw rate sensors). (a) Longitudinal velocity. (b) Lateral
velocity.
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Table 2: MAE and RMSE of the estimated velocities based on the estimators C1 and C2.

Estimators MAE RMSE
Estimated longitudinal velocity based on the estimator C1 0.0136 0.0054
Estimated lateral velocity based on the estimator C1 0.0260 0.0150
Estimated longitudinal velocity based on the estimator C2 0.0038 0.0021
Estimated lateral velocity based on the estimator C2 0.0026 0.0016
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Figure 11: Estimated lateral tire forces based on the estimator D1 (estimator D1 is based on the transient tire model without yaw rate
sensors). (a) Front left lateral tire force. (b) Front right lateral tire force. (c) Rear left lateral tire force. (d) Rear right lateral tire force.
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estimated lateral tire forces based on the estimator B1 are
0.0446%, 0.0369%, 0.0223%, and 0.0226%, which, respec-
tively, denote the result of the front left, front right, rear left,
and rear right tires. Same as above, the EMSPEs of the
estimated lateral tire forces based on the estimator B2 are
0.0446%, 0.0379%, 0.0258%, and 0.0257%.

Figure 9 shows the estimated velocities based on the
estimator C1. Figure 10 shows the estimated velocities based

on the estimator C2. +e EMSPEs of the estimated velocities
based on the estimator C1 are 0.0008% and 0.0629%, which,
respectively, denote the results of the longitudinal and lateral
velocities. Same as above, the EMSPEs of the estimated ve-
locities based on the estimator C2 are 0.0003% and 0.0066%.

Table 2 summarizes the MAE and RMSE for velocities
estimated by estimators C1 andC2.+e results demonstrate that
the estimated accuracy of the estimator C2 is better than that of
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Figure 12: Estimated lateral tire forces based on the estimator D2 (estimator D2 is based on the transient tire model with yaw rate sensors).
(a) Front left lateral tire force. (b) Front right lateral tire force. (c) Rear left lateral tire force. (d) Rear right lateral tire force.
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the estimator C1. +e average improvements about MAE and
RMSE from the estimators C1 to C2 are 83.84% and 80.39%.

Figure 11 shows the estimated lateral tire forces based on
the estimator D1. Figure 12 shows the estimated lateral tire
forces based on the estimator D2. +e EMSPEs of the es-
timated lateral tire forces based on the estimator D1 are
0.0103%, 0.0044%, 0.0293%, and 0.0210%, which, respec-
tively, denote the results of the front left, front right, rear left,
and rear right tires. Same as above, +e EMSPEs of the
estimated lateral tire forces based on the estimator D2 are
0.0446%, 0.0042%, 0.0059%, and 0.0060%.

Table 3 summarizes the MAE and RMSE, respectively,
for the front left, front right, rear left, and rear right lateral
tire forces, estimated based on different estimators. +e
average improvements about MAE and RMSE from the
estimators B2 to B1 are −17.51% and −6.520%. +e average
improvements about MAE and RMSE from the estimators
D2 to D1 are 67.89% and 68.97%.+e yaw rate sensors show
no superiority based on the quasistatic tire model, but the
superiority is obvious based on the transient tire model.

+e average improvements about MAE and RMSE from
the estimators D1 to B1 are 62.77% and 53.37%. +e average
improvements about MAE and RMSE from the estimators
D2 to B2 are 89.83% and 86.42%.

5. Conclusions

A comparative study about how to estimate the velocities
and tire forces of DDAVS is presented. Two factors are
compared by multistage estimators, respectively. One is
yaw rate sensors, and the other is the tire model.

Without the ESP sensors, the measurement sensor
schemes need to be explored. In this paper, two kinds of
multistage estimators were established: one was equipped
with acceleration sensors only and the other with the
additional three yaw rate sensors. For each multistage
estimator, this paper compared the estimator based on
the quasistatic tire model and transient tire model.

Regarding the EMSPEs, the estimate results for ve-
locities and tire forces of the DDASV based on different
multistage estimators differentiated by the yaw sensors
and the tire models are all favourable to a certain extent,
while the estimated accuracy of different estimators is
discrepant.

(1) For the estimated velocities, the yaw rate sensors can
improve the estimated accuracy.

(2) For the estimated lateral tire forces based on the
quasistatic tire model, the performance of the
estimator with the yaw rate sensors is not better
than that of the estimator without the yaw rate
sensors regarding the estimated accuracy. But the
improvement is significant if it is based on the
transient tire model.

(3) For the estimated lateral tire forces, the estimated
accuracy based on the transient tire model is
better than that based on the quasistatic tire
model, whether the estimator has yaw rate sensors
or not.

(4) For ameliorating the estimated accuracy of the
lateral tire forces, the improvement by using the
transient tire model is more effective than
equipping yaw rate sensors.

+e simulation in this paper is based on the con-
ventional pavement. Furthermore, the simulation ele-
ments can be extended to off-road, which can enhance the
availability of the estimator. Meanwhile, more degrees of
freedom of DDASV need to be taken into consideration,
like rolling movement and pitch movement.

Nomenclature

m: Gross mass
Rxj: Longitudinal tire resistance, j� 1, 2, 3, 4,

represents the position as front left, front right,
rear left, and rear right, respectively

Fxj: Longitudinal tire force, j� 1, 2, 3, 4 represents
the position as front left, front right, rear left,
and rear right, respectively

Fyj: Lateral tire force, j� 1, 2, 3, 4 represents the
position as front left, front right, rear left, and
rear right, respectively

δ: Swing angle
ax: Longitudinal acceleration
mf: Mass of the front part vehicle
vij: Front and rear vehicle velocity, ij� xf

represents the longitudinal velocity of front
vehicle, ij� yf represents the lateral velocity of
front vehicle, ij� xr represents the longitudinal
velocity of rear vehicle, and ij� yr represents
the lateral velocity of rear vehicle

φ: Yaw rate
φf: Yaw rate of the front part vehicle
φr: Yaw rate of the rear part vehicle
mr: Mass of the rear part vehicle
ay: Lateral acceleration
vx: Longitudinal velocity
vy: Lateral velocity
lmf: Distance from articulated point to the center of

front vehicle gravity
lmr: Distance from articulated point to rear axle
Iz: Vehicle rotational inertia about z-axis

Table 3: MAE and RMSE error of the estimated lateral tire forces
based on different estimators.

Estimators MAE RMSE

Estimator B1 (62.85, 69.67, 29.10,
31.92) (33.85, 32.71, 15.4, 14.2)

Estimator B2 (62.94, 69.25, 45.75,
47.14)

(34.95, 33.60, 17.86,
16.02)

Estimator
D1

(17.50, 6.673, 28.87,
18.26)

(7.831, 3.902, 20.30,
13.26)

Estimator
D2

(5.193, 4.556, 6.778,
6.367)

(3.190, 2.877, 4.085,
3.753)

14 Mathematical Problems in Engineering



Bf: Front wheel track
Br: Rear wheel track
lf: Distance from articulated point to front axle
lr: Distance from articulated point to rear axle
Izf: Front part vehicle rotational inertia about z

-axis
Izr: Rear part vehicle rotational inertia about z -axis
h: Centroid height
σx: Longitudinal slip rate, j� 1, 2, 3, 4 represents

the position as front left, front right, rear left,
and rear right, respectively

Cσ : Longitudinal tire stiffness
α: Sideslip angle
Cα: Lateral tire stiffness
μ: Friction coefficient
X(k): State vector
W(k): System noise matrix
Z(k): Measurement vector
V(k): Measurement noise covariance matrix
􏽢X(k): One-step-ahead prediction state vector
P(k): System covariance matrix
xi(k): Sampling state vector
xi(k/k − 1): One-step-ahead prediction sampling state

vector
􏽢X(k/k − 1): One-step-ahead prediction estimate state

vector
P(k/k − 1): One-step-ahead system covariance matrix
ζ i(k/k − 1): One-step-ahead sampling measurement vector
􏽢Z(k/k − 1): One-step-ahead prediction estimate

measurement vector
PZZ: Measurement covariance matrix
R: Measurement noise covariance matrix
PXZ: Covariance matrix between measurement and

state vector
K(k): Gain matrix
Q: System noise covariance matrix
ωj: Wheel rotate speed, j� 1, 2, 3, 4 represents the

position as front left, front right, rear left, and
rear right, respectively.
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