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*e hysteresis nonlinearity greatly reduces the tracking precision of piezoceramic actuators for expected displacement in a high-
accuracy positioning system. In order to effectively compensate the hysteresis for piezoelectric ceramics, a novel modeling
method, namely, multislope PI (Prandtl–Ishlinskii) was proposed. In view of the minimum mean square error (MSE) criterion,
the weights of an improved PI model were identified by the quadratic programming optimization algorithm. For verifying the
accuracy of the proposed multislope PI hysteresis model, a feedforward compensation control for piezoceramic beam was
achieved. *e corresponding experimental system was established, and the displacement tracking experiments were carried out.
*e results indicated that the mean tracking error was 0.2828 μm and within 1% of full scale, as well as the MSE was 0.3100 μm.
Compared with the conventional PI model, the proposed multislope PI model demonstrated a significant improvement in
positioning performance for the piezoceramic beam.

1. Introduction

*e piezoceramics are ideal materials for achieving micron-
level positioning accuracy in high-precision electrome-
chanical drive systems. However, due to the inherent
nonlinear characteristics, the tracking accuracy of piezo-
electric ceramic actuators for the desired displacement was
greatly reduced [1, 2]. *e nonlinearity of piezoelectric
ceramics mainly manifests as hysteresis and creep [3], the
most important of which is hysteresis nonlinearity [4]. In
order to reduce the shortcomings of hysteresis nonlinearity
and improve the control accuracy, the feedforward com-
pensation control scheme was generally chosen. *is solu-
tion required accurate nonlinear hysteresis modeling of
piezoelectric ceramics.

*ere were two main modeling methods for piezocer-
amic hysteresis, constitutive method and phenomenological
method. For the constitutive model method, it was difficult
to obtain an accurate model because of its complicated
electromechanical coupling relationship [5, 6]. In contrast,
the phenomenological methods built mathematical models
by measuring hysteresis nonlinearity and directly

performing model fitting. *e commonly used phenome-
nological models were the Bouc–Wen model [7, 8], Preisach
model [9], PI model [10], and polynomial model [11]. *e PI
model has received widespread attention for its theoretical
reversibility and independence of rate [12]. *e operator in
the PI model, such as a stop operator, was usually used to
build a mathematical model of a mass-spring-damper sys-
tem, from which inverse model was easy to obtain [13].
However, due to the inherent characteristics of the PI model,
the fitting error cannot be eliminated [10]. *erefore, some
studies have tried to improve the PI modeling accuracy and
reduce the fitting error. Gu et al. [14] proposed an improved
PI model, in which the generalized input function was used
to replace the linear input function, which simplified the
formula for describing the asymmetric hysteresis charac-
teristics of piezoelectric ceramics.Wei et al. [15] discussed an
improved rate-dependent PI operator and established a
dynamic model with obvious compensation performance
under variable frequency voltage. However, due to the re-
dundancy of operators, the practical application of this
method was limited. Different from the abovementioned
methods using dynamic weights and thresholds, a dynamic
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envelope function was introduced into the play operator
[16]. *e hysteresis nonlinearity was described by a set of
hysteresis operators, including gain coefficient and input-
dependent hysteresis as well as parameter scheduling
methods. Ko et al. [17] proposed a direct construction
method based on the identification of the inverse generalized
PI model, which was not restricted by the constraints of
threshold and density function. Because the PI model is
simple and does not require inversion model calculation, Li
et al. [18] used a direct inverse hysteresis compensation
method based on the improved PI (MPI) model. Dong et al
[19] proposed a three-stage PI model. *e abovementioned
phenomenological modeling methods started from the
characteristics of piezoelectric hysteresis curves, established
corresponding hysteresis models to fit the hysteresis curves,
and reduced the drawbacks of hysteresis nonlinearity on
piezoelectric positioning systems. However, the existing
methods were often very complicated, as well as involving
numerous parameters to be identified, thereby reducing the
feasibility of practical applications.

In this paper, a multislope PI modeling method is
proposed and experimentally validated. Section 2 describes
the experimental system. In Section 3, the differences be-
tween the proposed PI and conventional PI models are
discussed, and how the improved PI model overcomes the
shortcomings of the conventional PI model are given. In
Section 4, further comparisons and discussions are
implemented.

2. Experimental System

*e experimental system is shown in Figure 1, which
consisted of four parts, including a piezoceramic beam, a
high-voltage power supply, a displacement sensor, and a
controller. *e PZT-5H piezoceramic beam with a length of
80mm, a width of 15mm and a thickness of 0.75mm,
produced by the Shanghai Institute of Ceramics of the
Chinese Academy of Sciences, was used to test the hysteresis
curve and implemented to feedforward compensation
control in this work. *e maximum displacement of this
PZT-5H beam was 45 μm. *e programmable DC regulated
power supply HSPY-1000 with the power of 100W was
produced by Beijing HSPY Technology Co. Ltd. Its voltage
regulation range is 0∼1000V and the current regulation
range is 0∼0.1 A, with resolutions 10mV and 1mA. *e
model of displacement sensor is KEYENCE LK-H020, with a
repeatability accuracy 0.02 μm and linearity ±0.02% F.S. *e
controller included three parts, a computer, displacement
data acquisition, and feedforward compensation algorithm
coded by LabVIEW. *e displacement data of the piezo-
ceramic beam was acquired by the LK-Navigator software
for the KEYENCE laser sensor, and the feedforward com-
pensation method was implemented in LabVIEW. *e
communication interface between LabVIEW and high-
voltage power supply is RS485, with a baud rate of 19200 bps.

Figure 2 shows the control scheme of this work. If not
otherwise specified, all driving voltage were peak values in
this paper. Primarily, it was necessary to perform driving
experiments with voltage 0V–150V on the PZT-5H

piezoelectric ceramic beam to obtain and draw the hysteresis
curve. *en, a multislope PI mathematical model was
designed to fit the hysteresis curve. In order to verify the
accuracy of the multislope PI model proposed in the paper, it
was also essential to invert the multislope PI model and
perform feedforward compensation control on the piezo-
electric ceramic beam.

3. Multislope PI Method

*enovel multislope PI method was actually an improved PI
model. Before specifying the proposed multislope PI, the
conventional PI model was briefly described.

3.1. Conventional PIModel. *e PI model was implemented
by multiple play operators superimposing corresponding
thresholds, as shown in the following equation:

fk(0) � max u(0) − rk, min u(0) + rk, 0􏼂 􏼃􏼈 􏼉,

fk(t) � max u(t) − rk, min u(t) + rk, y (t − T)􏼂 􏼃􏼈 􏼉, t> 0,
􏼨

(1)

where fk (t) is the play operator with threshold rk, u (t) is the
driving voltage applied to the piezoelectric ceramics, and T
is the sampling period.

As shown in Figure 3, the play operator used for pie-
zoceramic modeling was composed of two stages, the step-
up stage and step-down stage, respectively. It was obvious
that the single play operator was centrosymmetric, in which
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Figure 1: Experimental system.
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Figure 2: Control scheme of this work.
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the starting point of the step-up stage was the coordinate
origin, but the finishing point was not the coordinate origin.

*e weighted play operator was defined as
Hk(0) � ω0 max u(0) − rk, min u(0) + rk, 0􏼂 􏼃􏼈 􏼉,

Hk(t) � ωk max u(t) − rk, min u(t) + rk, y (t − T)􏼂 􏼃􏼈 􏼉, t> 0,
􏼨

(2)

whereHk (t) is the weighted play operator and ωk is the value
of weight.

*e mathematical expression of the PI model was given
as follows:

y(t) � 􏽘

n

k�0
Hk(t), � 􏽘

n

k�0
ωk max u(t) − rk, min u(t) + rk, y (t − T)􏼂 􏼃􏼈 􏼉,

(3)

where k is the number of play operators and y (t) is the
displacement output of piezoelectric ceramic.

Equation (3) can also be rewritten as follows:

y(t) � ω•f(t)T
, (4)

where the weight matrix ω � (ω0,ω1, · · · ,ωk−1) and f(t) is
the operator matrix, f(t) � (f0(t), f1(t), · · · , fk−1(t)).

3.2. Improved Multislope PI Method. In the PI model, the
operators were center-symmetric, as shown in Figure 4(a).
However, the hysteresis curve of piezoelectric ceramics
was generally not center symmetric. *is was the main
reason why the PI model was used to describe the hys-
teresis phenomenon with low accuracy. Besides, when
the threshold rk was greater than a certain value (rk >150
in this work, Figure 4(a)), the PI operator lost the step-
down process, which seriously affected the fitting pre-
cision of the PI model to the hysteresis curve. Aiming at
the abovementioned problems existing in the conven-
tional PI method, an improved PI model was proposed,
in which the multiple slopes were used to replace the

single slope of all operators in the conventional PI model,
as well as to reduce the number of operators and model
errors.

Figure 4(a) shows four operators (rk � 0, 10, 20, 30), and
Figure 4(b) shows the fitting curve using the four operators
without considering the weights. As shown in Figure 4(b),
since the slopes of all operators were the same, the fitted
curve was approximately straight, especially in the middle
stages of the step-up and step-down parts, which was quite
different from the actual hysteresis curve of the piezoceramic
beam. Besides, the return curve did not return to the origin,
causing significant model errors.

In order to better explain the improved PI model, the
conventional PI model and the improved PI were compared.
*e driving voltage of the PZT-5H piezoceramic beam
during the test was 0 to 150V.

*e play operator in the PI model was described as
follows:
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Figure 3: An example of the play operator in the PI model.

0 10050 150
Voltage

0

50

100

150

D
isp

la
ce

m
en

t

rK = 0
rK= 10

rK = 20
rK = 30

(a)

0 10050 150
Voltage

0

100

200

300

400

500

600

D
isp

la
ce

m
en

t

(b)

Figure 4: PI model fitting with four operators. (a) Four operators
in the PI model. (b) Fitting curve using four operators.
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fk(t) �

0,

u(t) − rk,

0≤ u(t)< rk

rk ≤ u(t)≤ 150
􏼩Step−up,

fk(t − T),

u(t) + rk,

150 − 2rk < u(t)≤ 150

0≤ u(t)≤ 150 − 2rk

􏼩Step−down.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

*e proposed improved PI model was described by
equation (6), where the thresholds were the same as in the
conventional PI model.

fk(0) � max max 0.8 u(0) − rk􏼂 􏼃, 1.2u(0) − rk − 30􏼈 􏼉,􏼈

min min 1.2u(0), 0.8u(0) + 30 − 0.6rk􏼂 􏼃, y(0)􏼈 􏼉},

fk(t) � max max 0.8 u(t) − rk􏼂 􏼃, 1.2u(t) − rk − 30􏼈 􏼉,􏼈

min min 1.2u(t), 0.8u(t) + 30 − 0.6rk􏼂 􏼃, y(t − T)􏼈 􏼉}, t> 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

*e operator comparisons without considering weights
between the two PI models are shown in Figure 5, in which
the threshold rk was 40.

For the increase or decrease of the driving voltage, the
operator difference between the two PI models was de-
scribed as follows:

(1) As driving voltage located between 0V and 40V, the
two curves represented as the two PI operators co-
incided with each other

(2) As driving voltage located in increasing stage
(40V∼150V), the concave feature of the operator
was needed for decreasing model error, and the
broken line represented as the PI operator was
replaced by a polyline composed of two straight lines,
as shown in Figure 5

(3) As driving voltage located in decreasing stage
(150V∼0V), the horizontal line with a length of 0.5
rk was used as an improved PI operator instead of a

horizontal line with a length of 2 rk, and the
returning broken line was also replaced by another
polyline consisting of two straight lines, wherein the
polyline passed the origin point (0, 0).

As shown in Figure 6, the comparisons between the
conventional PI model and the improved PI model with the
same number of operators and thresholds were illustrated.
Each model has four operators and four thresholds, 0, 10, 20,
and 30, respectively. Obviously, the hysteresis curve fitted by
the conventional PI method has a great error compared with
the actual hysteresis, and the fitted hysteresis curve did not
even return to the origin point. Compared with the con-
ventional PImethod, the fitting accuracy of themultislope PI
model was greatly improved.

*e mathematical expressions of improved operators
with multiple slopes can also be described as

fk(t) �

0,

0.8 u(t) − rk􏼂 􏼃,

1.2u(t) − rk − 30,

0≤ u(t)< rk

rk ≤ u(t)<
150 + rk

2

150 + rk

2
≤ u(t)≤ 150

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Step−up,

fk(t − T),

0.8u(t) + 30 − 0.6rk,

1.2u(t),

150 − 0.5rk < u(t)≤ 150

75 − 1.5rk < u(t)≤ 150 − 0.5rk

0≤ u(t)≤ 75 − 1.5rk

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Step−down.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

*e explanations of equation (7) were given as follows:

(1) As driving voltage located in the increasing stage,
there were three straight lines in this stage, Line a

with slope 0, Line b with slope 0.8, and Line c with
slope 1.2. Line b and Line c intersected at the point of
0.5 rk+ 75 on the abscissa axis. For the driving voltage
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Figure 5: Operator comparisons between the two PI models.
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0 ≤u (t) ≤150, the threshold value rk ≤ ≤0.5 rk+75
≤150, which implied that the intersection point would
always exist with the interval of (rk, 150), and the
operator shape can always show a concave charac-
teristic during the driving voltage increasing phase.

(2) As driving voltage located in the reduction stage,
there were also three straight lines in this stage, Line
d with slope 0, Line e with slope 0.8, and Line f with
slope 1.2, respectively.

In order to ensure the multilateral structure of the op-
erator curve, the inflection point of polyline was designed. In
the conventional PI model, considering the influence of the
position of inflection point, the slopes of 0.8 and 1.2 were
determined by repeated experiments, respectively. If rk ≤50,
then 75–1.5 rk ≥0; that is, the intersection of Line e and Line f
was located in the first quadrant. Otherwise, concave-convex
features of the fitted curve would not be displayed. Based on
the nonredundant principle, four thresholds were deter-
mined experimentally in this paper. *e four operator
thresholds are 0, 20, 30, and 40, which are less than 50.

3.3. Parameters Identifications. *e identification of weight
parameters used a sequential quadratic programming

algorithm, which was based on the least mean square (LMS)
criterion. *e optimal solution was obtained by trans-
forming the nonlinear programming into quadratic pro-
gramming and approximating the optimal value using an
iterative method.

*e error function was defined as

e(t) � d(t) − y(t), (8)

where d (t) is the expected displacement of the piezoceramic
beam.

*e mean square error (MSE) was

ε � 􏽘
i

t�1
e
2
(t) � 􏽘

i

t�1
d
2
(t) − 2d(t) · y(t) + y

2
(t)􏽨 􏽩, (9)

where i is the number of sampling points.
Assuming the target function is

δ � 1/2􏽐
i
t�1 y2(t) − 􏽐

i
t�1 d(t) · y(t), then the vector form

can be written as min 1/2ωTΗω +ΦTω􏼈 􏼉, where
Η � 􏽐

i
t�1 f(t) · f(t)T and Φ � − 􏽐

i
t�1[d(t) · f(t)].

*e optimal solution was obtained by solving the ex-
tremums of the Lagrange function, which was defined as

L(ω, λ) �
1
2
ωTΗω +ΦTω − λT

(Aω − b), (10)
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Figure 6: Comparisons of fitting performance. (a) Conventional PI model. (b) Improved PI model.
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where A and b are linear constraints, A is a matrix, b is a
column vector, and λ is also a column vector. and the ex-
tremum condition was

zL(ω, λ)

zω
� 0,

zL(ω, λ)

zλ
� 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

H − AT

−A 0􏼢 􏼣
ω
λ􏼢 􏼣 �

−Φ
−b􏼢 􏼣, where the matrix A was re-

quired to be invertible.

4. Experiments and Discussion

4.1. Displacement Tracking Performance. In the two PI
models, the operator thresholds were divided into 16 groups
from 0 to 150 at equal intervals. Based on the nonredundant
principle, the repeated experiments were carried out to
obtain the specific operator threshold. Four types of oper-
ators with thresholds of 0, 10, 30, and 150 were used to
implement the conventional PI model. *e other four op-
erators with thresholds of 0, 20, 40 and 40 were used to
implement the multislope PI model. *e driving voltage was
a triangular wave with 300 s period and amplitude 150V.
Table 1 shows the identified weight parameters in the
conventional PI model and the multislope PI method.

Figure 7 shows the experimentally measured hysteresis
curve and the two fitted curves performed by two PI models.
It was demonstrated that the improved PI model was more
suitable for fitting the hysteresis curve. In particular, the
conventional PI model cannot return to the origin point
after eliminating the driving voltage.

*e comparison of fitting errors between the two PI
models is shown in Figure 8. For the conventional PI model,
there were three regions with large fitting errors, namely,
low-driving voltage stage, intermediate-driving voltage
stage, and high-driving voltage stage. *is phenomenon was
consistent with Figures 5 and 6. *e extreme error in the
low-driving voltage stage reached −3.0900 μm, −2 μm, and
2.4 μm in the abovementioned three regions, respectively.
*e maximum absolute error was 3.09 μm, and the mean
absolute error was 0.9397 μm. While in the multislope PI
model, the fitting error hovered between −0.6 μm and
0.6 μm, the maximum absolute error was 0.5850 μm, and the
mean absolute error was 0.2013 μm, respectively. Compared
with the mean absolute error, the multislope PI method was
78.6% less than the conventional PI model.

In order to better explain the improved multislope PI
model, the mechanism for reducing the fitting error was
discussed in the following. For the central symmetry of the PI
operator, only the rising phase of driving voltage was analyzed.

As shown in equation (3), y (t) was superposed by several
operators. In the rising stage of the driving voltage, r0 � 0, y1,
y2, yk can be expressed as

y1 � r1 − r0( 􏼁tan θ0 � r1 tan θ0, (12)

y2 � r2 tan θ0 + r2 − r1( 􏼁tan θ1, (13)

yk−1 � rk−1 tan θ0 + rk−1 − r1( 􏼁tan θ1 + · · ·

+ rk−1 − rk−2( 􏼁tan θk−2,
(14)
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Table 1: Identified weight parameters in two models.

k
Conventional PI Multislope PI

*reshold Weight *reshold Weight
0 0 0.008 0 0.196
1 10 0.252 20 0.026
2 30 0.019 30 0.046
3 150 0.582 40 0.028
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yk � rk tan θ0 + rk − r1( 􏼁tan θ1 + · · · + rk − rk−1( 􏼁tan θk−1,

(15)

where θk � arctanωk.
Equation (15) minus equation (14)

yk − yk−1 � rk − rk−1( 􏼁 tan θ0 + tan θ1 + · · · + tan θk−1( 􏼁.

(16)

As shown in Figure 9, the following equations were easily
deduced by geometric calculations:

y1 � r1 − r0( 􏼁tan θ0′ � r1 tan θ0′ , (17)

y2 � y1 + r2 − r1( 􏼁tan θ1′ , (18)

yk � yk−1 + rk − rk−1( 􏼁tan θk−1′ . (19)

According to equations (16) and (19),
tan θk−1′ � tan θ0 + tan θ1 + · · · + tan θk−1.

ωi
′ � arctan tanωi + · · · + tanω1 + tanω0( 􏼁. (20)

*e following discussion can be derived from equation
(20):

(1) As the threshold increases, the slope becomes larger
and larger.

(2) *e weight of the current operator was closely re-
lated to the previous weight coefficient. *e larger
the threshold number, the more weights were
involved.

(3) *e accuracy of fitting can be performed by in-
creasing the number of operators, but correspond-
ingly, the number of parameters also increased,
making identification more difficult. In the con-
ventional PI model or other improved PI models, the
number of model operators is generally set to 4.

Although the complexity of the multislope PI model is a
little higher than that of the conventional PI model, the
difference of computational cost between the multislope PI
model and the conventional PI model is very small. *is is
because both the two PI models essentially consist of linear
superposition mathematical operations, and the computa-
tional costs are all very small.

4.2. Feedforward Compensation Experiment. For verifying
the positioning performance of the improved PI model,
feedforward compensation was implemented, as shown in
Figure 10. It was actually an open-loop system and its
performance depended on the proposed PI method.

One of the reasons why the PI model was widely used
was that its inverse model was easily available. *e pa-
rameters of the PI model and its inverse model have the
following relationships:

ri
′ � y(t)|t�ri

� 􏽐
i

j�1
ωj ri − rj􏼐 􏼑 i � 0, 2, · · · , n − 1, (21)

where ri
′ is the threshold of the PI inverse model.

For dy− 1/dri
′ � 1/(dy/dri), the relationship of slopes in

the PI model and its inverse model

ω0′ �
1
ω0

. (22)

It can be seen from equation (3) that dy/dri � 􏽐
i
j�0 ωj.

Similarly, dy− 1/dri
′ � 􏽐

i
j�0 ωj
′, and the slope can be written as

􏽘

i

j�0
ωj
′ �

1
􏽐

i
j�0 ωj

, (23)

􏽘

i−1

j�0
ωj
′ �

1
􏽐

i−1
j�0ωj

. (24)

By combining equations (23) and (24),

ωi
′ � −

ωi

􏽐
i
j�1 ωj􏼐 􏼑 􏽐

i−1
j�1ωj􏼐 􏼑􏽨 􏽩

i � 1, 3, · · · , n − 1. (25)

*e initial value of the operator in the PI inverse model
was

ui(0) � 􏽘
i−1

j�i

ωjfj(0) + 􏽘
n

j�1
ωjfj(0) i � 2, 3, · · · , n. (26)

*e expression of the multislope PI inverse model was
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Figure 10: Control diagram of feedforward compensation.
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Figure 9: Mechanism of fitting error.
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U(t) � 􏽘
n

i�1
ωi
′ ui(t) � 􏽘

n

i�1
ωi
′ ·max

max 0.8 u(t) − rk􏼂 􏼃, 1.2u(t) − rk − 30􏼈 􏼉,

min min 1.2u(t), 0.8u(t) + 30 − 0.6rk􏼂 􏼃, y(t − T)􏼈 􏼉
􏼨 􏼩. (27)

*e driving voltage was a triangular wave with a 300 s
period and amplitude 150V, as shown in Figure 11. During
the increasing stage of driving voltage, the compensation
effect gradually increased and then gradually decreased.*is
was mainly determined by the actual hysteresis curve of the
piezoceramic beam. During the middle stage of the driving
voltage, the hysteresis nonlinearity reached its maximum.
*e situation of the driving voltage decreasing stage was just
opposite to the voltage increasing stage, and the analysis was
similar to the aforementioned.

*e feedforward compensation performance is shown in
Figure 12. In the 0V–150V stage, the displacement error was
basically around 0.5 μm. As the voltage increases, the dis-
placement error firstly increased and then decreased. When
the driving voltage reached 150V, the displacement error
dramatically dropped to about 0 μm, indicating that the
improved PI model fitted the endpoint of the hysteresis
curve perfectly. During the 150V–300V stage, the dis-
placement error was between −0.3 μm to 0.5 μm. As the
voltage decreases, the error increased firstly and then de-
creased, which was consistent with the situation in the
0V–150V stage. *e mean tracking error of the entire stage
was 0.2828 μm, which was within 1% of the 45 μm dis-
placement range of the piezoceramic beam, and the average
mean square error was 0.3100 μm, which demonstrated a
good feedforward compensation control accuracy.

It can also be seen from Figure 12 that the compensation
error would be relatively large in the middle part of the
voltage rising and falling stages, which were consistent with
Figure 8. By adding operators, the displacement error could
be further reduced, but the task of parameter identification
also increased dramatically.

5. Conclusions

(1) Based on the actual hysteresis curve of the pie-
zoceramic beam, a multislope PI model was pro-
posed, which essentially replaced the single-slope
operators in the conventional PI method with
multislope polyline operators. *e theoretical
analysis implied that the proposed multislope PI
model could improve the fitting accuracy of the
hysteresis curve compared with the conventional
PI method.

(2) *e feedforward compensation experiments indi-
cated that the improved PI model has a mean
tracking error of 0.2828 μm, within 1% of dis-
placement full scale, and a mean square error of
0.3100 μm, which demonstrated a remarkable dis-
placement tracking accuracy.

(3) By adding more operators, the control accuracy of
feedforward compensation can be further improved,
especially in the middle stages of the driving voltage,
but the parameter identification would become more
difficult.
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