Research Article

Consensus Control of Nonlinear Multiagent Systems with Incremental Quadratic Constraints and Time Delays

Dachao Wang, Fang Song, Wei Zhang, and Zhi Hu

Laboratory of Intelligent Control and Robotics, Shanghai University of Engineering Science, Shanghai 201620, China

Correspondence should be addressed to Fang Song; songfang2005@163.com

Received 26 March 2020; Accepted 28 May 2020; Published 24 June 2020

Guest Editor: Xiao Ling Wang

Copyright © 2020 Dachao Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper considers the problem of consensus control for a class of nonlinear multiagent systems with incremental quadratic constraints and time delays. Each agent exchanges state information through a strongly connected communication topology. Based on the information obtained from neighboring agents, a distributed consensus protocol is designed. A delay-independent consensus condition is formed for the protocol to solve the consensus problem by employing Lyapunov–Krasovskii functional method. In order to deal with the nonlinear terms in matrix inequalities, an iterative algorithm is proposed by using the Schur complement lemma and the cone complementary linearization method. The nonlinearities under consideration are more general than many other nonlinearities considered in related literature studies since the incremental quadratic constraints include many other known nonlinearities as some special cases. Finally, we give a numerical example to illustrate the effectiveness of the proposed consensus control protocol.

1. Introduction

The consensus control problem of multiagent systems (MAS) has drawn lots of attention from researchers of systems and control community over the past few decades [1]. This is partly because the consensus problem has wide applications in different areas such as optimization, formation control, sensor network, dynamic agents of network, and cooperative surveillance.

In the past few years, researchers have made considerable progresses in the consensus control area and many aspects of consensus control are fully investigated. Many important results have been analyzed and published about the consensus control for linear, second-order, and high-order MAS, as seen in [2–7]. Finite-time consensus problem also attracts much attention from researchers [8, 9], and they mainly investigated how MAS can reach consensus within a certain time. In [10], the authors worked on the consensus problem for linear MAS under a time-invariant communication topology. In order to save energy in real-word mechanical systems, many different methods, such as event-trigger-based control [11, 12], intermittent control [13], and sampled-data-based control [14], are invented to help solving consensus problem [15]. Instead of focusing on node consensus, authors in [16] studied nonnegative edge consensus due to physical considerations. As an important topic, group consensus also received much attention and many important works are published [17, 18].

It is worth mentioning that most of the existing papers are focusing on linear MAS, but physical systems always contain complicated nonlinearities. Therefore, consensus problem for nonlinear MAS deserves more attention. However, there exists no universal approach to solve the consensus problem for nonlinear MAS, and researchers are mostly concentrating on some types of systems with special nonlinearities (see, e.g., [19–21]). Researchers in [19] provided a linear matrix inequality-based method to design adaptive consensus control protocols for nonlinear MAS with Lipschitz nonlinearities by introducing adaptive coupling weights. Further, this method was extended to solve the consensus problem for nonlinear MAS whose nonlinearities satisfy one-side Lipschitz constraints in [20].

Time delays often appear in systems control and may bring instability to systems. Therefore, it is essential to
Mathematical Problems in Engineering

consider time delays in system control. Liu et al. [22] studied the consensus problem for nonlinear Lipschitz time-delay systems with input saturation. In [23], by applying a reduction method, the authors investigated the consensus problem for Lipschitz nonlinear MAS with input delays. Time delays also appear in communication between agents and pose a grave threat on consensus control, so many authors considered the consensus problem with communication delay (see, e.g., [24, 25]).

On the other hand, the incremental quadratic constraints (δQC) were first proposed in [26]. As stated in [27], δQC can be described by a set of multiplier matrices which we call incremental multiplier matrices (δ MM) in a particular form, and many other types of nonlinearities, such as Lipschitz, one-side Lipschitz, and incremental sector bound nonlinearities, can be rewritten in a unified form of δQC. Many references consider the control and observation problem for systems with nonlinearities satisfying δQC [26–32]. In [28], the authors proposed a secure chaotic communication scheme of chaotic systems which satisfy δQC. In [31], full-order and reduced-order observers for discrete-time systems whose nonlinearities satisfy δQC are designed. Adaptive state observers are designed for incremental quadratically nonlinear systems [32]. However, to the best of our knowledge, we can hardly find any papers that investigate the consensus control for nonlinear MAS whose nonlinearities satisfy δQC.

In this paper, we aim to focus on investigating the consensus problem for nonlinear MAS whose nonlinearities satisfy δQC with time delays. Compared with the current literature, there are about two main contributions in this work. Firstly, we design a distributed consensus protocol for incremental quadratically nonlinear MAS, and the considered nonlinearities include many common nonlinearities as some special cases. In other words, our results generalize and unify quite a few consensus protocol-design problems for many nonlinear systems. Secondly, this paper considers the sabotage of time delays, and a delay-independent consensus condition is established for the proposed consensus protocol by employing Lyapunov–Krasovskii functional method. Moreover, an iterative algorithm was proposed to handle nonlinear terms in matrix inequalities by applying cone complement linearization (CCL) method. We transform the non-convex feasibility problem to some sequential optimization problem. Consequently, it can solve the proposed sufficient conditions via the linear matrix inequalities (LMI) method. Furthermore, the gain matrix and coupling weight can be computed through the proposed iterative algorithm.

The rest of this paper is organized as follows. Preliminaries are given in Section 2. The consensus problem for incremental quadratically nonlinear systems with time delays is investigated in Section 3. In Section 4, we provide a numerical example to illustrate the effectiveness of the developed results. Finally, Section 5 draws the conclusions.

In this paper, we use \(x \in \mathbb{R}^n \) representing a vector of \(n \) real elements. \(\mathbb{R}^{m \times n} \) denotes the set of all \(m \) by \(n \) real matrices. \(\langle \cdot, \cdot \rangle \) is the inner product in \(\mathbb{R} \), i.e., given \(x, y \in \mathbb{R}^n \), then \(\langle x, y \rangle = x^T y \). \(\| \cdot \| \) denotes the Euclidean norm. \(E > 0 \) means \(E \) is a symmetric positive definite matrix and \(E \geq 0 \) denotes symmetric positive semidefinite matrix. \(E - F > 0 \) represents that the matrix \(E - F \) is symmetric semipositive definite. \(I_n \) represents an identity matrix of dimension \(n \). \(I \) is an identity matrix of any appropriate dimension. \(E \otimes F \) denotes the Kronecker product of matrices \(E \) and \(F \). Minimize \(\text{Tr} (\sum_{i=1}^{N} \Lambda_i) \) represents the minimum trace for a set of matrices \(\Lambda_i \). The notation * is used to denote the blocks induced by symmetry.

2. Preliminaries

In this paper, we consider an incremental quadratically nonlinear MAS with \(N \) agents represented as follows:

\[
\dot{x}_i(t) = A x_i(t) + A_i x_i(t-h) + B \varphi(t, z_i(t)) + F u_i(t),
\]

with

\[
x_i(t) = \eta_i(t), \quad \forall t \in [-h, 0], i = 1, 2, \ldots, N,
\]

where \(A \in \mathbb{R}^{m \times n}, A_i \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{r \times n}, F \in \mathbb{R}^{m \times r} \) and \(C \) and \(C_h \in \mathbb{R}^{p \times n} \) are constant matrices. \(x_i(t) \in \mathbb{R}^n \) is the state vector and \(x_i(t-h) \in \mathbb{R}^n \) is the time-delay state. \(u_i \in \mathbb{R}^r \) is the control input or protocol. The scalar \(h > 0 \) is the constant delay. \(\eta_i \) is the continuous initial condition. We put all the nonlinear time-varying terms into a vector-valued nonlinear function \(\varphi(t, z) \in \mathbb{R}^m \).

Those agents exchange information via a network modeled by a communication graph \(G \) with \(G = (\mathcal{V}, \mathcal{E}) \). \(\mathcal{V} = \{1, \ldots, N\} \) means the set of nodes, and \(\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V} \) represents the set of edges. In this paper, nodes denote agents while edges represent communication links. The adjacency matrix of a graph \(G \) is denoted by \(A = [a_{ij}]_{N \times N} \), where \(N \) means the number of agents in this network and

\[
a_{ij} = \begin{cases} 0, & \text{if } (v_i, v_j) \notin \mathcal{E}, \\ 1, & \text{if } (v_i, v_j) \in \mathcal{E}, \end{cases}
\]

where \(a_{ij} \) denotes the connection between agents \(i \)th and \(j \)th of the network of all agents. \(a_{jj} = 0 \) means there is no connection between agents \(i \)th and \(j \)th. \(a_{ij} = 1 \) means connection between agents \(i \)th and \(j \)th exists. Given an undirected communication graph, we have \(a_{ij} = a_{ji} \). The Laplacian matrix \(L \) for MAS is defined as follows:

\[
L = [L_{ij}]_{N \times N},
\]

where

\[
L_{ij} = \begin{cases} \sum_{j=1}^{N} a_{ij}, & \forall i = j, \\ -a_{ij}, & \forall i \neq j. \end{cases}
\]

In this paper, we consider a distributed consensus protocol based on the states feedback of neighboring agents (see [19]):
where $c > 0$ is the coupling weight between neighboring agents, $K \in \mathbb{R}^{p \times n}$ is the feedback gain matrix and that will be computed later.

Lemma 1 (see [33]). The network \mathcal{G} has a spanning tree that connects any two agents in the MAS if and only if Laplacian matrix \mathcal{L} of \mathcal{G} has a simple zero eigenvalue and all the other eigenvalues have positive real parts.

Lemma 2 (see [34]). For any given symmetric matrix $R \in \mathbb{R}^{m \times n}$ with the form $R = \begin{bmatrix} R_{11} & R_{12} \\ R_{12}^T & R_{22} \end{bmatrix}$ where $R_{11} \in \mathbb{R}^{r \times r}$, $R_{12} \in \mathbb{R}^{r \times (n-r)}$, and $R_{22} \in \mathbb{R}^{(n-r) \times (n-r)}$, then the following three conditions are equal:

1. $R < 0$,
2. $R_{11} < 0, R_{22} - R_{12}R_{12}^T R_{11} < 0$,
3. $R_{22} < 0, R_{11} - R_{12}R_{22}^T R_{11} < 0$.

Definition 1 (see [30]). A symmetric matrix $M \in \mathbb{R}^{q \times m \times p \times m}$ is an incremental multiplier matrix (δMM) for vector-valued function $\mathbf{\phi}(t, z(t))$ if it satisfies the following incremental quadratic constraints (δQC):

$$
\begin{bmatrix}
\delta z \\
\delta \mathbf{\phi}
\end{bmatrix}^T M
\begin{bmatrix}
\delta z \\
\delta \mathbf{\phi}
\end{bmatrix} \geq 0,
$$

for all $z_1(t), z_2(t) \in \mathbb{R}^q$ and all $\mathbf{\phi}(t, z_1(t)), \mathbf{\phi}(t, z_2(t)) \in \mathbb{R}^m$.

The incremental multiplier matrix can be chosen as follows:

$$
M = u \begin{bmatrix} I_q^T & 0 \\ 0 & -I_m \end{bmatrix},
$$

with $u > 0$.

Remark 2. If $\mathbf{\phi}$ satisfies quadratically inner bounded constraints with respect to z (see, e.g., [31]), there exist some scalars $\alpha_2, \alpha_3 \in \mathbb{R}$ such that (where $q = m$)

$$
\|\delta \mathbf{\phi}\|^2 \leq \alpha_2 \|z\|^2 + \alpha_3 \langle \delta \mathbf{\phi}, \delta z \rangle.
$$

In this paper, we consider a vector-valued nonlinear function $\mathbf{\phi}(t, z(t))$ if it satisfies δQC as defined in Definition 1 with a known incremental multiplier matrix $M \in \mathbb{M}$.

Assumption 2. The nonlinear vector-valued functions $\mathbf{\phi}$ in (1) satisfies δQC as defined in Definition 1 with a known incremental multiplier matrix $M \in \mathbb{M}$.

Remark 3. For MAS described by (1), we can have the following condition from Assumption 2:

$$
\begin{bmatrix}
\mathbf{\tau}(t) \\
\mathbf{\varphi}(t, z(t))
\end{bmatrix}^T
\begin{bmatrix}
\mathbf{\tau}(t) \\
\mathbf{\varphi}(t, z(t))
\end{bmatrix} \geq 0,
$$

where

$$
\mathbf{\tau}(t) = [(z_1(t) - z^*)^T, (z_2(t) - z^*)^T, \ldots, (z_n(t) - z^*)^T],
$$

$$
\mathbf{\varphi}(t, z(t)) = [(\mathbf{\phi}(t, z_1(t)) - \mathbf{\phi}(t, z^*))^T, \ldots, (\mathbf{\phi}(t, z_n(t)) - \mathbf{\phi}(t, z^*))^T],
$$

$$
\mathbb{M} = \begin{bmatrix} M_{11} & M_{12} \\ M_{12}^T & M_{22} \end{bmatrix},
$$

$$
\mathbb{M} = \begin{bmatrix} I_N \otimes M_{11} & I_N \otimes M_{12} \\ I_N \otimes M_{12}^T & I_N \otimes M_{22} \end{bmatrix}.
$$

3. **Main Results**

The consensus problem under Assumptions 1 and 2 for the nonlinear MAS (1) with a constant time delay is investigated in the following section.
Theorem 1. Consider the MAS described in (1) satisfying Assumptions 1 and 2 with a given incremental multiplier matrix M. Suppose that there exist matrices $P > 0, Q > 0$ and scalars $\alpha > 0, \tau > 0$ such that the following matrix inequality is satisfied:

$$
\begin{bmatrix}
\Phi_{11} & A_h & B \\
* & -Q & 0 \\
* & * & 0
\end{bmatrix} + \alpha\Psi^T M \Psi \psi < 0,
$$

(16)

where

$$
\Phi_{11} = AP + PA^T + PQP - \tau FF^T,
\Psi = \begin{bmatrix} C & C_h & 0 \\ 0 & 0 & 1 \end{bmatrix},
\psi = \text{diag}(P, I_N, I_N).
$$

Then, the consensus control protocol given by (6) can asymptotically solve the consensus problem for MAS (1) with the feedback control gain $K = -FP^{-1}$ and the coupling weight $c \geq \tau/2 \delta(L)$, where $\delta(L)$ represents the minimum nonzero eigenvalue of the graph \mathcal{G}.

Proof. Letting $z_i(t) = x_i(t) - (1/N) \sum_{j=1}^{N} x_j(t)$, it follows that $z_i(t)$ and $z_i(t)$ satisfy the following dynamics:

$$
\begin{align*}
\dot{z}_i(t) &= (A_i - \tau L)z_i(t) + B\varphi(t, z_i(t)) \\
&= -z_i(t) + \sum_{j=1}^{N} \left[c_{ij}FK(e_i(t) - e_j(t)) - \frac{1}{N} \sum_{j=1}^{N} z_j(t) \right] \\
&\quad + \sum_{j=1}^{N} c_{ij}FK(e_i(t) - e_j(t)),
\end{align*}
$$

(18)

where $P > 0, Q > 0$ and $P, Q \in \mathbb{R}_{+}^{m \times m}$.

The time derivative of $V(t)$ along the trajectory of the consensus error dynamic system in (18) is given by

$$
\dot{V}(t) = 2\sum_{i=1}^{N} e_i(t)^T P^{-1}(Ae_i(t) + A_h e_i(t - h)) + 2\sum_{i=1}^{N} e_i(t)^T P^{-1} \left(\varphi(t, z_i(t)) - \frac{1}{N} \sum_{j=1}^{N} \varphi(t, z_j(t)) \right) \\
+ 2\sum_{i=1}^{N} e_i(t)^T P^{-1}B \left(\varphi(t, z_i(t)) \right) + 2\sum_{i=1}^{N} e_i(t)^T P^{-1}FK \sum_{j=1}^{N} c_{ij}(e_i(t) - e_j(t)) \\
+ \sum_{i=1}^{N} (e_i(t)^T Q e_i(t) - e_i(t - h)^T Q e_i(t - h)).
$$

(20)

Noticeing that $\sum_{i=1}^{N} e_i^T(t) = 0$, so one can have

$$
\sum_{i=1}^{N} e_i(t)^T P^{-1} \left(\varphi(t, z_i(t)) - \frac{1}{N} \sum_{j=1}^{N} \varphi(t, z_j(t)) \right) = 0.
$$

(21)

Then, relative terms in (20) satisfy

$$
2\sum_{i=1}^{N} e_i(t)^T P^{-1} B \left(\varphi(t, z_i(t)) - \varphi(t, z^*) \right) = 2\sum_{i=1}^{N} e_i(t)^T P^{-1} B \left(\varphi(t, z_i(t)) - \varphi(t, z^*) \right).
$$

(22)

Let $e(t) = [e_1^T(t), e_2^T(t), \ldots, e_N^T(t)]^T$ and $e(t - h) = [e_1^T(t - h), e_2^T(t - h), \ldots, e_N^T(t - h)]^T$.

Then, the following inequality is derived by (20) with $K = -FP^{-1}$:

$$
\dot{V}(t) = e^T(t) \left(K \otimes \left(P^{-1}A + A^TP^{-1} \right) \right) e(t) + e^T(t) \left(K \otimes 2P^{-1}A_h \right) e(t - h) \\
- e^T(t)(2c\mathcal{L} \otimes P^{-1}FF^T P^{-1}) e(t) \\
+ \xi - e^T(t) \left(I_N \otimes 2P^{-1}B \right) \varphi(t, z(t)) + e^T(t) \left(I_N \otimes Q \right) e(t) - e^T(t - h)(I_N \otimes Q) e(t - h),
$$

(23)

where $\varphi(t, z(t)) = [(\varphi(t, z_1(t)) - \varphi(t, z^*))^T, \ldots, (\varphi(t, z_N(t)) - \varphi(t, z^*))^T]^T$.

Let $\Omega = \Omega^T \mathcal{L} = \Lambda$ and $\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_N)$, where Ω is an unitary matrix satisfying $\Omega^{-1} = \Omega^T$ and λ_i denotes the positive eigenvalues of the Laplacian matrix \mathcal{L}. Substituting $\mathcal{L} = \Omega \Lambda \Omega^T$, $\xi = 2 \tilde{\mathcal{L}} \otimes \Lambda \xi$, and $\tilde{\mathcal{L}} = \left[c e^T(t) e^T(t - h) \right] \varphi(t, z(t))$.

$$
\begin{align*}
\dot{V}(t) &= e^T(t) \left(2c \mathcal{L} \otimes P^{-1}FF^T P^{-1} \right) e(t) \\
&= -\sum_{i=1}^{N} e_i^T(t) 2c\lambda_i P^{-1}FF^T P^{-1} e_i(t).
\end{align*}
$$

Notice that
\[
- \sum_{i=1}^{N} \mathbf{e}_i^T(t) 2c \lambda_i P^{-1} F F^T P^{-1} \mathbf{e}_i(t) \\
\leq - \mathbf{e}^T(t) \left(I_N \otimes 2 \partial(L) c P^{-1} F F^T P^{-1} \right) \mathbf{e}(t).
\]

(25)

Then, we choose the coupling weight \(c\) such that \(2 \partial(L) c \geq \tau\), which implies
\[
- \mathbf{e}^T(t) \left(I_N \otimes 2 \partial(L) c P^{-1} F F^T P^{-1} \right) \mathbf{e}(t) \\
\leq - \mathbf{e}^T(t) \left(I_N \otimes \tau P^{-1} F F^T P^{-1} \right) \mathbf{e}(t).
\]

(26)

So (23) can be written into a compact form as follows:
\[
\dot{V}(t) = \xi^T \Phi \xi,
\]

(27)

where
\[
\Phi = \begin{bmatrix}
\Phi_{11} & I_N \otimes P^{-1} A_h & I_N \otimes P^{-1} B \\
* & I_N \otimes -Q & 0 \\
* & * & 0
\end{bmatrix}
\]

(28)

\[
\Phi_{11} = I_N \otimes \left(P^{-1} A + \tau P^{-1} F F^T P^{-1} \right).
\]

Secondly, we have the following equality from (1):
\[
\begin{bmatrix}
\bar{z}(t) \\
\bar{\varphi}(t, z(t))
\end{bmatrix} = \Psi \xi,
\]

(29)

where
\[
\Psi = \begin{bmatrix}
I_N \otimes C & I_N \otimes C_h & 0 \\
0 & 0 & I
\end{bmatrix}.
\]

(30)

Substituting (29) into (14) yields
\[
\xi^T \Psi^T \mathbf{M} \Psi \xi \geq 0.
\]

(31)

The nonlinear \(\varphi(t, z_i(t))\) satisfies Definition 1 with a symmetric matrix \(\mathbf{M}\), so we can define a set of incremental multiplier matrices by \(\mathbf{M}_{\Omega} = \{a \mathbf{M} : a > 0\}\), where \(\mathbf{M}_{\Omega} \in \mathbf{M}\). Now by substituting \(\mathbf{M}\) with \(a \mathbf{M}\) in (31) and applying \(\xi = I \otimes (\Omega^T \otimes I_n) \xi\), (31) can be further expressed as follows:
\[
\bar{\xi}^T \bar{\xi} \geq 0.
\]

(32)

Adding the terms on the left side of (31) to the right side of (27) yields
\[
\dot{V}(t) \leq - \xi^T \left(\Phi + \Psi^T a \mathbf{M} \Psi \right) \xi.
\]

(33)

If \(\dot{V}(t) < 0\), the synchronization error \(e\) will converge to the origin according to the Lyapunov stability theory. Therefore, we need to verify that
\[
\Phi + \Psi^T a \mathbf{M} \Psi < 0.
\]

(34)

By utilizing the Kronecker product, it can be validated that the inequality (34) is equivalent to
\[
I_N \otimes \begin{bmatrix}
\Phi_{11} & P^{-1} A_h & P^{-1} B \\
* & -Q & 0 \\
* & * & 0
\end{bmatrix} + \Psi^T a \mathbf{M} \Psi < 0,
\]

(35)

where \(\Psi\) is defined in Theorem 1.

Since \(I_N > 0\), the condition (35) holds if and only if
\[
\tilde{\Phi}_{11} = P^{-1} A + \tau P^{-1} F F^T P^{-1}
\]

(36)

Then multiply both the left and right sides of the matrix in (36) by a reversible matrix \(\psi = \text{diag}(P, I_N, I_N)\) for a similar transformation, and we have condition (16). If condition (16) holds, then \(\dot{V}(t) < 0\). Hence, the consensus error dynamic system (18) is asymptotically stable, and the consensus error \(e \to 0\) as \(t \to \infty\). Therefore, the considered MAS can reach consensus. This completes the proof of Theorem 1.

Remark 4. Theorem 1 offers a sufficient condition that the nonlinear time-delay MAS can reach consensus. Then, we need to find a solution to the constraint in Theorem 1 to retrieve the consensus control gain matrix \(\mathbf{K}\) and the coupling weight \(c\).

After partitioning \(\mathbf{M}\) in the form of (8) and applying the Schur complement lemma to (16), the inequality (16) is equivalent to
\[
\begin{bmatrix}
AP + PA^T - \tau FF^T + aPC^T M_{11} CP & A_h + aPC^T M_{11} C_h & B + aPC^T M_{12} & P \\
* & -Q + aC_h^T M_{11} C_h & aC_h^T M_{12} & 0 \\
* & * & aM_{22} & 0 \\
* & * & * & -Q^{-1}
\end{bmatrix} < 0.
\]

(38)

It should be noted that inequality (38) is not linear with the variables \(P\) and \(Q\) so we cannot directly utilize a convex optimization algorithm to find a solution. Therefore, in order to complete the design of the consensus control law in this paper, we can transform the nonlinear constraints into corresponding convex optimization problems subject to LMI constraints. A general treatment to (38) is to employ the cone complementary linearization [20, 35–37]. On the other hand, a necessary condition for the feasibility of (38) is \(M_{22} < 0\) obviously. Further, when \(M_{11} > 0\), \(M_{11} = 0\) or
Consider the MAS described in (1) satisfying Assumptions 1 and 2 and the given incremental multiplier M satisfying $M_{22} < 0$ and $M_{11} = 0$. Suppose that there exist matrices $P > 0, W > 0, W > 0, Q > 0, Q > 0$ and scalars $\alpha > 0, \tau > 0$ such that the following matrix inequalities are satisfied:

\[
\begin{bmatrix}
AP + PA^T - \tau FF^T & A_h (B + aPC^T M_{12}) & P \\
* & -Q & aC^T_{h} M_{12} \\
* & * & aM_{22} \\
* & * & * & -W
\end{bmatrix} < 0,
\]

where $W = W, Q = Q^{-1}$. Then, we replace Q^{-1} with W in (42) and have (39). If (39)–(41) hold, (42) is satisfied. This completes the proof of Corollary 1.

Similarly, we have the following two corollaries when $M_{11} > 0$ and $C^T M_{11} C < 0$, respectively. We omit proofs here.

Corollary 2. Consider the MAS described in (1) satisfying Assumptions 1 and 2 and the given incremental multiplier M satisfying $M_{22} < 0$ and $M_{11} > 0$. Suppose that there exist matrices $P > 0, Q > 0, Q > 0, W > 0, W > 0$, and scalars $\alpha > 0, \tau > 0$, such that the following inequalities are satisfied:

\[
\begin{bmatrix}
AP + PA^T - \tau FF^T & A_h (B + aPC^T M_{12}) & P \\
* & -Q & aC^T_{h} M_{12} \\
* & * & aM_{22} \\
* & * & * & -W
\end{bmatrix} < 0.
\]

Then, the consensus control protocol given by (6) can asymptotically solve the consensus problem for MAS given by (1) with the feedback control gain $K = -F^T P^{-1}$ and the coupling weight $c \geq \tau / 2 \tilde{\delta}(L)$, where $\tilde{\delta}(L)$ represents the minimum nonzero eigenvalue of the graph \mathcal{G}.

\[
\begin{bmatrix}
AP + PA^T - \tau FF^T & (A_h + \alpha PC^T M_{11} C_h) (B + aPC^T M_{12}) & P \\
* & (-Q + aC^T_{h} M_{11} C_h) & \sqrt{\alpha} PC^T M_{11} \\
* & * & aC^T_{h} M_{12} \\
* & * & aM_{22} \\
* & * & * & -W
\end{bmatrix} < 0.
\]

Then, the consensus control protocol given by (6) can asymptotically solve the consensus problem for MAS given by (1) with the feedback control gain $K = -F^T P^{-1}$ and the coupling weight $c \geq \tau / 2 \tilde{\delta}(L)$, where $\tilde{\delta}(L)$ represents the minimum nonzero eigenvalue of the graph \mathcal{G}.

Corollary 3. Consider the MAS described in (1) satisfying Assumptions 1 and 2 and the given incremental multiplier M satisfying $M_{22} < 0$ and $C^T M_{11} C < 0$. Suppose that there exist matrices $P > 0, Q > 0, W_1 > 0, W_2 > 0, P > 0, Q > 0, W_1 > 0,$ and scalars $\alpha > 0, \tau > 0$, such that the following inequalities are satisfied:

\[
\begin{bmatrix}
AP + PA^T - \tau FF^T & A_h (B + aPC^T M_{12}) & P \\
* & -Q & aC^T_{h} M_{12} \\
* & * & aM_{22} \\
* & * & * & -Q^{-1}
\end{bmatrix} < 0.
\]

Then, the consensus control protocol given by (6) can asymptotically solve the consensus problem for MAS given by (1) with the feedback control gain $K = -F^T P^{-1}$ and the coupling weight $c \geq \tau / 2 \tilde{\delta}(L)$, where $\tilde{\delta}(L)$ represents the minimum nonzero eigenvalue of the graph \mathcal{G}.
\[\dot{W}_2 > 0, \text{ and scalars } \alpha > 0, \tau > 0, \text{ such that the following inequalities are satisfied:} \]

\[
\begin{bmatrix}
AP + PA^T - \tau FF^T - \alpha W_2 (A_h + \alpha PC^TM_{11}C_h) (B + \alpha PC^TM_{12}) P \\
* \\
* \\
* \\
\end{bmatrix}
\begin{bmatrix}
\dot{W}_1 \\
I \\
* \\
\end{bmatrix}
< 0,

(47)

LMI constraints with variables \(\dot{W}_1, W_1, \dot{W}_2, W_2, \tilde{P}, P, Q, \) and \(\tilde{Q} \):

\[
\begin{bmatrix}
\dot{W}_1 \\
I \\
* \\
\end{bmatrix} \geq 0,
\begin{bmatrix}
\tilde{Q} \\
I \\
* \\
\end{bmatrix} \geq 0
\]

and inequalities (47).

(50)

Remark 5. It is worth mentioning that during the derivation process in the proof of Theorem 1, we introduced a positive scalar \(\tau \) that \(2\delta(\mathcal{L})c \geq \tau \), where \(\delta(\mathcal{L}) \) represents the minimum nonzero eigenvalue of the graph \(\mathcal{L} \). Hence, we need to find a positive \(\tau \) to choose \(c \). In our results, \(\tau > 0 \) needs to be chosen such that the inequality in Theorem 1 is satisfied. In fact, \(\tau \) needs to be adjusted few times to find a feasible solution in Algorithm 1. Once the inequality in Theorem 1 is satisfied with a positive \(\tau \), then we can select the coupling weight \(c \) as long as it satisfies \(2\delta(\mathcal{L})c \geq \tau \), which will be exemplified in the simulation part.

Remark 6. The inequalities in corollaries can be solved by applying CCL algorithm and LMI-tools. After using LMI-tools of MATLAB, we can find a feasible solution to the constraints in (48) with respect to variables \(W, W, P, Q, \) and \(\bar{Q} \). Those constraints ensure \(Q \) and \(W \) are the inverses of \(Q \) and \(W \), respectively. We can attain the variables with the required accuracy from a freedom in
minimization. After verifying conditions in Corollary 1 are satisfied, we can design the gain matrix via $K = -F^T P^{-1}$ and the coupling weight c to complete the consensus control law design. The interested readers refer to [35–37] for more details about CCL algorithm. By making appropriate modifications to Algorithm 1, we can easily derive algorithms for Corollary 2 and Corollary 3.

Remark 7. δQC include many common nonlinearities as some special cases. In the sense, δQC can be employed for more general scenarios. Therefore, the results in this paper have wider application scenarios compared with the existing references ([20, 21], etc.).

4. Simulation Example

In this section, we provide a numerical simulation to illustrate the effectiveness of the proposed consensus control protocol. For simplicity, we only simulate Corollary 1. Consider a network of mobile agents. Each agent with nonlinear dynamics remains the same as in (1) with the following parameters (from [38]):

$$A = \begin{bmatrix} -2 & 0 \\ 0 & -0.9 \end{bmatrix},$$

$$A_h = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix},$$

$$B = \begin{bmatrix} 0.2 & 0.7 \\ 0.3 & 0.4 \end{bmatrix},$$

$$F = [1 \ 1]^T,$$

$$C = [0.6 \ 0.8],$$

$$C_h = [0.5 \ 0.9],$$

$$\varphi(t, z) = 0.5 [0.5(1 + \sin t)0.5(1 - \sin t)]^T * z,$$

where φ is a nonlinear term since t is changeable. z contains the time-delay term $C_h x(t - h)$, and $h = 4$ in this simulation. $\varphi(t, z)$ and z satisfy δQC with an incremental multiplier matrix [38]:

$$M = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.5 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}. \quad (52)$$

Those agents exchange information under a connection graph as shown in Figure 1. Thus, we can obtain the following Laplacian matrix, the communication matrix between agents:

$$\mathcal{L} = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & -1 & 0 & 0 \\ -1 & 3 & -1 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 3 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 4 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 2 & 0 & -1 & 0 \\ -1 & 0 & -1 & 0 & 2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & -1 \end{bmatrix}. \quad (53)$$

The minimum nonzero eigenvalue of the graph $G\delta(\mathcal{L}) = 0.29$. Let $\tau = 2.3$ and $\alpha = 0.2$. By applying Algorithm 1 with the LMI toolbox of MATLAB, we can find a feasible solution to (42) with

$$P = \begin{bmatrix} 2.9926 & -0.6004 \\ -0.6004 & 5.2398 \end{bmatrix},$$

$$Q = \begin{bmatrix} 13.2397 & 0.0000 \\ 0.0000 & 13.2397 \end{bmatrix}. \quad (54)$$

We choose $c = 4$ here for $2\delta(\mathcal{L})c \geq \tau$. The feedback control gain matrix $K = -F^T P^{-1} = [-0.3812 \ -0.2345]$. Now we have completed the consensus control protocol design.
As we can see in Figure 2, the nonlinear time-delay MAS did not reach consensus without the consensus control law. The state trajectories are shown in Figure 3. We can see that all agents reach consensus after applying the designed consensus law. All the corresponding states of each agent change synchronously over time. In Figure 4, the state errors of each agent converged to the origin for about 20 seconds. This demonstrated the effectiveness.
of the proposed consensus control law design method in this paper.

5. Conclusion

The consensus control problem has been investigated for the nonlinear time-delay MAS whose nonlinearities satisfy δQC under an undirected communication graph. A distributed consensus control protocol-design criterion was proposed for nonlinear MAS. We have considered a more general class of nonlinearities which satisfy δQC. By utilizing graph theory and Lyapunov theory, we analyzed the consensus error dynamic stability of the proposed control law. Then, sufficient conditions have been deduced as the form of matrix inequalities to solve the consensus problem for the considered MAS. In order to cope with the nonlinear terms, we transformed the nonlinear constraints into some optimization problems subject to LMI constraints and proposed iterative algorithms by resorting to the Schur complement lemma and the CCL method. Then, the gain matrix and the coupling weight in the protocol can be easily computed to complete our consensus control law design. A numerical example is provided to illustrate the effectiveness of the developed results.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation (NNSF) of China under Grant 51505273.

References

