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Abstract. 
The structure of finite groups is widely used in various fields and has a great influence on various disciplines. The object of this article is to classify these groups  whose number of elements of maximal order of  is 20.

1. Introduction
Only finite groups are related in this article and our notation is standard. Furthermore,  always denotes a group,  denotes a Sylow -subgroup of , and  denotes the center product of groups  and . For positive integers  and , , where  is cyclic with  and ;  represents the number of elements of maximal order of , and  is the maximal element order in .
For simplicity, we set symbols in the later:
This topic here is with respect to one of Thompson’s problems.
1.1. Thompson’s Problem
Set  with . If a group  is solvable satisfying , then  is also solvable.
For the purpose of solving this famous problem, some authors investigated the solvability of a group by means of a fixed  and gave some meaningful results (for example, [1–12], etc.). In particular, Chen and Shi [3] classified groups with . Jiang and Shao [7] classified groups with . In this article, we give the classification of groups  with . The result is as follows.
Theorem 1. Assume that  is satisfied with  and  as mentioned above. Then,(1)If , then , or (2)If , then(2.1), the symmetric group of degree 5(2.2) with  and (3)If , then  and (4)If , then(4.1)(4.2)(5)If , then  is a Frobenius group, where (6)If , then  or  is metacyclic and , where .
Corollary 1. If  satisfying  is -free, then  is solvable.
2. Preliminaries
Lemma 1. [12, Lemma 1]. Assume  possesses  cyclic subgroups of order . Then, , where  and  denote the number of elements of order  and Euler function of , respectively. Furthermore, if  represents the number of cyclic subgroups in  of maximal order , then .
According to Lemma 1, we easily follow the result as given by computations.
Lemma 2. If , then possible values of , , and  are shown as follows:




	



	
	
	
	



	




	
	



	



	




	
	



	



	
	
	
	
	




	



	



	
	
	
	
	
	
	
	
	




	



	
	



	
	
	
	
	




	



	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	




Lemma 3. [7, Lemma 4]. If a nonabelian 2-group  has the exponent 4, then  contains at least  elements with order 4 for  with .
Lemma 4. If a 2-group  has the exponent 4 and , then  or .
Proof. Let . If  is abelian, then  by [8, Lemma 2.5], and so  is no more than 5 and  is 32. If  is nonabelian of the exponent 4 and  with , we claim . If , then there is  satisfying , because . Clearly,  is 32, and it is impossible. Hence, . If  is nonabelian with  and , we have  by Lemma 3. By [13], there is no group of order 64 which is satisfied with the assumption of our lemma. If , then , or  by [14].
Lemma 5. If a 2-group  has the exponent 8 and , then 8 divides .
Proof. Obviously,  is noncyclic. Setting  for two different maximal subgroups  in , then  and . So  and , where  is a 3-maximal subgroup in  satisfying . Since  divides ,  (mod 8).
We show the result by induction on .
If , then  is divisible by 8 by applying a result in [13]. If , then 8 divides , , and  by induction, and so 8 divides .
3. Proof of Theorem
Proof. Since , we have that  and 11 by [3, Lemma 6] and  by [3, Corollary 2]. In the following, we discuss the cases for the other values of .
Case 1. .  is either a 3-group or {2, 3}-group. If the former holds, then its exponent is 3. Using [15, Theorem 3.8.8],  is  ( a integer), this contradicts the hypothesis. If the later holds, then , the set of prime divisors of . By applying a result in [1, Theorem],  is a Frobenius group, where  or . Suppose . Then,  is elementary abelian. It follows a contradiction by using [15, Theorem 3.8.8]. If  is isomorphic to , then it has two elements with order 3, this contradicts the hypothesis. Thus, .
Case 2. . Now  is a 2-group. Using Lemma 4, , or . Thus, (1) holds.
Case 3. . By a result of [3, Lemma 8], , where  and . If , then  is a -group (its centralizer of every 5-element is a 5-group). If  is nonsolvable, then there exists  satisfying ;  are -groups,  is simple, and  must divide  using [4, Theorem 2.1]. So , , or . But  processes elements of order 6, and their indices of its maximal subgroups are 27, 36, 40, and 45. Hence, the index of normalizer in  of the arbitrary cyclic subgroup in  of order 6 is not less than 27. So  has more than 15 subgroups of order 6. It leads to  that has more than 20 elements of order 6, and so it is impossible. Thus, . Hence,  may be  or . Now, we have . Thus, , or . However,  contains elements with order 6 surpassing 20; this induces that  is not isomorphic to . If , then  since  has 20 elements of order 6. Thus, (2.1) follows.
Assume that , or  and . Let  with . Then, . Otherwise,  has an element of order 30 since , a contradiction. Hence, . As  has only 10 subgroups with order 6, it makes  or 10. If  and , then any 2-element in  is of order 2 and any 3-element in  is of order 3. Hence,  has  elements of order 6. Note that  and  is a -group, and it follows easily its number whose elements with orders 2, 3, or 6 in  are multiples of 5. Hence,  and  for , and so  has  elements of order 6. However, , and this is impossible. Thus, we may assume  or .
Suppose first . Then,  or  or  since  or  or . Since  has at most 20 elements with order 6,  or . Hence,  is , , or , where . As  has no element with order 4, we have . Otherwise,  contains more than 20 elements with order 6, and it is impossible. So ,  is  (). Furthermore,  and . Hence,  and  are 16 and  or  or  and  or  or . Thus,  has at least 30 elements with order 6, and it contradicts the hypothesis.
Suppose next . Then,  or  or  since  or  or . It is well known that  and  have elements of order 4, so  has no Sylow 2-subgroup of  when  or . Thus, we can let  or . Since  or 10, we know that  is  and , where . It means that . By hypothesis,  and so . Thus,  (mod 5), a contradiction.
Let  be solvable with , where  and . If , then  is sure to be a Frobenius group or a 2-Frobenius group by [4, Theorem 2.1]. If the former holds and the Frobenius kernel  is a 5-Hall subgroup, then  contains a normal subgroup with order 5. Hence,  contains an element with order 15, and it contradicts the hypothesis. If the former holds and  is a -Hall subgroup, then  has  elements of order 6 by the nilpotency of . Hence, we have that  and , and it contradicts the hypothesis. If the later holds, then there is a series  satisfying  is a 5-group by [4, Theorem 2.3];  and  are both Frobenius groups whose kernels are  and , respectively. Therefore,  contains an element with order 15 when 3 divides , and it contradicts the hypothesis. Hence ,  with . Choosing  with  and considering  acts on  by conjugation, then  has an element with order 15, and it contradicts the hypothesis. This implies that  cannot be a 2-Frobenius group. So  and . By Lemma 2, it has 10 subgroups with order 6, and , 2, 3, 4, 6, 8, or 9 for any  with order 6. Let . Since  has no element with order 9, any 3-element  in  which commute  satisfies , and it leads to . Thus, . In addition, it follows from  has no element with order 4 and arbitrary 2-element  satisfying  that  by .
If  or 9, then it has  with  satisfying  being 1 or 2. In total,  has 10 subgroups with order 6, which implies  has an element with order 6 satisfying . Furthermore, we obtain that  is a divisor of  or . Hence, . Thus, (2.2) follows.
Case 4. . If , then  is divisible by 8 by [14], a contradiction. If  is a 2-group with , then there is no group which satisfies our assumption using Lemma 5. If  is a -group, then . Choosing  with , we get , or 5, as  has precisely 5 cyclic subgroups with order 8. If  with  satisfying  or 4, then  has another element  with  satisfying . It implies that  must have an element  with  satisfying  or 5. If , then . As , we have , and it leads to  that has an element with order 40, which contradicts the hypothesis. Thus, . So all cyclic subgroups with order 8 are conjugate in  and so do their centralizers. Let . Then, , or 32 by [8, Lemma 2.5]. If , then  has precisely 16 elements of order 8 by [8, Lemma 2.5]. Choosing  with , then  has 4 or 8 elements of order 8 and so  has 28 or 24 elements of order 8. Assume that  has 4 elements with order 8, and let  with . Then,  is not in ,  is not in , and  is conjugate to . As  is abelian, . Hence,  contains  elements of order 8, and it contradicts the hypothesis. Assume that  has 8 elements with order 8, and let  be any element with . Then,  has  elements with order 8. Let  be any element with . Then, we get that  contains  elements with order 8 using the same arguments, and it contradicts the hypothesis. If , then  is abelian and it contains 8 elements with order 8. In fact, we get easily that  contains no element of order 8 for any  with . Thus, its number whose elements in  with order 8 are divided by 8, and it is impossible. If , then  and  contains 4 elements with order 8. As all centralizers of elements with order 8 are conjugate, . By using a theorem of Burnside, , which is impossible since .
Case 5. . By [3, Lemma 8], we can set , where . As  has 5 cyclic subgroups with order 10, we have  is , or 5 if  with .
If  or 4, then  has  with  satisfying  or . Let . Then,  and  as  has at most 20 elements with order 10. Hence, the order of any 5-element of  is 5. It is easy to see that  cannot have 20 elements with order 10, and it is impossible.
If , then all cyclic subgroups with order 10 are conjugate in . Let . Then,  and . We always have that  divides 4 and  is a -group. Hence, . Let . If , then  using Sylow’s Theorem. Thus, , , and . Clearly, . If , then , a contradiction. Hence, . If , then  contains at least 128 elements with order 10, and it contradicts the hypothesis. If , then  has at least 64 elements with order 10, and it is impossible as well. Hence  and . If , then  contains at least 24 elements with order 10, and it is impossible. Hence,  and . If , then it has 5 Sylow 2-subgroups in  using Sylow’s Theorem. Thus,  has 60 elements with order 10, and it contradicts the hypothesis. Therefore . If , where  and , then , and  has 20 elements with order 10. Thus, (3) holds.
Case 6. . Let  with . Then, . By [8, Lemma 2.5],  has at least  elements with order 4. In addition, its 3-elements in  are of order 3. So  using [8, Lemma 2.5] and the hypothesis. Thus,  and  or  and . Using Lemma 2,  has 5 cyclic subgroups with order 12, and so .
If , we let , and . Clearly, . Assume . Then, . If  is abelian, then  and  has precisely 16 elements with order 12. If we choose  in  with , then  has 16 elements with order 12. And  has at least 28 elements with order 12, and it contradicts the hypothesis. Assume that  is nonabelian with . Furthermore, we get that . Since  and , we know that  is normal in . Then,  since  is solvable. Let  with . Then,  acts fixed-point-freely on . Therefore, , and it contradicts the hypothesis. Hence,  does not divide , , and . By the hypothesis,  has at most 20 elements of order 12. Hence,  has at most 10 elements with order 4. If , then  and  has 8 elements with order 12. Let  and . Then,  has no element with order 12. If not, let  with . Then,  and  as  and  are both abelian. Hence, , a contradiction. If  and  is abelian with type (4, 2, 2), then  contains 8 elements of order 4. It also gets a contradiction similar to case . If  is abelian with type (4, 4), then  contains 12 elements with order 4 and  must have 24 elements with order 12, and it contradicts the hypothesis. If  and  is nonabelian, then . Now  has 8 elements with order 4. Let  with . Then,  has at least 4 elements with order 12. If  has exactly 4 elements with order 12, then  must contain 28 elements of order 12, and it contradicts the hypothesis. So  has at least 8 elements with order 12. Thus,  is 24, and . Let  with . Then,  is neither in  nor in  and  is conjugate to . As  is abelian, . Hence,  contains 32 elements with order 12, and it also contradicts the hypothesis. Thus,  and . Therefore,  and . It is noted that  is solvable since the simple groups  and  have no element with order 12. Thus, (4.1) holds.
If  or 4, then there exists  with  satisfying  or 2 as  has 5 cyclic subgroups with order 12 and by using Lemma 2. Noting , if there is  with  satisfying , then  is normal in , and hence both  and  are normal in . Let . Then, . If , then , and hence, . Thus, 20 =  =  =  = 2. So , which contradicts the fact that its number whose elements with order 4 in  is always divisible by 4 by using [3, Lemma 9]. If  and , then  has at least 33 elements with order 3, so  has at least 66 elements with order 12, a contradiction. If  and , then , which is impossible. Hence, there must exist an element  of  with  satisfying . Therefore, . Thus, (4.2) holds.
Case 7. . Let . Then, . If , then  may be noncyclic, and its number whose elements with order 25 exceeds 20, a contradiction. Thus,  and . Since  , we have (5) holds.
Case 8. . Let  with . Then , , which implies that  or  is metacyclic. Hence,  or , where . Thus, (6) holds.
4. Conclusion
The structure of finite groups is widely used in various fields and has applications in various branches of mathematics. In particular, the classification of finite simple groups is a ground-breaking and amazing piece of contemporary mathematics. It is of great help in solving related problems by checking the specific structure of finite groups. In this paper, we determined those groups  in which its number whose elements of maximal order of  is 20. The main result enriches the research of finite group theory and provides theoretical guidance for the development of various disciplines.
Data Availability
The results have been proved by rigorous mathematical theory, and the data are available.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Acknowledgments
This work was supported by the National Scientific Foundation of China (Grant no. 11661031) and Hainan Provincial Natural Science Foundation of China (Grant no. 119MS039).
References
	R. Brandl and S. Wujie, “Finite groups whose element orders are consecutive integers,” Journal of Algebra, vol. 143, no. 2, pp. 388–400, 1991.
	G. Chen, “A new characterization of spordic simple groups,” Algebra Colloquium, vol. 3, pp. 49–58, 1996.
	G. Chen and W. Shi, “Finite groups with 30 elements of maximal order,” Applied Categorical Structures, vol. 16, no. 1-2, pp. 239–247, 2008.
	G. Chen, “On Frobenius group and 2-Frobenius group,” Journal of Southwest China Normal University (Natural Science Edition), vol. 20, pp. 485–487, 1995.
	X. Du and Y. Jiang, “On finite groups with exact  elements of maximal order are solvable,” Chinese Annals of Mathematics, vol. 25A, pp. 607–612, 2004.
	Z. Han and R. Song, “Finite groups having exactly 44 elements of maximal order,” Advances in Mathematics (China), vol. 45, pp. 61–66, 2016.
	Q. Jiang and C. Shao, “Finite groups with 24 elements of maximal order,” Frontiers of Mathematics in China, vol. 5, no. 4, pp. 665–678, 2010.
	Y. Jiang, “A theorem of finite groups with 18p elements having maximal order,” Algebra Colloquium, vol. 15, no. 2, pp. 317–329, 2008.
	Y. Jiang, “Finite groups with  elements of maximal order are solvable,” Chinese Annals of Mathematics, vol. 21A, pp. 61–64, 2000.
	A. S. Kondratev, “Prime graph components of finite simple groups,” Mathematics of the USSR-Sbornik, vol. 67, no. 1, pp. 235–247, 1990.
	J. S. Williams, “Prime graph components of finite groups,” Journal of Algebra, vol. 69, no. 2, pp. 487–513, 1981.
	C. Yang, “Finite groups based on the numbers of elements of maximal order,” Chinese Annals of Mathematics, vol. 14A, pp. 561–567, 1993.
	M. Hall, The Groups of Order, vol. 64, Macmillan Company, New York, USA, 1964.
	A. D. Thomas and G. V. Wood, Group Tables, Shiva Publishing Limited, Orpington, UK, 1980.
	B. Huppert, Endliche Gruppern I, Springer-Verlag, Berlin, Germany, 1967.


EPUB/Navigation/nav.xhtml


		

			

		  1. Introduction

		  2. Preliminaries

		  3. Proof of Theorem

		  4. Conclusion

		  References 





EPUB/Content/page-template.xpgt
 

   


     
	 
    

     
	 
    


     
	 
    


     
         
             
             
             
        
    

  




