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Aiming at the difficulty of extracting rolling bearing fault features under strong background noise conditions, a method based on
the Fourier decomposition method (FDM), robust independent component analysis (RobustICA), and multipoint optimal
minimum entropy deconvolution adjusted (MOMEDA) is proposed. Firstly, the FDM method is introduced to decompose the
single-channel bearing fault signal into several Fourier intrinsic band functions (FIBF). Secondly, by setting the cross-correlation
coeflicient and kurtosis as a new selection criterion, it can effectively construct the virtual noise channel and the observation signal
channel, which makes RobustICA complete the separation of the useful signal and noise well. Finally, MOMEDA is introduced to
enhance the periodic impact components in the denoised signal, and then the filtered signal is analyzed by the Hilbert envelope
spectrum to extract the fault characteristic frequency. Through the experimental analysis of the simulated signals and the actual
bearing fault signals, the results show that the proposed method not only has the ability to suppress noise and accurately extract
fault feature information but also has better performance than the traditional method of local mean decomposition (LMD) and
intrinsic time-scale decomposition (ITD), highlighting its practicality in the fault diagnosis of rotating machinery.

1. Introduction

Bearing is one of the important parts in the mechanical
system, which has been widely used in metallurgy, electric
power, aerospace, and other fields of national economy. At
the same time, due to the high frequency of use and complex
working environment, bearings are also the most prone to
failure components. Once it breaks down, it will not only
affect the normal operation of the mechanical system but
also greatly reduce the production efficiency, even cause the
loss of life and property. Therefore, it is very important to
extract the fault features of bearings and grasp the operation
status of the equipment in time. However, in actual oper-
ating conditions, due to the impact of the component’s own
structure and working environment, the collected signal
contains both useful information about bearing failure and
useless interference noise. Meanwhile, because the signal
passes through many links in the process of transmission,
some signals will be attenuated to a certain extent. Affected

by the aforementioned adverse factors, the signal-to-noise
ratio of the signals collected by the sensor is very low, and the
fault characteristics are weak, making it difficult to diagnose
the fault. Therefore, how to effectively extract the fault
characteristics of bearings is the current research hotspot
and difficult point.

At present, most traditional rolling bearing fault feature
extraction methods are developed based on time-frequency
analysis methods. In the field of fault diagnosis, there are
many common methods, such as short-time Fourier
transform [1, 2], Wigner-Ville distribution [3], and wavelet
transform [4, 5]. Although the above methods have been
widely used, they are basically based on the idea of integral
analysis. Since the set basis functions are fixed, the signals
cannot be decomposed adaptively. This prevents the noise
spectrum from being effectively separated during signal
processing and may also filter out sudden changes in the
signal. To solve the above problem, Huang et al. [6] proposed
the empirical mode decomposition (EMD) method, which
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can adaptively decompose the signal into several natural
modal components, thereby obtaining the complete time-
frequency distribution of the signal. It shows some advan-
tages when processing stationary and nonstationary signals,
but EMD has problems such as endpoint effects and modal
aliasing and lacks strict theoretical proofs [7-9]. In view of
the shortcomings of EMD, relevant scholars proposed
EEMD, CEEMD, CEEMDAN, and other improved
methods, but these methods still have similar problems with
EMD [10-12]. Based on the idea of EMD, LMD, ITD, and
other signal processing methods have been proposed one
after another [13, 14], but these methods cannot fully make
up for the shortcomings of EMD. In recent years, Singh et al.
[15] proposed a new signal analysis method-Fourier de-
composition method (FDM) based on the study of Fourier
transform. By using the FDM, any complex signal can be
adaptively decomposed into a series of Fourier intrinsic
band functions (FIBF). This method changes the defect that
the Fourier series expansion method can only handle sta-
tionary linear signals and can effectively analyze nonsta-
tionary nonlinear signals. Because the FDM is a complete
and orthogonal signal processing method with strict theo-
retical basis, it has been initially applied in fault diagnosis in
various fields and has shown great advantages. Dou and Lin
[16] demonstrated the adaptive narrowband filtering char-
acteristics of the FDM at low and high frequencies by
detecting white Gaussian noise. At the same time, after
comparing the effects of different methods on processing
gearbox vibration signals, the results show that the FDM can
overcome the bottleneck of the EMD in adaptively sepa-
rating low-frequency signal components and has superior
performance. Aiming at the problem that the traditional
time-frequency analysis method is difficult to effectively
extract the rotor fault characteristics, Liu et al. [17] intro-
duced the FDM to the fault diagnosis of rotor rubbing.
Through experimental comparison based on different
methods, the results show that the FDM can achieve
complete signal decomposition and achieve better fault
diagnosis. Fu and Gao [18] proposed a fault diagnosis
method for rolling bearings by combining the FDM and
singular value difference spectrum. The experimental sim-
ulation and actual engineering tests verify the effectiveness
of the proposed method.

At the same time, as a blind source separation method,
independent component analysis (ICA) provides a new idea
for noise reduction of mechanical equipment fault signals. In
1994, Comon explained the concept of independent com-
ponent analysis (ICA) and pointed out that ICA is an ex-
tension of PCA. He proposed the target function of the
Kullback-Leibler criterion on the basis of making full use of
the high-order statistical characteristics of the signal, which
became the mainstream algorithm of blind source separation
in the future [19]. After that, the Finnish scholar Hyvarinen
and Oja [20] proposed a fast-independent component
analysis method based on kurtosis. Then, the algorithm is
improved, using more robust negative entropy as a non-
Gaussian measurement criterion, and a fast algorithm,
FastICA, based on negative entropy maximization is pro-
posed [21]. The algorithm has a very high efficiency, so it has
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been widely used. However, in 2004, Zarzoso and Comon
et al. proposed in [22] that FastICA would fail in the case of
weak or high spatial correlation source signals. After that,
they put forward the RobustICA [23, 24], and it has de-
veloped rapidly in the algorithm of blind source separation.
As an algorithm based on kurtosis and optimal step size, this
algorithm has excellent antinoise performance. It can sep-
arate noise and real signal from the multichannel mixed
signal without prior knowledge of the signal source. The
algorithm is proved to be not only simple but also better than
FastICA. In recent years, it has been successfully applied to
the noise source separation in the fields of diesel engine,
gasoline engine, and combustion engine [25-29] and has
shown high signal separation quality and fast calculation
efficiency. However, in the process of using RobustICA, the
number of sensors must be greater than or equal to the
number of components separated by them [30]. In order to
solve the shortcomings of RobustICA, the signal can be
decomposed into many components by time-frequency
analysis, and more virtual observation channels than the
source signal can be generated. In this way, by combining the
advantages of the above two methods, noise reduction of the
bearing signal can be achieved. However, in the process of
use, although the signal-to-noise ratio is improved by
suppressing the noise, the useful signal is inevitably sup-
pressed. Especially under the condition of strong noise
interference, the impact component of the bearing fault
signal after noise reduction is still weak, and even the weak
fault may be covered by the strong fault, which brings
difficulties for further extraction of fault features.

The essence of fault feature extraction is to extract the
periodic shock components in the signal, that is, to process the
signal through an optimal filter, thereby highlighting the fault
shock components. The minimum entropy deconvolution
(MED) was first proposed by Wiggins in 1978 [31]. It uses the
maximum kurtosis as the iteration termination condition to
solve the filter, which can play a role in highlighting the
impact characteristics in the signal [32, 33]. Sawalhi et al. first
used MED for fault detection of rotating machinery [34].
However, this iterative method is not only complex but also
not necessarily the global optimal filter. Secondly, the method
is only suitable for the single pulse impulse signal. The fault
characteristics of rotating machinery are mostly periodic
pulses. In order to overcome the shortcomings of MED,
McDonald et al. proposed the maximum correlated kurtosis
deconvolution (MCKD) [35] in 2012 based on the correlation
kurtosis. To some extent, this method can satisfy the need of
deconvolution with periodic pulse, but it is still an iterative
process with the maximum correlation kurtosis as the cri-
terion. The result is not the optimal solution, and it needs the
prior knowledge of the fault cycle. In view of the limitations of
the above two methods, McDonald and Zhao [36] proposed
the multipoint optimal minimum entropy deconvolution
adjusted (MOMEDA), which has been successfully applied to
the fault diagnosis of the gearbox. This method uses a time
target vector to define the pulse position obtained by solving
the deconvolution. During the execution of the algorithm, the
optimal filter can be obtained without iteration [37], and the
period of the failure does not need to be determined in
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advance. By using this method, the periodic impact com-
ponents in the signal can be effectively enhanced, which
makes a good foundation for the feature extraction of fault
signals.

In summary, this paper proposed a fault feature ex-
traction method combining FDM-RobustICA and
MOMEDA. Firstly, the FDM is used to decompose the
vibration signal of the bearing and obtain several Fourier
intrinsic band functions (FIBF). Then, by combining the
cross-correlation analysis criterion and the kurtosis crite-
rion, an effective FIBF component is selected as the ob-
servation signal, and blind source separation is performed.
Thirdly, MOMEDA is used to enhance the periodic impact
components in the noise-reduced signal. Finally, the Hilbert
envelope demodulation is used to obtain the fault charac-
teristic frequency, and the fault characteristic frequency is
compared with the theoretical calculated value for fault
diagnosis.

The structure of this paper is as follows. Section 2 introduces
the basic principles of FDM, RobustICA, and MOMEDA.
Section 3 briefly introduces the implementation details and fault
feature extraction process of the method proposed in this paper.
Section 4 uses the proposed method to analyze the simulation
signal. Section 5 further verifies the effectiveness of the proposed
method through the actual bearing fault signal. Section 6 gives
the discussion and conclusion.

2. Theoretical Background

2.1. Fourier Decomposition Method. Fourier decomposition
method (FDM) is a new type of the adaptive signal analysis
method based on Fourier transform. This method first
adaptively searches and analyzes the Fourier intrinsic band
functions (FIBF) in the entire Fourier domain. Then, the
nonlinear signal is adaptively decomposed into the sum of
several physical Fourier intrinsic band functions (FIBF) and
a residual component:

(1) FIBF has a zero mean value, namely, ji y;(H)dt = 0.

(2) Any two FIBF are orthogonal to each other, namely,
Joyi@®y;(Ddt =0, i#j.

(3) The analytic function form of FIBF has nonnegative
instantaneous amplitude and frequency: y;(t)
¥ () =a (1)e/#®,  namely, a;(t)=0, ¢.(t)>0,
Vt € [a,b],and y; (t) € C*®[a, b]. Therefore, FIBF are
the sum of zero-mean sine functions with contin-
uous frequency bands.

Based on the definition of FIBF, the steps of the FDM are
as follows:

Step 1: make a fast Fourier transformation of the signal
x (n), X[k] = FFT{[x (n)]}.

Step 2: use forward search, which scans analytic Fourier
intrinsic band functions (AFIBF) from low to high
frequencies:

n
AFIBE= Y X[K]o”™N = a,(med™. (1)
k=N;_;+1

In order to obtain the minimum number of AFIBF from
low-frequency to high-frequency scanning, for each i=1, 2,
... M, start from N;_; + 1 and gradually increase to reach
the maximum N;, where Ny =0 and N,; = (N/2-1). It
satisfies N;_; + 1 <N, ; < (N/2 - 1) and also satisfies

a;(t) 20, wi(t)z(”"[n“];")"[”_l]zo, ve. (2

Similarly, a reverse search can also be performed,
namely, scanning the AFIBF component from high to low
frequencies. Correspondingly, change the upper and lower
limits of the sum in equation (2) from N, to N,_; — 1, where
i=1,2,..., M, Ny =N/2, and N, = 1. The search should
start from N,;_; — 1 and gradually decrease until the smallest
N, satisfies 1<N;<N; ; —1, and the phase ¢;[n] is a
monotonically increasing function. The instantaneous fre-
quency and amplitude can be calculated directly by AFIBF.
Meanwhile, the real part of AFIBF is FIBF.

2.2. Robust Independent Component Analysis. Robust in-
dependent component analysis (RobustICA) is an inde-
pendent component analysis algorithm based on kurtosis
and optimal step size that has emerged in recent years on the
basis of the original independent component analysis (ICA).
The algorithm searches for the global optimal step size
through the kurtosis comparison function, finds the dem-
ixing matrix, and calculates the approximate value of the
source signal. The frame of independent component analysis
is shown in Figure 1. The purpose of independent com-
ponent analysis is to separate independent source signal
components from the mixed signal.

Let n-dimensional random observation vectors conform
to the following model:

x=AS+ N, (3)

where S = [s,,5,...,s,,]" and x = [x,x,...,x,]". S is the m-
dimensional signal vector, which means that the number of
mixed signals is m. N is the n-dimensional observation
vector, which means that the number of mixed signals is n. A
is an n x m matrix. The basic idea of ICA is to solve the
separation matrix W and make an optimal estimate y of the
source signal S when only the observation signal x is known:

y=Wx. (4)

Compared with the traditional ICA, RobustICA does not
need to prewhiten the data, which reduces the amount of
calculation. At the same time, RobustICA can be used to
process the sub-Gaussian signal and the super-Gaussian
signal. When the Gaussian property of the signal is known, it
can extract only the components of interest in the source
signal without increasing the complexity of the operation
and the estimation error. The linear search method used by
RobustICA can ensure that the optimization can be achieved
in all the processes of component separation. Assuming the
output signal is y = Wx (W is the m x n-dimensional
separation matrix), the kurtosis equation can be expressed as
follows:
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FIGURE 1: Frame of independent component analysis.
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In the equation, E{-} represents the mathematical ex-
pectation. RobustICA directly uses the above equation as a
comparison function without any simplification and then
optimizes the kurtosis according to the strategy of the best
linear optimization step size:

KW) = (5)

Hopt = argmax [K(W +pug)l, (6)

where g is the search direction; usually, g = V,,K (W), which
can be expressed as follows:

VKO = Bl Bl
, (7)
(E{1'} - IEA) By
E{lyI’} '

In the process of iteration, the optimization method of
RobustICA can be described as follows:

(1) Find the coefficients of the OS polynomial. When the
kurtosis becomes a comparison function, the OS
polynomial can be expressed as follows:

4
P(u) = Z akuk. (8)
k=0

(2) Extract the root a of the OS polynomial {uk}izl.

(3) Select the root that can make the best optimization
step oy = arg max, |[K (W + pg)| and take the largest
value from the direction of iteration.

(4) Update ,, based on the value of the updated step
W5 WE =W+ 9.
(5) Normalize Wt: Wt «— W/|W*]|.

(6) Determine whether the iterative operation converges
and meets the termination conditions. If it is not
satisfied, then return to Step (1).
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2.3. Multipoint Optimal Minimum Entropy Deconvolution
Adjusted. If x is the vibration signal, y is the shock se-
quence. Meanwhile, / is the system frequency response
function. e is the noise signal. The symbol #* is the multi-
plication symbol. The collected signal can be expressed as

x=h=y+e 9)

The essence of the MOMEDA is to use a noniterative
method to find an optimal FIR filter. Recover the vibration
shock signal from the output signal as much as possible
through the deconvolution process, and reduce the impact of
noise. The deconvolution process is as follows:

N-L
y=frx= Z SFiXker1s (10)
k=1

wherek = 1,2,---, N — L. According to the characteristics of
the periodic shock signal, multipoint D-norm is introduced,
namely,

T

1ty
MDN( ’t):__> (11)
ST
tTy
MOMEDA = max MDN (y,t) = max —. (12)
f £yl

In equation (12), t is a constant vector for determining
the position and weight of the target impact component. The
optimal filter f is obtained by solving the maximum value of
the multipoint D-norm. At this time, the deconvolution
process also obtains the optimal solution. In order to find the
extreme value of equation (12), the filter coefficient f =

(f1> faree» f1) is first derived.

i(&)Ziw+i@+... Aty yn
df \lyl) df Iyl df Iyl af iyl
(13)
d teyx -1 -3
—— = =yl B My =yl ey Xo s 14
df ”y” Y k" k Y (322404 ( )
Mk = [xx+L—1’xx+L—2>"' ’xk]T' (15)

Therefore, equation (13) can be written as follows:

d [¢f _
<—y) =yl 1(1‘11\/11 +t, My +-ty My 1)

df \iyl (16)

Iyl yX,y.

Let X, = [M,, M,,---, M;] in the above equation; then,
equation (13) is equivalent to the following equation:

Iyl Xot ~ Iy’ y X,y = 0. (17)

By sorting out the above equation, we can get

¢T
— Y Xy = Xot. (18)
Iyl

Since szon, if (XOXOT)f1 exists, the following
equation can be obtained:
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T -
<"yﬁ’2)xof = (XoX5) ' Xot. (19)

The special solution of the above equation is a set of
optimal filters, as shown in the following equation:

F=(XX]) Xyt (20)

Substituting the above equation into y = X[ f, the
original impact signal y can be reconstructed.

3. The Process of Fault Feature Extraction

Although the adaptive decomposition of component signals
by the FDM avoids modal overlapping and endpoint effect,
the blind selection and rejection of component signals only
by the FDM may lead to incomplete extraction of fault
feature information. RobustICA, as a newer method in blind
source separation, is not easily interfered by strong noise.
However, the processed bearing vibration signal is often a
single channel, which does not meet the conditions of use of
RobustICA. To a great extent, it restricts the application of
this kind of algorithm. Therefore, in order to give full play to
the advantages of FDM and RobustICA in signal processing,
this study used a combination of FDM and RobustICA to
reduce noise on bearing fault signals. When the original
bearing fault signal with noise is decomposed by the FDM, a
number of FIBF components from high to low frequency
will be obtained. Under actual working conditions, the noise
signal is unknown, which brings great difficulties to the
construction of the virtual noise channel. If the method of
constructing the virtual noise channel is inappropriate, it
will directly affect the effect of signal noise reduction.
Considering the particularity of mechanical signals, this
research will judge the sensitivity of each component signal
to interference noise and fault impact by combining cross-
correlation analysis criteria and kurtosis criteria, so as to
build a virtual noise channel.

According to the definition of the cross-correlation
criterion, the correlation coeficient can be used as an index
to evaluate the degree of correlation between two signals.
The larger the correlation coefficient value, the higher the
correlation with the original signal. By using this criterion,
the degree of correlation between each component signal
obtained from the decomposition and the original signal can
be known. The calculation method of the correlation
number is as follows:

_ Yo (i =%)(yi =)
VI (5= %) (3 - 7)°

where x; and X are specific values and average values of the
signal x. At the same time, y; and y are specific values and
average values of the signal y, respectively.

Kurtosis can be used to measure the peak degree of signal
waveform, and it is more sensitive to the impact components
in the signal. The higher the proportion of impact com-
ponents is, the higher the kurtosis value will be. For bearings,
the kurtosis value is close to the normal distribution under

r

(21)

normal operation, and it will increase significantly when
faults occur. The calculation method is as follows:

k=2 (55, @

i=1

where x; and X are specific values and average values of the
signal x, o is the standard deviation of the signal, and # is the
number of samples.

After finding the correlation coefficient and kurtosis
value of each FIBF component through the above criteria,
the virtual channel is further constructed based on this.
Then, RobustICA is used to recover the independent
component of the effective signal and the independent
component mainly of noise. Under the strong noise inter-
ference, the fault feature of the separated effective signal is
still weak. In order to enhance the impact component of the
bearing fault signal after noise reduction, this research in-
troduced the MOMEDA to filter the signal and finally
calculated the Hilbert envelope spectrum of the filtered
signal and extracted the corresponding fault frequency, so as
to accurately diagnose the fault. The flowchart of the pro-
posed method is shown in Figure 2.

The specific steps are as follows:

(1) FDM method is used to decompose the vibration
signals of the rolling bearing under different fault
conditions, and several FIBF components with high
frequency and low frequency are obtained.

(2) According to the cross-correlation and kurtosis
criteria, the cross-correlation coefficient and kurtosis
value of each FIBF component are calculated. Then,
the signal component is selected that is highly cor-
related with the original signal and has a large impact
component ratio (the signal components with cross-
correlation coeflicient greater than 0.3 and kurtosis
value greater than 3 are selected in this research) to
construct an observation signal channel. At the same
time, the remaining signal components are used to
construct a virtual noise signal channel.

(3) The observation signal and the virtual noise signal
are used as the input matrix of the blind source
separation, and then the signal is demixed by using
RobustICA to achieve the noise reduction of the
vibration signal.

(4) The MOMEDA is used to enhance the periodic
impact component of the noise reduced signal.

(5) The signal obtained in the previous step is
demodulated by Hilbert envelope, and then the fault
frequency is extracted for fault diagnosis.

4. Simulations and Comparative Analysis

In order to verify the effectiveness of the method proposed in
this paper, the fault signal of the rolling bearing is simulated
and analyzed. The structure of the analog signal is as follows:

s(t) = yoe T sin(Zﬂ Fa1-& t), (23)
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FIGURE 2: The flowchart of the proposed method.

where the natural frequency of the bearing f,, is 3000 Hz, the
displacement constant y, is 5, the damping coefficient £ is 1,
the period of the impact failure is 0.0ls, the sampling
frequency f; is 12 kHz, and the number of sampling points
N is 1000. Through calculation, the fault frequency f; is
100 Hz. The time-domain waveform of the original signal s
(t) is shown in Figure 3. After the Gaussian white noise with
a signal-to-noise ratio of —5dB is added to the original
signal s (t), the time-domain waveform and frequency-
domain waveform of the mixed signal y (¢) are shown in
Figure 4. It can be seen from Figure 4 that the impact
characteristics of the bearing have been completely anni-
hilated due to the interference of noise, and the impact
interval of the bearing cannot be distinguished from the
figure.

Next, the fault feature extraction method proposed in the
paper is used to process and analyze the above analog fault
signals. Firstly, the FDM is performed on the mixed signal y
(), and Figure 5 shows the results of the decomposition. In
order to highlight the advantages of the method proposed in
this paper, the LMD and ITD, commonly used in the field of
fault diagnosis, are used to decompose the signal, and further
analysis is carried out. The decomposition results of the
above two methods can be seen in Figure 6. As shown in
Figure 5, the mixed signal y (f) is decomposed into 19
Fourier intrinsic band functions (FIBF) from high to low
frequencies. Because FDM overcomes the problems of
modal aliasing and endpoint effects to a certain extent and
has a strict theoretical basis, the components obtained by the
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FIGURE 3: Original signal.

decomposition clearly reflect the local characteristic infor-
mation of the original signal.

In order to select the signal components that meet the
conditions from the decomposition results, the correlation
coeflicient C (¢) and the kurtosis value K (¢) of each com-
ponent signal are calculated. As can be seen from Table 1,
only the kurtosis values of the yo, y;;, and y;, components
are greater than 3, and their correlation values are greater
than 0.3, indicating that the above component signals have a
high correlation with the original signals and contain more
impact components. Therefore, the above three components
are selected to reconstruct the observation signal channel,
and the remaining signal components are used to recon-
struct the noise signal channel. At the same time, the cal-
culation results of the correlation and kurtosis of the signal
components based on the LMD and ITD are shown in
Tables 2 and 3, respectively. It can be seen that the corre-
lation and kurtosis values of the PF1 and PF2 components in
Table 2 and the PRC2 and PRC3 components in Table 3 meet
the set threshold conditions. Therefore, the above compo-
nent signals are selected to reconstruct the observation
signals, and the remaining component signals are used to
reconstruct the noise signal channel. Then, they are sepa-
rately demixed by the RobustICA to achieve the separation
of the signal and noise. The noise reduction results based on
FDM-RobustICA, LMD-RobustICA, and ITD-RobustICA
are shown in Figures 7-9, respectively.

By comparing the signal and noise separation results in
Figures 7-9, it can be seen that the impact components in the
target signal after noise reduction by FDM-RobustICA are
more obvious, which can better extract useful information
from noise-containing signals and weaken the influence of
strong background noise. However, the time-domain
waveform of the target signal based on LMD-RobustICA and
ITD-RobustICA noise reduction methods is different from
that of the original signal to some extent. Meanwhile, be-
cause there is no prior information of the fault in the process
of using the RobustICA to carry out the demixing operation,
the system has uncertainty and the signal amplitude after
demixing changes to varying degrees but does not affect the
noise reduction analysis.

In order to quantitatively analyze the noise reduction
effect based on the above three methods, kurtosis value,
correlation number, and noise reduction time are selected as
the evaluation indexes. The larger the kurtosis value is, the
more fault information in the signal is. The larger the
correlation number is, the more complete the effective
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FIGURE 4: (a) Time-domain analysis and (b) frequency-domain analysis of the mixed signal with SNR=-5dB.
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FIGURE 5: The decomposition result by the FDM.

information of the signal is retained. The shorter the noise
reduction time is, the higher the operation efficiency of the
algorithm is. The calculation results are shown in Table 4. It
can be seen from Table 4 that the correlation value and
kurtosis value of the noise reduced signal based on FDM-
RobustICA are the largest, which shows that the noise re-
duced signal obtained by the method proposed has a high
similarity with the original signal. At the same time, this
method not only reduces the noise interference but also
retains the fault characteristic information well. Although
there is a certain gap in noise reduction time between ITD-
RobustICA and FDM-RobustICA, it is not significant.

In order to further compare the effects of the above three
methods on the separation of the target signal and noise, the

signals obtained by the above three methods are separately
demodulated by Hilbert envelope, and then the corre-
sponding envelope spectrum is obtained. The results are
shown in Figures 10-12. It can be seen from Figure 11 that
the envelope spectrum of the noise signal separated by LMD-
RobustICA has components such as one to four doubling
fault frequencies, and the fault frequency amplitude is rel-
atively high. It can be seen from Figure 12 that the envelope
spectrum of the noise signal obtained by ITD-RobustICA
also contains the components of one, two, and three dou-
bling fault frequencies. It shows that, after the above two
methods are processed, the target signal and noise have not
been completely separated, and some of the fault signals are
missing from the separated target signal. It can be seen from
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FIGURE 6: Signal decomposition results. (a) The decomposition result by ITD. (b) The decomposition result by LMD.

TaBLE 1: The correlation coefficient and kurtosis between the FIBF and the original signal.

)1 )2 V3 Ya Vs Ve Y7 Vs Yo Y10 Y Y12 Y13 Y14 Yis Yie Y17 Y18 Y19
C(t) 0.026 0.073 0.121 0.154 0.194 0.221 0.313 0.363 0.351 0.283 0.445 0.326 0.268 0.127 0.164 0.104 0.070 0.021 0.000
K () 1.000 2.681 2.166 2.783 3.303 3.508 2.531 2.924 3.348 3.405 4.246 3.380 2.376 2.955 3.604 2.637 2.562 1.500 1.000

TasLE 2: The correlation coeflicient and kurtosis between the PF and the original signal.

PF1 PF2 PF3 PF4
C (1) 0.804 0.467 0.211 0.149
K (1) 3.825 3.608 4.864 4.982

TaBLE 3: The correlation coefficient and kurtosis between the PRC and the original signal.

PRC1 PRC2 PRC3 PRC4 PRC5
C(t) 0.866 0.584 0.333 0.180 0.075
K () 2.929 3.768 3.121 3.692 3.312
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FiGure 7: The waveform of each independent component by the FDM-RobustICA method. (a) The waveform of the target signal. (b) The
waveform of the noise signal.
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TaBLE 4: Comparison of noise reduction results of different methods.

Evaluation index

FDM-RobustICA

LMD-RobustICA ITD-RobustICA

. . . 3.907
Kurtosis and correlation coefficient 0.582
Noise reduction time 1.378

3.602 3.630
0.374 0.480
0.0889 0.103
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FiGure 10: The envelope analysis of each independent component by the FDM-RobustICA method. (a) The envelope analysis of the target

signal. (b) The envelope analysis of the noise signal.

Figure 10 that the amplitude of the fault characteristic
frequency in the envelope spectrum of the target signal has
been increased to a certain extent. Meanwhile, the fault
characteristic frequency and its doubling frequency can be
obtained. In addition, there is no fault information in the

envelope spectrum of the noise signal in Figure 10, indi-
cating that the fault signal and the noise signal are effectively
separated. However, some irrelevant frequency components
still appear in the envelope spectrum of the fault signal,
which have a certain degree of interference to fault diagnosis.
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F1GURE 11: The envelope analysis of each independent component by the LMD-RobustICA method. (a) The envelope analysis of the target
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FIGURE 12: The envelope analysis of each independent component by the ITD-RobustICA method. (a) The envelope analysis of the target

signal. (b) The envelope analysis of the noise signal.

Therefore, it is necessary to further enhance the periodic
impact component of the noise reduced signal through
MOMEDA filtering.

Next, the experiment uses MOMEDA to enhance the
signal after FDM-RobustICA noise reduction, and then the
signal is demodulated by Hilbert envelope. Figure 13 shows
the time-domain waveform and envelope spectra of the
MOMEDA filter signal. It can be seen from Figure 13 that
the periodic impact component is very obvious after filtering
by MOMEDA. There are more prominent fault features in
the envelope spectrum, and there are large peaks at the
frequencies of 105.5Hz, 199.2Hz, 304.7Hz, 398.4Hz,
503.9 Hz, 597.7 Hz, 703.1 Hz, 796.9 Hz, 902.3 Hz, and so on.
The above peaks are very close to the simulated fault
characteristic frequency of 100 Hz and the doubling fre-
quency from two to ten. At the same time, the amplitudes of
other noninteger multiples at the characteristic frequency of
the fault are basically close to 0, indicating that the signal
components unrelated to the fault impact have been greatly
weakened. Therefore, the bearing fault can be accurately
diagnosed according to the characteristic frequency.

5. Application to Roller Bearing Testing

In order to further verify the effectiveness of the method
proposed in this paper, the bearing data of CWRU are used
for analysis [38]. The model of the rolling bearing at the drive
end of the motor is 6205-2RSJEMSKEF, and the motor speed
is 1797 rpm (namely, the rotation frequency is 1797/
60 Hz =29.95 Hz). The sampling frequency of the fault signal
is 12kHz, and the length of experimental data is 2048. The
specific technical parameters are shown in Table 5.

Outer race defect frequency:

Z d
BPFO—Z(I—Dcos oc)xfr. (24)

Inner race defect frequency:

zZ d
BPFI=E<1+BCOS a)xf,. (25)

Rolling element frequency:
D a\ ,

BPFR = 2 <1 _(B> cos cx> X fo (26)

where Z is the number of rolling elements, d is the rolling
element diameter, D is the bearing pitch diameter, « is the
contact angle, and f, is the shaft rotation frequency (Hz).

Based on the bearing parameters shown in Table 5 and
equations (24)-(26), the fault characteristic frequency of
the rolling bearing, BPFO =107.36 Hz, BPFI =162.19 Hz,
and BPFR=141.1693Hz, is calculated, respectively in
Table 6 [39].

5.1. Inner Ring Signal Analysis of CWRU Bearings. The time
domain and the frequency domain of the bearing inner ring
fault signal are shown in Figure 14. Although it is disturbed
by noise to some extent, some periodic pulses can still be
seen. To test the effectiveness of the proposed method under
strong noise interference, Gaussian white noise with a
signal-to-noise ratio of —5dB is added to the original inner
ring fault signal in this research. The time domain and the
frequency domain of the generated mixed signal are shown
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F1GuRre 13: The MOMEDA filter signal and its envelope spectrum. (a) Time-domain waveform and envelope spectrum of the MOMEDA
filter signal. (b) Part band envelope spectrum of the MOMEDA filter signal.

TaBLE 5: The bearing technical parameters of SKF 6205.

Rolling element Inner diameter (inches) Outer diameter ~ Rolling element Contact angle () Pitch circle Speed
number (Z) (inches) diameter d (inches) & diameter D (inches)  (rpm)
9 0.9843 2.0472 0.3126 0° 1.5327 1797

TaBLE 6: Fault characteristic frequency (unit: Hz).

Inner ring fault

Outer ring fault

Rolling element fault

162.1852 107.3648 141.1693
2 T T T T T T T T 0-1
E g
Q L
g R E 0.05 |
H 2
£ J =]
< <
_2 1 1 1 1 1 1 1 1 0
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(@

(b)

FIGURE 14: (a) Time-domain analysis and (b) frequency-domain analysis of the original inner ring fault signal.

in Figure 15. Due to the enhancement of noise interference, it is
impossible to distinguish the periodic pulse features from
Figure 15, and it is difficult to extract the fault feature frequency
directly from the time domain and the frequency domain.
Next, the method proposed in this paper is used to
process the mixed signal of the inner ring with added noise.
After the mixed signal is decomposed by the FDM, 25 FIBF
components are obtained, and the decomposition results are

shown in Figure 16. Due to the limited length of the article,
only the first 20 FIBF components are listed in it. Then, the
cross-correlation coefficient and kurtosis value of each signal
component are calculated, and the results are shown in
Table 7. It can be seen from Table 7 that the signal com-
ponents of y;, y11, and y;, meet the set threshold conditions,
indicating that they have a high degree of correlation with
the original signal and retain a lot of impact features in the
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Ficure 16: FDM decomposition result.

original signal. Therefore, the above three signal components
are extracted to construct the target signal channel, and the
remaining components are reconstructed as the virtual noise
channel. The blind source separation is performed by
RobustICA, and two sets of independent component time-
domain waveforms are obtained. The results are shown in
Figure 17.

It can be seen from Figure 17 that, after the noise re-
duction of RobustICA, the noise and the target signal are
separated. In order to further compare the effect of noise
reduction, the separated target signal and the mixed signal
with —5dB noise added were analyzed by the Hilbert en-
velope spectrum, respectively. The results are shown in
Figure 18. By analyzing Figure 18, it can be known that,
before noise reduction, the amplitude of the envelope

spectrum of the fault signal is very low due to the influence of
noise, and the interference of irrelevant frequency compo-
nents on the fault diagnosis is large. Although the fault
frequency of the inner ring can be found, as well as 2
doubling frequency, 5 doubling frequency, etc., the ampli-
tude is low, and it is hard to recognize. After the noise
reduction by RobustICA, the envelope spectrum amplitude
of the obtained target signal has been greatly improved, and
the fault characteristics are more prominent. At the same
time, there were large peaks at frequencies of 164.1 Hz,
322.3 Hz, 486.3 Hz, 644.5 Hz, 808.6 Hz, 972.7 Hz, and so on.
The above peak values are very close to the theoretical
calculated value of the fault characteristic frequency of the
bearing inner ring of 162.1852Hz and the 2-6 doubling
frequency. However, there are also many peaks in the
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FIGURE 17: The waveform of each independent component. (a) The waveform of the target signal. (b) The waveform of the noise signal.
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FiGure 18: Envelope spectrum analysis. (a) Envelope spectrum analysis of the target signal denoised by FDM-RobustICA. (b) Envelope

spectrum of the mixed signal.

envelope spectrum of the signal that have nothing to do with
the characteristic frequency of the fault, and these peaks will
affect the results of fault diagnosis. Therefore, the periodic
impact components in the signal after noise reduction will be
further extracted by MOMEDA filtering, and the extraction
results are shown in Figure 19.

It can be clearly seen from Figure 19 that the MOMEDA
has effectively extracted the periodic fault shock components
in the reconstructed signal, and a larger peak has appeared.
Meanwhile, the signal components unrelated to the fault
shock have been weakened. By comparing the envelope
spectrum of the signals in Figures 19 and 18, it can be seen
that, after MOMEDA filtering, the characteristic frequency
of the fault is more obvious. Not only the fault frequency of
the bearing inner ring (164.1 Hz) can be clearly distinguished
but also the 2 doubling frequency (322.3 Hz), 3 doubling
frequency (486.3 Hz), 4 doubling frequency (644.5Hz), 5
doubling frequency (808.6 Hz), and so on, are all clearly
visible, and they are very close to the theoretically calculated
fault characteristic frequency and doubling frequency.
Therefore, the fault of bearing inner ring can be accurately
diagnosed according to fault characteristic frequency.

5.2. Outer Ring Signal Analysis of CWRU Bearings. The time
domain and the frequency domain of the bearing outer ring
fault signal are shown in Figure 20, from which the periodic
pulse characteristics can be seen. After adding Gaussian
white noise with a signal-to-noise ratio of -5 dB to the outer
ring fault signal, the time domain and the frequency domain
of the generated mixed signal are shown in Figure 21. Due to

the interference of noise, it is difficult to extract the fault
feature frequency.

Then, the method proposed in this paper is used to
process the mixed signal of the outer ring with added noise.
After FDM decomposition, 25 FIBF components are ob-
tained. The decomposition results are shown in Figure 22.
Due to the limitation of the length of the article, only the first
20 FIBF components are listed in the figure. By calculating
the cross-correlation coefficient and kurtosis value of each
signal component, the results are shown in Table 8. After
comparing the data results in Table 8, it can be seen that the
signal component of y;, meets the threshold conditions.
Therefore, the above signal component is extracted to re-
construct the target signal channel, and the remaining
components are reconstructed as the virtual noise channel.
Through the RobustICA for blind source separation, the
time-domain waveforms of two groups of independent
components are obtained, and the results are shown in
Figure 23.

After comparing Figures 23 and 21, it can be seen that
most of the noise is effectively filtered out through blind
source separation processing, and the waveform of the target
signal is highly similar to the original outer ring fault signal
without the noise added. In order to further compare the
noise reduction effect, Hilbert envelope spectrum analysis is
carried out for the target signal obtained by separation and
the mixed signal with —5dB noise added. The results are
shown in Figure 24. Through the analysis of Figure 24, it can
be seen that, in the envelope spectrum of the outer ring fault
signal without noise reduction, only the frequencies of
105.5Hz and 216.8 Hz have relatively high peaks, which are
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F1GURE 19: The inner ring MOMEDA filter signal and its envelope spectrum. (a) Time-domain waveform and the envelope spectrum of the
MOMEDA filter signal. (b) Part band envelope spectrum of the MOMEDA filter signal.
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FIGURE 20: (a) Time-domain analysis and (b) frequency-domain analysis of the original outer ring fault signal.
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FIGURE 21: (a) Time-domain analysis and (b) frequency-domain analysis of the mixed signal with SNR=-5dB.

very close to the theoretical calculation value of 107.3648 Hz
of the bearing outer ring fault characteristic frequency and
the double frequency of the basic fault frequency. After noise
reduction by RobustICA, there are three peaks with higher
amplitude in the envelope spectrum of the outer ring fault
signal, namely, 105.5 Hz, 216.8 Hz, and 322.3 Hz. The above

three peaks are very close to the fault frequency, the 2
doubling frequency, and the 3 doubling frequency of the
bearing outer ring fault feature. Although the amplitude of
the interference spectrum in other places has been effectively
weakened, there are still many peaks in the envelope
spectrum that are independent of the fault characteristic
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FIGURrE 22: FDM decomposition result.

frequency, which will affect the fault diagnosis results.
Therefore, the periodic impact components in the noise
reduced signal will be further extracted through the
MOMEDA filtering method, and the extraction results are
shown in Figure 25.

It can be clearly seen from Figure 26 that the periodic
fault impact component of the outer ring fault signal has
been extracted. The peak value of the fault characteristic
frequency is higher, and the amplitude of the signal com-
ponent independent of fault impulse is lower. From Fig-
ure 26, not only the fault frequency (105.5 Hz) of the bearing
outer ring can be clearly distinguished but also the 2 dou-
bling frequency (216.8 Hz), 3 doubling frequency (322.3 Hz),
4 doubling frequency (427.7Hz), 5 doubling frequency
(539.1 Hz), 6 doubling frequency (644.5 Hz), and so on, can
be clearly seen, which are very close to the fault characteristic
frequency and the doubling frequency calculated theoreti-
cally. Therefore, the fault of the bearing outer ring can be
accurately diagnosed.

5.3. Rolling Element Signal Analysis of CWRU Bearings.
The time domain and the frequency domain of the bearing
rolling element fault signal are shown in Figure 26, and the
periodic pulse characteristics can be seen from the figure.
After adding Gaussian white noise with a signal-to-noise
ratio of —5dB to the rolling element fault signal, the time
domain and the frequency domain of the generated mixed
signal are shown in Figure 27. Due to the interference of
noise, it is difficult to extract the fault feature frequency from
the time domain and the frequency domain.

Then, the FDM method is used to decompose the mixed
signal of the rolling element with added noise, and 25 FIBF
components are obtained. The decomposition results are
shown in Figure 28. Due to the limitation of the length of the
article, only the first 20 FIBF components are listed in
Figure 28. By calculating the cross-correlation coeflicient
and kurtosis value of each signal component, the results are
shown in Table 9. By comparing the data in Table 9, it can be
seen that only the y, signal component meets the set
threshold conditions. Therefore, yo component is extracted
to reconstruct the target signal channel, and the remaining
components are reconstructed as the virtual noise channel.
Through the RobustICA for blind source separation, the
time-domain waveforms of two groups of independent
components are obtained, and the results are shown in
Figure 29.

After comparing Figures 29 and 27, it can be seen that
the impact component in the signal has been shown through
blind source separation. In order to further compare the
effect of noise reduction, Hilbert envelope spectrum analysis
is carried out for the separated target signal and the mixed
signal with —5dB noise added. The results are shown in
Figure 30. Through the analysis of Figure 30, it can be seen
that due to the interference of noise, the amplitude of lines in
the envelope spectrum of the rolling element fault signal is
low, so it is difficult to extract the fault characteristic fre-
quency. After the noise reduction by RobustICA, there are
many peaks with high amplitude in the envelope spectrum.
The following frequencies can be extracted from the enve-
lope spectrum: 140.6 Hz, 281.3 Hz, and 562.5 Hz. The above
frequencies are very close to the theoretical calculated values
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FIGURE 23: The waveform of each independent component. (a) The waveform of the target signal. (b) The waveform of the noise signal.
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FIGURE 24: Envelope spectrum analysis. (a) Envelope spectrum analysis of the target signal denoised by FDM-RobustICA. (b) Envelope

spectrum of the mixed signal.
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F1GURre 25: The outer ring MOMEDA filter signal and its envelope spectrum. (a) Time-domain waveform and the envelope spectrum of the
MOMEDA filter signal. (b) Part band envelope spectrum of the MOMEDA filter signal.

of the rolling element fault characteristic frequency of
141.1693 Hz, 2 doubling frequency, and 4 doubling fre-
quency. Although the fault characteristic frequency in the
envelope spectrum has appeared, there are still many

unrelated peaks of the fault characteristic frequency, and the
amplitude is large. This brings a certain degree of inter-
ference to the fault diagnosis. Therefore, the periodic impact
components in the signal after noise reduction will be
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FIGURE 26: (a) Time-domain analysis and (b) frequency-domain analysis of the original rolling element fault signal.
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FIGURe 27: (a) Time-domain analysis and (b) frequency-domain analysis of the mixed signal with SNR=-5dB.

N

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0.5 T T T T T T T T
7, 1 Js o0 |«mw » bl e 1
_ os . . . . ) . . .
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

(=]
=4
[=3
0~
e
=
=
I
=3
=N
I
=
=)
(=]
=
(=]
)
e
=
e
s
[=))
(=]
=
=)
o
4
o
)
=4
(=)
-
=4
(=]
(=2}
=4
(=3
5]
o
=
e
=
[ )
S
=
=
S
=
=N
(=]
=
©

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0.5 T T T T T T T T
V1o 0 '”M d s h, i Dbt b M il 1 1
RPN g4 -t L U
0.5 L L L L N L L L L v .
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Time (s) Time (s)

Ficure 28: FDM decomposition result.



Mathematical Problems in Engineering

20

000'T 00S'T £OT'T 9%9'T €L9T SEF'T 6L0°€ 16T ¥I9T €8LT 0ILT 0¥9C ¥0EE ¥89T 91LT T96'T 9LTE SE¥'E ¥6I'€ TILT SYI'E 9S¥'T 9.TT 1L0CT 0001 (4) M
0000 STO'0 LI0'0 880°0 IS0°0 LOT'O €IT0 ¥STO 60T0 I8T0 90T0 ¥STO 6IT0 6L£0 06¥'0 96770 90€0 €10 9610 ILT'0 OTI'0 9IT'0 9ZI'0 ¥S0°0 %000 () O

st v stf e K74 (174 61f 814  iif o1  sif  ¥if 1 i T oif 64 8( 74 o <A [ <[ (74 4

‘TeuSts [eurdio ay) pue JGIJ Y} U22MIdq SISOLINY PUE JUSIDIFI0D UONL[DII0D AT, 6 TAV],



Mathematical Problems in Engineering

Amplitude (m/s?)

0 0.02 0.04 006 008 01 012 014 0.16 0.18

Time (s)

()

21

0.4

Amplitude (m/s?)

4
0 0.02 004 0.06

0.08 0.1 0.12 0.14 0.16 0.18
Time (s)
(b)

FIGURE 29: The waveform of each independent component. (a) The waveform of the target signal. (b) The waveform of the noise signal.
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F1cUure 30: Envelope spectrum analysis. (a) Envelope spectrum analysis of the target signal denoised by FDM-RobustICA. (b) Envelope
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FiGure 31: The rolling element MOMEDA filter signal and its envelope spectrum. (a) Time-domain waveform and the envelope spectrum of
the MOMEDA filter signal. (b) Part band envelope spectrum of the MOMEDA filter signal.

further extracted by MOMEDA filtering, and the extraction
results are shown in Figure 31.

It can be clearly seen from Figure 31 that the periodic
fault shock component of the rolling element fault signal is
successfully extracted. The peak value of the characteristic

frequency of the fault is greatly improved, and the amplitude
of the signal component unrelated to the impact of the fault
is lower. From Figure 31, not only the frequency of the
bearing rolling element fault (140.6 Hz) can be clearly dis-
tinguished but also the doubling frequency such as the 2
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doubling frequency (281.3Hz), 3 doubling frequency
(421.9Hz), 4 doubling frequency (562.5Hz), 5 doubling
frequency (703.1 Hz), and 6 doubling frequency (843.6 Hz)
are clearly visible, which are very close to the fault char-
acteristic frequency and the multiple frequency theoretically.
Therefore, the fault of the bearing rolling element can be
accurately diagnosed.

6. Conclusions

Aiming at the problem of fault feature extraction of vi-
bration signals of rolling bearings under the background of
strong noise, this paper proposes a fault feature extraction
method based on the combination of FDM-RobustICA and
MOMEDA. After the experimental analysis of the con-
structed simulation signals and the actual bearing fault
signals, the conclusions reached are as follows:

(1) On the basis of cross-correlation analysis and kur-
tosis, the signal components obtained by the FDM
method are selected to reconstruct the observation
signal channel and the virtual noise channel, which
not only avoid the mode overlapping and endpoint
effect produced by traditional methods but also solve
the problem that RobustICA cannot process the
single-channel signal and the lack of fault infor-
mation caused by blind selection of signal
components.

(2) By comparing the results of the proposed method
with the traditional method of LMD-RobustICA and
ITD-RobustICA, the results show that the proposed
method can more effectively separate fault signals
and noise signals and has achieved relative better
evaluation index value.

(3) By using MOMEDA to filter the noise reduced
signal, the periodic impact component under the
strong noise background can be effectively enhanced,
and the irrelevant impact signal can be weakened.
Based on the constructed simulation signals and the
experimental analysis of the inner ring, outer ring,
and rolling element of rolling bearings, the results
show that the proposed method can accurately ex-
tract the characteristic frequency of faults in a strong
noise background environment, and the amplitude is
more obvious. In our future work, we will consider
more reasonable approaches to optimize the pa-
rameters of the proposed method and add other
denoising techniques.
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