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)is study develops a generalized wavefront algorithm for conducting mobile robot path planning. )e algorithm combines
multiple target point sets, multilevel grid costs, logarithmic expansion around obstacles, and subsequent path optimization. )e
planning performances obtained with the proposed algorithm, the A∗ algorithm, and the rapidly exploring random tree (RRT)
algorithm optimized using a Bézier curve are compared using simulations with different grid map environments comprising
different numbers of obstacles with varying shapes. )e results demonstrate that the generalized wavefront algorithm generates
smooth and safe paths around obstacles that meet the required kinematic conditions associated with the actual maneuverability of
mobile robots and significantly reduces the planned path length compared with the results obtained with the A∗ algorithm and the
optimized RRTalgorithm with a computation time acceptable for real-time applications. )erefore, the generated path is not only
smooth and effective but also conforms to actual robot maneuverability in practical applications.

1. Introduction

Path planning is one of the key technologies for facilitating
the autonomous maneuverability of mobile robots within
environments that include obstacles. )e path planning
process seeks to obtain an optimum collision-free path from
a starting point to a target point around obstacles according
to the particular criteria such as distance traveled, travel
time, and incurred cost [1–3]. As such, path planning is a
subject of intense interest in the mobile robot research
community [4–12]. Path planning is generally divided into
local path planning conducted in an unknown environment
and global path planning conducted in a known environ-
ment. )is study mainly focuses on the global path planning
process.

Research focused on global path planning has widely
adopted search-based path planning algorithms and sam-
pling-based path planning algorithms. In terms of search-
based path planning algorithms, the A∗ algorithm is a classic
heuristic optimal search algorithm [13] that has had a

significant impact on motion planning research. )e A∗

algorithm usually searches for the best path by creating a
discrete state space in the form of a state lattice [14, 15]. )e
state lattice consists of a node, which represents a state, and a
motion primitive that arrives at a neighboring node from the
original node. As such, a state node is transformed by its
motion primitive to another state node.)us, the state lattice
transforms the original continuous state space into a search
map, and the motion planning problem becomes a search
employing various search algorithms [16] for a series of
motion primitives that transform the initial state to the
target state. However, the planning paths obtained by the A∗

algorithm are generally insufficiently smooth to conform to
the maneuverability limitations of mobile robots, and the
computational cost is too great for real-time operation with
limited computational resources. Numerous studies have
sought to address these deficiencies in the A∗ algorithm. For
example, Guruji et al. [17] modified the A∗ algorithm to
reduce the number of neighbor searches using the slope
detection calculation method, thereby increasing its
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computational efficiency. However, the modified algorithm
generally increased the length of the planned path, and the
obtained paths remain insufficiently smooth. Li et al. [18]
proposed an Index Based A-Star (IBAS) algorithm, which
sets three indexes for the vertex and removes useless vertices
by calculating the upper limit and the lower line of the
shortest distance from the source vertex to the target
through the index. )e effectiveness of the algorithm was
verified experimentally. In addition, the A∗ algorithm has
been further modified by adding a machine learning model
and a hierarchical structure planning method with a two-
level structure. In the first level, the algorithm employs grids
to find a geometric path quickly, and several path points are
selected as subgoals for the next level. In the second level, an
approximate policy iteration algorithm denoted as least-
squares policy iteration (LSPI) is used to learn a near-op-
timal local planning policy that can generate smooth tra-
jectories under the kinematic constraints of the robots [19].
Further improvements in the A∗ algorithm have been ob-
tained by dividing the nodes generated by the algorithm into
smaller steps, eliminating redundant nodes, and reducing
the cost of step and handover [20]. In terms of sampling-
based path planning algorithms, the rapidly exploring
random tree (RRT) [21] is a widely used path planning
algorithm that has been applied in various path planning
tasks for mobile robots [22–24]. A motion planning algo-
rithm based on random sampling [25] essentially seeks to
construct a connected graph by uniformly and randomly
sampling the state space. )e problem is solved when the
initial and target states are in the map or can be connected to
the map. Although sampling-based search algorithms can
generate paths more quickly than search-based algorithms,
these algorithms tend to obtain nonoptimal paths, and the
random operation of the algorithms produces widely dif-
fering path results. )ese issues have been addressed in
recent years by numerous researchers. For example, Jaillet
et al. [26] proposed environment-guided RRT (EG-RRT),
which combines standard RRT with a cost model based on
the linear-quadratic Gaussian motion planning (LQG-MP)
framework to estimate the probability of collision under
uncertainty. )is algorithm has been demonstrated to fa-
cilitate collision-free path planning in environments with
narrow passages between obstacles. Jaillet et al. [11] pro-
posed transition-based RRT (T-RRT), which employs
transition tests and relies on the Metropolis criterion
commonly used in stochastic optimization to detect new
nodes and determine whether they can meet expansion
requirements to ensure continuous tree growth. In addition,
the algorithm applies the concept of mechanical work to
produce a feasible (i.e., no collision) route with the optimum
path quality. Ghosh et al. [27] proposed the Kinematic
Constraints Based Bidirectional RRT (KB-RRT) algorithm,
which improved the performance of Bidirectional RRT (Bi-
RRT) by introducing robot kinematic constraints. Here, the
bidirectional search process adopted Kinematic Constraints
based Random State Search (KCRSS) to reduce the number of
nodes and generate smooth paths. )e algorithm reduced the
running time in complex environments. Li et al. [28] proposed
a multipoint region attraction RRT (Mra-RRT∗) algorithm,

which adopted a multipoint region attraction strategy to im-
prove the convergence speed, while simultaneously calling the
path storage function to store the path and generate a new path.
Ubic spline interpolation was used to make the path smoother.
Liu et al. [29] proposed the Goal-biased Bidirectional RRT
algorithm based on curve smoothing, which combined the
goal-biased strategy with bidirectional search, and applied a
sixth-order Bézier curve for smoothing between two nodes.
)e algorithm was demonstrated to effectively reduce the
search time. Wu et al. [30] proposed a BPIB-RRT∗ algorithm
that guided two random trees toward each other by incor-
porating a proposed bidirectional biased sampling strategy and
bidirectional potential field heuristics, and thereby reduced the
number of invalid nodes in the random sampling process and
improved the sampling efficiency of the algorithm. Palmieri
and Arras [31] proposed a path planning algorithm that
combines machine learning and RRT. )e proposed approach
replaces the original time metric with a nonlinear parameter
model having a constant time inference. As a result, the al-
gorithm can improve path smoothness while reducing plan-
ning time costs, particularly in less cluttered environments.

)is work extends past accomplishments in global path
planning algorithms by proposing a wavefront-based path
planning algorithm for obstacle avoidance scenarios in-
volving low obstacle densities. )e algorithm applies the
principle of wavefronts to update the state lattice. In the first
stage of the algorithm, a multilevel cost grid is used to
initialize each state lattice and calculate its total cost. )e
process of calculating the total cost of the state lattice where
the obstacle is located is simplified by dividing the total cost
into intrinsic cost and steering cost values, where the in-
trinsic cost is determined according to whether that position
can accommodate robot occupancy and the steering cost
denotes the cost of a grid point corresponding to the steering
angle of the mobile robot. At the same time, a logarithmic
obstacle expansion function is employed to avoid the pos-
sibility of collision between the robot and environmental
obstacles and to ensure that a path is generated that meets
the required kinematic conditions associated with the actual
maneuverability of mobile robots. )e algorithm sets
multiple target points that provide alternative target points if
the original target point is occupied by an obstacle. )e
characteristics of the algorithm ensure that the additional
computational complexity and space complexity associated
with multiple target points is very low compared to gen-
erating an obstacle avoidance trajectory based on a single
target point.)e second stage of the algorithm seeks to avoid
generating redundant paths and optimize the generated path
points by smoothing the generated path based on two dif-
ferent Bézier curve approximations. Finally, the perfor-
mance of the proposed algorithm is compared with those of
three other state-of-the-art path planning algorithms based
on simulations involving four different obstacle environ-
ments of varying complexity. )e results demonstrate that
the proposed generalized wavefront algorithm reduces the
path length and the computation time to an extent suitable
for practical mobile robot applications. At the same time, the
generated path is smooth and reliable, making it suitable for
facilitating the safe autonomous maneuverability of robots.
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2. Problem Description

2.1. Environmental Map Representation. Environmental
maps are usually described in one of the three ways: grid
maps, geometric maps, and topological maps [32]. However,
grid maps are most commonly adopted for describing en-
vironmental information in robot path planning applica-
tions because they are simple, effective, and easily
implemented [33]. )is study adopts a grid map for de-
scribing the environmental state around the robot, where the
side length of a grid is 0.2a.. )e intrinsic cost of a grid
position (x, y), denoted as map (x, y).I, is determined
according to whether that position can accommodate robot
occupancy and is divided into three states based on the
environmental information as follows:

map(x, y).I �

� 0,

� 2000,

0<map(x, y).I< 2000.

⎧⎪⎪⎨

⎪⎪⎩
(1)

Here, a value map (x, y).I � 0 indicates that grid position
(x, y) is idle (i.e., open or obstacle free) and can accom-
modate robot occupancy. A value map (x, y).I � 2000 in-
dicates that grid position (x, y) is occupied by an obstacle or
represents a grid point reserved for avoiding collision with
obstacles and therefore cannot accommodate robot oc-
cupancy. A value 0<map (x, y).I< 2000 indicates that the
grid point resides at or nearby an obstacle and therefore
must be subjected to special treatment to avoid collision
between the obstacle and the robot. )is is discussed in
detail later.

2.2. Grid Distance Representation. In this study, the A∗ al-
gorithm and the generalized wavefront algorithm adopt the
grid search method based on 8 nearest neighbor grids. )e
starting point of each search is the current grid center point,
and the end point is an adjacent grid center point. )e
distance between grid points is divided into the two cases
illustrated in Figures 1(a) and 1(b), where the black dots
represent the current position of each search and the red
lines denote the search directions. )e search in Figure 1 is
applied to adjacent grid points to the left and right and top
and bottom of the current point, and the grid distance is set
to 0.2a. Meanwhile, the search in Figure 2 is applied to
adjacent grid points along diagonal lines, and the grid
distance is 0.2∗1.414∗ a (0.283a).

3. Generalized Wavefront Algorithm

)e generalized wavefront algorithm uses a multilevel cost
grid map to assign values to each grid point and sets up
multiple target points to ensure that the original target point
grid is not occupied by one or more obstacles. )en, a
logarithmic function is employed to expand the number of
reserved grid points around an obstacle to avoid robot
collision, and the obtained path is smoothed based on a
Bézier curve. )ese components of the algorithm are in-
troduced as follows.

3.1. Generalized Wavefront Algorithm Search. )e search
principle of the generalized wavefront algorithm is illus-
trated in Figure 2. Here, the red position is the current grid
point, and the total generated values of the eight neighboring
grid points in the surrounding eight directions are com-
pared. )e grid with the lowest total generated value is
selected as the next grid point to be expanded.)is process is
repeated until the expansion has progressed to one of the
grid points of the target state set denoted by the blue circle in
the figure.

3.2. Multilevel Cost Grid Map. )e multilevel cost grid map
consists of three levels: an intrinsic value grid layer, a
steering value grid layer, and a total value grid layer. )e
intrinsic value grid layer stores the values of map (x, y).I. )e
steering value grid layer stores the cost value of a grid point
corresponding to the steering angle of the mobile robot and
thereby seeks to maintain uniform robot trajectories by
penalizing pathways requiring large steering angles. )is is
illustrated in Figure 3, where the black circle is the starting
point and the blue circle is the end point. )e steering angle
of the mobile robot in grid points lying along the direct line
from the starting point to the target point is 0°, and the
steering angle of the robot gradually increases as the grid
position moves away from the direct path line on both sides.
)erefore, the steering angle ranges from − 180° to 180°. )e
corresponding steering value ranges from 0 to 180, where the
absolute values of steering angles are employed. )e total
value grid layer is used to store the total cost of the multilevel
cost grid map, where the total cost of the starting point is set
as 1 while that of the end point is set as 2. )e total gen-
eration value consists of the sum of the original value, the
steering value, and the distance value.

3.3. Multiple Target Point Set. Conventional obstacle
avoidance algorithms select only a single target point. As
such, the path cannot be replanned if an obstacle lies in the
target grid. )e generalized wavefront algorithm avoids this
disadvantage by taking the original target point as the center
of a circle and selects the four points of symmetry as ex-
tended target points on the circle with the specific detection
distance as the radius. )ese five target points together
constitute the target point set. When the original target grid
point is occupied by an obstacle or is a reserved grid point,
the other four target points in the target point set are
employed as end points to obtain four different obstacle
avoidance paths, and the best obstacle avoidance path is
selected from this set according to a comparison of the total
generation value.)is avoids the unnecessary computational
costs associated with reselecting a target point and planning
a new path.)is process is illustrated in Figures 4(a) and 4(b)
for a target point free of obstacles and a target point con-
taining an obstacle, respectively. In Figure 4(a), the target
grid point is in an idle state, and the original target point is
preferentially selected to generate the optimal obstacle
avoidance path indicated by the red line. However, in
Figure 4(b), one of the other targets in the target point set is
selected to generate the optimal obstacle avoidance path.
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3.4. Obstacle Expansion. )e generalized wavefront algo-
rithm conducting the obstacle expansion stage is divided
into two substages: first, a reserve expansion is conducted,
like that conducted by a conventional obstacle expansion
algorithm. Here, a reserved grid is generated around the
obstacle in accordance with the shape and size of the robot.
In the present work, the reserved grid occupies three grid
points around the outside of the obstacle. After conducting
the reserve expansion, the mobile robot can be regarded as a
particle. )en, logarithmic expansion is applied to all grid
points other than the reserved and obstacle grid points
according to the following obstacle expansion function:

v �
300 × log103 − log10(m − 3)

log10(2)
, 4≤m≤ 6. (2)

)is expansion process is illustrated in Figure 5, where
the horizontal axis represents the integer grid distance from
the grid point to the edge of the obstacle grid, which includes
the three units of the reserved grid, and the vertical axis
represents the value of map (x, y).I for the grid point. )e
default value is 2000.

3.5. Path Optimization. )e path obtained by the general-
ized wavefront algorithm can be unnecessarily long and is
not sufficiently smooth to conform to the actual maneu-
verability of the robot. )erefore, path length optimization
and path smoothing are conducted as follows.

3.5.1. Path Point Sequence Optimization. )e path length is
optimized based on path sequence point optimization.
First, all of the points in the original path that induce a
change in slope, which are denoted herein as path points,
are detected, a sequence of path points is generated in the
order of the generated path, and the first three points of the
sequence are omitted. )e path points are selected in order,
and an extension point is selected for each point in the
sequence as a point that is not adjacent to the selected path
point. )e expansion process is conducted to determine
whether a new path exists between the two path points. )e
criteria for selecting an alternative path are as follows: (1)
no obstacle grid, obstacle expansion grid, or its logarithmic
expansion grid exist between the two points; (2) the path
between the two points is shorter than the original path
length. If these criteria are met, the intermediate path point
is removed to generate a new path. Otherwise, the original
path is retained.

3.5.2. Key Point Selection. )e generalized wavefront al-
gorithm outputs a set of connected points representing the
planned path {P0, P1, P2, ..., P5}, where P0 is the starting point
and P5 is the end point.

(1) Key Point Selection without Path Point Sequence Opti-
mization. )e key point selection process is illustrated in
Figure 6, which involves selecting some key points within
this set that are suitable as end points for smoothing the
planned path. Here, the yellow and red circles represent the
respective starting and end grid points, and the black circles
represent the selected key points along the planned path.)e
key point selection process is conducted according to the
following steps:

Step 1: detect grid points on the planned path at which
the slope of the path changes
Step 2: two path segments with the same slope are
detected at the point where the slopes of two adjacent
paths change
Step 3: select 1/3 of the first path segment nearest to its
end point, 1/3 of the third path segment nearest to its
start point, and all corner points of the transitional
segment connecting the two points
Step 4: smooth the selected points, as discussed in the
following subsection.

(a) (b)

Figure 1: Grid search methods applied for searching 8 nearest neighbor grids: (a) first method and (b) second method.

Figure 2: Grid expansion update process conducted according to
the generation values of the eight points neighboring the current
grid point (in red).
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Obstacle expansion function
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Figure 4: Optimal obstacle avoidance path generation for a target grid point free of obstacles (a) and a target grid point occupied by an obstacle (b).
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(2) Key Point Selection Using Path Point Sequence Optimi-
zation. If path point optimization results in the generation of
a new path, key point selection is conducted as illustrated in
Figure 7. Here, the yellow and red circles represent the
respective start and end grid points, and the black circles
represent the selected key points along the planned path. In
this case, the key point selection process is conducted
according to the following steps:

Step 1: detect new generated path points
Step 2: select 1/6 of the first path segment nearest to its
end point, 1/6 of the second path segment nearest to its
start point, and a corner point of the transitional
segment connecting the two points
Step 3: smooth the selected points, as discussed in the
following subsection.

3.5.3. Bézier Curve Smoothing. A Bézier curve is an ap-
proximation-based parametric curve [34]. A continuous
contour for the given set {P0, P1, P2, ..., Pn} can be ap-
proximately expressed as a smooth curve using the
following n-th order polynomial Bézier curve
approximation:

B(t) � 
n

i�0

n

i
 Pi(1 − t)

n− i
t
i

�
n

0
 P0(1 − t)

n
t
0

+
n

1
 p1(1 − t)

n− 1
t + · · · +

n

n − 1
 Pn− 1(1 − t)

1
t
n− 1

+
n

n
 Pn(1 − t)

0
t
n
, t ∈ [0, 1].

(3)

Here, t is a positional parameter with t ∈ [0, 1].

(3) Bézier Curve Path Smoothing. Figure 8 presents a
comparison of the original path in Figure 6 with the
smoothed path. As can be seen from Figure 8, the smoothed
path has no corner points compared to the original path and
thereby improves the smoothness. Moreover, the smoothed
path is very close to the original path, while remaining far
from the obstacle because the path is processed by the ex-
pansion function and the selected key points are close to the
corner points of the original path. Accordingly, the Bézier
curve conforms to the actual maneuverability of a mobile
robot in accordance with the original planned travel tra-
jectory of the robot.

)e Bézier curve smoothing process conducted for the
path obtained by path point sequence optimization in
Figure 7 is shown in Figure 9. Here, the three path points
adjacent to the start point and the end point are smoothed.

)e flowchart of the proposed generalized wavefront
algorithm is shown in Figure 10.

4. Simulation Results

)e feasibility and effectiveness of the proposed generalized
wavefront algorithm were validated by comparing its path

planning performance with those obtained using the A∗

algorithm and the RRT algorithm optimized using a Bézier
curve via simulations conducted using a grid map with four
different obstacle environments involving 1, 2, or many

Figure 6: Selection of key grid points (black circles) along a
planned path from a starting point (yellow circle) to an end point
(red circle).

Figure 7: Selection of key grid points (black circles) along a
planned path from a starting point (yellow circle) to an end point
(red circle).

Figure 8: )e original planned path presented in Figure 6 (dashed
line) overlaid with the final planned path trajectory obtained as a
Bézier curve (solid line).

Figure 9: )e original planned path presented in Figure 7 (dashed
line) based on path point sequence optimization overlaid with the
final planned path trajectory obtained as a Bézier curve (solid line).
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obstacles of varying shapes and sizes. Among them,
Figures 11–13 compare path quality in terms of smoothness
and distance from obstacles, while Figure 14 compares path
quality in terms of smoothness and distance from obstacles,
as well as path length, and planning algorithm runtime as

evaluation indicators. )e experimental map is 100 ×100
grid points, in which the robot begins at (10, 10) and the
end position is (90, 90). Because the RRT algorithm pro-
vides different results each time the algorithm is applied to
a given environment, only one of the generated path results

Generate obstacle avoidance 
path(s) using the best 
alternate target point

Input the map

Initialize grid value

Obstacle grid expansion

Update grid 
value

Define target point 
set

Key point selection

Final path after combining 
all key points

Generate obstacle avoidance path(s) 
using the best alternate target 

point

Record optimal obstacle 
avoidance path

Yes

No

Smooth path 
number N

Generate final 
smoothed path

N = 0

N = 1

First level

Second level
Path point sequence optimization

Generate a new path using a 
path point

Yes

No

Figure 10: Flowchart of the generalized wavefront algorithm.
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are presented, and average path length and planning al-
gorithm runtime values were obtained over 10 trials. )e
experimental platform employed MATLAB R2016a oper-
ated on a personal computer with an i5-6300HQ CPU,
2.3 GHz clock frequency, and 16.0 GB of RAM operating
Windows 10.

4.1. Comparison of Path Planning Results. Figure 11(a)
presents a comparison of the path planning results ob-
tained for a single obstacle using the proposed algorithm and
the A∗ algorithm, while Figure 11(b) presents the path
planning results obtained using the optimized RRT algo-
rithm. )e figures indicate that the proposed algorithm
performs significantly better than the A∗ and RRT algo-
rithms. )e path generated by the proposed algorithm is
smoother, while the other paths pass too closely to the
obstacle, which is particularly the case near the corners of the
obstacle and for the path generated by the optimized RRT
algorithm. As such, these paths are not safe for mobile
robots. However, the path generated by the proposed al-
gorithm resides far away from the obstacle, making the
generated path safer and more suitable for mobile robots.
Figures 12(a) and 13(a) present a comparison of the path
planning results obtained for two obstacles using the pro-
posed algorithm and the A∗ algorithm, while Figures 12(b)
and 13(b) present the path planning results obtained using
the optimized RRT algorithm. As was observed for the
single-obstacle environment, the path generated by the
proposed algorithm is smoother, while the other paths pass
too closely to one or both obstacles, especially near the
corners. Again, this is particularly the case for the path
generated by the optimized RRT algorithm, which ap-
proaches dangerously close to the obstacles, as indicated by
the areas outlined by red boxes in Figures 12(b) and 13(b).

While the algorithm proposed in this paper reduces the path
length, it also clearly provides a path that avoids obstacles on
either side of a narrow corridor. )ese results demonstrate
that the proposed algorithm successfully avoids the corners
of rectangular obstacles and reduces unnecessary turning
operations compared to the paths generated by the other two
algorithms. )erefore, the paths generated by the proposed
algorithm are better suited to the actual maneuverability of
mobile robots.

4.2. Comparison of Path Planning Time and Path Length in a
Complex Environment. Figure 14(a) presents a comparison
of the path planning results obtained for a complex envi-
ronment using the proposed algorithm and the A∗ algo-
rithm, while Figure 14(b) presents the path planning results
obtained using the optimized RRT algorithm. As discussed
above, the path generated by the proposed algorithm is
smoother and passes much farther from obstacles. In this
respect, the disadvantages of the A∗ path planning algorithm
are particularly evident, in that the generated path tends to
adhere very closely to the boundaries of one obstacle or
another while traversing the scene from the start point to the
target point.)e path length and planning time results of the
three algorithms are listed in Table 1 and illustrated in
Figure 15. While the optimized RRT algorithm requires
considerably less planning time than the other planning
algorithms, it obtains a much longer path that passes
dangerously close to obstacles, as indicated by the areas in
the red boxes (Figure 14(b)), and fails to suitably accom-
modate the actual maneuverability of robots. )erefore, the
optimized RRTalgorithm is not feasible and safe for the path
planning process. Compared with the A∗ algorithm, the
proposed algorithm provides both shorter path length and
planning time.
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Figure 11: Planning results for a single-obstacle gridmap: (a) planning results of theA∗ algorithm and the proposed algorithm; (b) planning
result of the optimized RRT algorithm.
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5. Discussion

)e results in Table 1 indicate that the application of the
generalized wavefront algorithm provides a path length
that is 2.953m shorter and a planning time that is 0.677 s
less than those obtained by the A∗ algorithm. )e A∗ al-
gorithm greatly increases the planning time and path
length due to its heuristic search method. In addition, while
the planning time of the generalized wavefront algorithm is
similar to that of the optimized RRT algorithm, the path

length obtained by the proposed algorithm is 3.964m
shorter because the optimized RRT algorithm employs a
completely random search method. )is results in an in-
crease in the number of redundant nodes and an insen-
sitivity to the environment, which greatly increases the path
length obtained by the optimized RRT algorithm and de-
creases path reliability.

)e logarithmic expansion algorithm employed for ac-
commodating obstacles by the generalized wavefront algo-
rithm generates paths through a narrow space around
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Figure 12: Planning results for a two-obstacle grid map: (a) planning results of the A∗ algorithm and the proposed algorithm; (b) planning
result of the optimized RRT algorithm.
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Figure 13: Planning results for a two-obstacle grid map: (a) planning results of the A∗ algorithm and the proposed algorithm; (b) planning
result of the optimized RRT algorithm.
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obstacles while maintaining a specified distance from ob-
stacles. As a result, the algorithm can be safely employed
under conditions of narrow pathways. Sequence point op-
timization facilitates the merging of nonadjacent sequence
points between two obstacles into two adjacent sequence
points, so that the generation of redundant paths is greatly
reduced. Accordingly, the resulting path lengths are greatly
reduced. At the same time, the path is smoothed using Bézier
curves, so that the generated curve conforms to the kine-
matic characteristics of robots at inflection points. )ese

features also provide the proposed algorithm with a measure
of adaptability in multiobstacle environments. Finally, when
the end point is occupied, the algorithm can choose other
target points for planning, which effectively improves the
planning efficiency.

One limitation of the generalized wavefront algorithm is
that a large number of sequence points (knee points) may be
generated when encountering multiple complex environ-
ments, which can increase the processing time. )e pro-
cessing time under these conditions can be greatly reduced

A∗ search Generalized
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Obstacle grid

(a)

Start point
End point
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Obstacle grid

(b)

Figure 14: Planning results in a complex grid map: (a) planning results of the A∗ algorithm and the proposed algorithm; (b) planning result
of the optimized RRT algorithm.

Table 1: Path lengths and algorithm planning times of the three planning algorithms for a complex environment.

Algorithm Path length (m) Planning time (s)
Generalized wavefront 23.892 1.008
A∗ 26.845 1.685
Optimized RRT 27.85 0.857
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Figure 15: Comparison results in a complex grid map: (a) path lengths of the three planning algorithms for a complex environment; (b)
planning times of the three planning algorithms for a complex environment.
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by adding a selector to filter the sequence points. )is will be
addressed in future work.

6. Conclusion

)is study presented a generalized wavefront algorithm. In
the first stage, a multilevel cost grid map, logarithmic ex-
pansion, and multiple target point sets were used to generate
an optimum obstacle avoidance trajectory. In the second
stage, path point sequences were optimized and key points in
the obtained trajectory were selected for conducting
smoothing based on a Bézier curve, thereby generating a
smooth path that conforms to the kinematic requirements of
mobile robots. Finally, simulation experiments were con-
ducted using MATLAB, and comparisons were made with
the performances of other planning algorithms. )e simu-
lation results demonstrated the algorithm proposed in this
study meets the required kinematic conditions associated
with the actual maneuverability of mobile robots, and the
generated path is both shorter and safer and requires less
computation time in the planning process. As such, the
approach is not only reasonable and effective but also more
reliable. )e required computation time during path plan-
ning is acceptable for real-time operation, making the
proposed algorithm suitable for practical applications. In
future work, the performance of the proposed approach will
be verified by experimental testing with an actual mobile
robot.
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