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In this paper, the stability of two weakly coupled elastic beams connected vertically by a spring is investigated via the frequency
domain method and the multiplier technique. When the two beams have partially local damping, the operator A is obtained via
variable conversion, and it generating a semigroup is proved, then we obtain that the semigroup is exponentially stable by
reduction to absurdity.

1. Introduction

Artificial intelligence (AI) has been around and penetrated
into all fields, such as research, production, and life [1–5].
Scientists pay more attention to energy, materials, and en-
vironment [6–10]. .e stability study of the coupling control
system in space vehicles is one of the important research
subjects in the control field in recent years. Much attention
has been paid to research the stability of control systems using
semigroup theory [11]. Reference [12] is for coupled heat-
wave system. References [13, 14] are for wave equations.
Reference [15] is for second-order hyperbolic operators.
References [16–19] are about polynomial stability of systems,
and references [20–33] are about exponential stability. .e
authors of [33–35] considered weakly coupled evolution
equations of wave-Petrowsky, wave-wave, and Kirch-
hoff–Petrowsky for its asymptotic stability and boundary
controllability. .e case of strongly coupled system was
studied by Lasiecka [36], and she obtained the strong stability
for the open-loop systems with polynomial energy decay rate.

A viscoelastic microcomposite beam reinforced by
various distributions of boron nitride nanotubes with initial
geometrical imperfection has been described in [37], and the
nonlinear static, buckling, and vibration are analyzed by
using the finite element method. .e bending and dynamic
behavior of functionally graded plates resting on visco-
Pasternak foundations is studied in [38]. Using a simple
quasi-3D hyperbolic theory, the dynamic behavior of
functionally graded plates is concerned in [39]. Using a
hyperbolic shear deformation theory, the static and dynamic
behaviors of functionally graded beams is studied in [40]. A
dynamic study of functionally graded plates resting on
elastic foundation is considered in [41]. .ermomechanical
analysis of functionally graded sandwich plates resting on a
two-parameter elastic foundation is studied in [42]. .e free
vibration of FG plates resting on elastic foundations is
modeled by two-dimensional (2D) and quasi-three-di-
mensional (quasi-3D) shear deformation theories in [43].
Input-to-state stability for a class of discrete-time nonlinear
input-saturated switched descriptor systems with unstable
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subsystems is discussed in [44]. In [45], nonlinear dynamic
behavior of the winding hoisting rope under head sheave
axial wobbles is concerned. A dynamic model of a mine
hoisting system with constant length and variable length is
analyzed in [46]. Liu and Rao [47] studied the stability of a
weakly coupled and partially damped system. .ey obtained
a sharp polynomial decay rate, when compared with Alabau-
Boussouira’s results. Recently, they also obtained the exact
boundary controllability of this system with the control
acted only on one equation..e Timoshenko beam equation
with locally distributed Kelvin–Voigt damping is considered
in [48]. A wave equation with local Kelvin–Voigt damping is
proposed in [49], and the semigroup corresponding to the
system is eventually differentiable. .e behavior of slow or
exponential decay is analyzed about elastic material with
voids in [50]. .e stability of an elastic string system with
local Kelvin–Voigt damping is studied in [51].

.e above research leads us to study a new problem.
Consider a system of two beams connected vertically by a
spring. In engineering construction, there are elastic beams
everywhere, and it is of great significance to study the elastic
beam system. If two beams subject to local damping or only
one beam subjects to local damping, what is the energy decay
rate of every system? .e coupling terms are local which
model the location of the spring in this case. Such a coupling
is even weaker than the one studied by Liu and Rao. Hence,
finding the energy decay rate is a challenge. For reader’s
convenience, we include these two frequency domain
conditions here. .e first one is the frequency domain
characterization of exponential decay, which was obtained
by Prss [52]. .e second one is of polynomial energy decay
rate for a C0-semigroup of contraction, which was obtained
by Liu and Rao [53].

In this paper, the stability of weakly coupled elastic beam
system with damping control by using the semigroup the-
oretical frequency domain multiplier method is studied. By
variable conversion, the elastic beam control system is
transformed into first-order evolution equations and a linear
operator is obtained, and the linear operator-producing
semigroup is proved. When the two beams have local
damping control, using reduction to absurdity, from the
local dissipation to the global dissipation, the exponential
stability of the semigroup generated from the linear operator
is proved. .e method in this paper can be employed to
handle other elastic beam systems in the future.

In this paper, we need some definitions and lemmas
which are as follows.

Definition 1 (see [19]). Let H be a real or complex Hilbert
space and we define (, ) is the inner product of H and ‖·‖ is
the norm ofH. LetA be a dense linear operator onH, that
is, D(A)⊆H⟶H, then A is dissipative, and for any
x ∈ D(A), we get Re(Ax, x)≤ 0.

Definition 2 (see [19]). eAt is exponentially stable if there are
normal numbers M and α which make

e
At

����
����≤Me

− αt
, ∀t≥ 0. (1)

Lemma 1 (see [19]). Linear operator A can generate C0
semigroup S(t) on Hilbert spaceH if it satisfies the following:

(1) D(A) is dense on Hilbert space H
(2) A is dissipative
(3) 0 ∈ ρ(A)

Lemma 2 (see [19]). AC0 semigroup eAt of contractions on a
Hilbert space H is exponentially stable if and only if

ρ(A)⊇ iβ, β ∈ R  ≡ iR,

lim
|β|⟶+∞

(iβI − A)
− 1����

����< +∞ .
(2)

2. Model Description

Consider the system of two beams connected vertically by a
spring. When both upper and lower beams have local
damping control. .e physical model of weakly coupled
elastic beam control system is given in Figure 1.

.e system is governed by the following equations:

ρ1utt � − a1uxxxx − k(x)(u − y) − δk(x)ut, (3)

ρ2ytt � − a2yxxxx + k(x)(u − y) − δk(x)yt, (4)

where u and y are the displacement of upper and lower
beams. x ∈ (0, l) and t ∈ [0, +∞); ρ1, ρ2, a1, and a2 are
positive physical constants; k(x)≥ 0 in (a, b) ⊂ (0, l) is a
locally supported smooth function, which represents the
position and elasticity of the spring. We assume k(x) ∈ C2,
and there exists a constant c such that |k″(x)|≤ ck(x) and
|k′(x)|≤ ck(x); δ > 0 is the damping coefficient of the
system.

.e two beams (3) and (4) have local damping and their
boundary conditions are

uxx(0, t) � uxx(l, t) � uxxx(0, t) � uxxx(l, t) � 0,

y(0, t) � y(l, t) � yx(0, t) � yx(l, t) � 0.
(5)

To convert the system into a first-order evolution
equation, here we denote

v � ut,

w � yt,
(6)

and the state variable vector is z ≡ z(t) � (u, v, y, w)T; then,
systems (3) and (4) can be rewritten as the following form:

ut � v,

vt �
1
ρ1

− a1D
4
u − k(x)(u − y) − δk(x)v ,

yt � w,

wt �
1
ρ2

− a2D
4
y + k(x)(u − y) − δk(x)w .

(7)
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Here, we have used the notation Di � zi/zxi, and the
state space is

H � H
2
(0, l) × L

2
(0, l) × H

2
0(0, l) × L

2
(0, l). (8)

.e Hilbert space H is equipped with the inner product
which induces the energy norm:

‖z‖
2
H � a1 u″

����
����
2

+ a2 y″
����

����
2

+ ρ1‖v‖
2

+ ρ2‖w‖
2

+ k
1/2

(x)(u − y)
����

����
2
.

(9)

Here and after, ‖·‖, ′, and 〈·, ·〉 denote the L2(0, l) norm,
derivative, and inner product, respectively.

Define a linear operator A: H⟶H by

A �

0 I 0 0

−
a1D

4 + k(x)

ρ1
−
δk(x)

ρ1

k(x)

ρ1
0

0 0 0 I

k(x)

ρ2
0 −

a2D
4 + k(x)

ρ2
−
δk(x)

ρ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

with

D(A) � z ∈H | u, y ∈ H
4
, v ∈ H

2
, w ∈ H

2
0, u″ ∈ H

2
0 .

(11)

.us, equations (3) and (4) are transformed into a first-
order evolution on the Hilbert space:

dz
dt

� Az , z(0) � z0. (12)

3. Main Result

Theorem 1. :e operatorA generates aC0 semigroup S(t) of
contractions on H.

Proof. It is clear that D(A) is dense in H. By a straight
forward calculation,

Re〈Az, z〉H � a1 
l

0
v″u″dx + 

l

0
− a1D

4
u − k(x)(u − y) − δk(x)v v dx

+ a2 
l

0
y″w″dx + 

l

0
− a2D

4
y + k(x)(u − y) − δk(x)w w dx

� − δ k
1/2

(x)v
����

����
2

+ k
1/2

(x)w
����

����
2

 ≤ 0.

(13)

Hence, A is dissipative. It is easy to show that, for any
F � (f1, · · · , f4)

T ∈ H,

Az � F, (14)

has unique solution z ∈ D(A), and

‖F‖
2
H � a1 f1″

����
����
2

+ a2 f3″
����

����
2

+ ρ1 f2
����

����
2

+ ρ2 f4
����

����
2

+ k
1/2

(x) f1 − f3( 
����

����
2
.

(15)

In fact, from the first and third equations of (14), we get
v � f1 ∈H

2 andw � f3 ∈H
2
0.

Substituting them into the second and fourth equations
in (14), we have

− a1D
4
u − k(x)(u − y) − δk(x)f1 � ρ1f2, (16)

− a2D
4
y + k(x)(u − y) − δk(x)f3 � ρ2f4. (17)

Taking the inner product with (16) and − u and with (17)
and − y, respectively, we obtain

a1〈D
4
u, u〉 +〈k(x)(u − y), u〉 + δ〈k(x)f1, u〉 � ρ1〈f2, − u〉,

(18)

a2〈D
4
y,y〉 − 〈k(x)(u − y),y〉 +δ〈k(x)f3,y〉� ρ2〈f4, − y〉.

(19)

Figure 1: .e figure of two weakly coupled elastic beams.
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Suppose there exist infinitesimal constants ε, ε1, and ε2
and

ε � min ε1, ε2 . (20)

Taking the boundary conditions to (18) and (19), we have

a1 u″
����

����
2

+〈k(x)(u − y), u〉 + δ〈k(x)f1, u〉

� ρ1〈f2, − u〉 ≤ ρ1 f2
����

����‖u‖≤
ρ1
2ε1

f2
����

����
2

+
ρ1ε1
2

‖u‖
2
,

(21)

a2 y″
����

����
2

− 〈k(x)(u − y), y〉 + δ〈k(x)f3, y〉

� ρ2〈f4, − y〉 ≤ ρ2 f4
����

����‖y‖≤
ρ2
2ε2

f4
����

����
2

+
ρ2ε2
2

‖y‖
2
.

(22)

Adding (21) and (22) and because ε is an infinitesimal
constant, we have

a1 u″
����

����
2

+ a2 y″
����

����
2

+ k
1/2

(x)(u − y)
����

����
2

+ δ〈k(x)f1, u〉

+ δ〈k(x)f3, y〉

≤
ρ1
2ε

f2
����

����
2

+
ρ2
2ε

f4
����

����
2
.

(23)

Also, we have

δ〈k(x)f1, u〉 ≤
δ
2ε

f1
����

����
2

+
δε
2

‖k(x)u‖
2
, (24)

δ〈k(x)f3, y〉 ≤
δ
2ε

f3
����

����
2

+
δε
2

‖k(x)y‖
2
. (25)

Suppose there exist positive constants c1, c2, c3, c4, and C

independent of z and F and

C � max c1, c2, c3, c4 , (26)

by Poincare’s inequalities, we have

ρ1‖v‖
2 ≤ c1a1 f1″

����
����
2
, (27)

ρ2‖w‖
2 ≤ c2a2 f3″

����
����
2
. (28)

Combining (23)–(28) yields

a1 u″
����

����
2

+ a2 y″
����

����
2

+ k
1/2

(x)(u − y)
����

����
2

+ ρ1‖v‖
2

+ ρ2‖w‖
2

+ δ〈k(x)f1, u〉 + δ〈k(x)f3, y〉

≤ c3 a1 f1″
����

����
2

+ a2 f3″
����

����
2

+ ρ1 f2
����

����
2

+ ρ2 f4
����

����
2

 .

(29)

By Poincare’s inequalities, (29) yields

‖z‖
2
H ≤ c4‖F‖

2
H − δ〈k(x)f1, u〉 − δ〈k(x)f3, y〉. (30)

.en, by (24), (25), and Poincare’s inequalities, we have

‖z‖
2
H ≤C‖F‖

2
H, (31)

thus 0 ∈ ρ(A). By Lemma 1, the proof is completed. □

Theorem 2. :e semigroup S(t), generated by the operator
A, defined in (10), is exponentially stable, i.e., there exist two
positive constants α andM such that

‖S(t)‖ ≤Me
− αt

,∀t> 0. (32)

Proof. By Lemma 2, it suffices to verify

ρ(A)⊇ iβ, β ∈ R  ≡ iR, (33)

lim
|β|⟶+∞

(iβI − A)
− 1����

����< +∞. (34)

We use reduction to absurdity to prove (33). If (33) is
false, then there exists β ∈ R and β≠ 0, iβ is the spectral point
of A. Because A− 1 is dense, iβ is the eigenvalue of operator
A; then, there exists vector

z � (u, v, y, w)
T ∈ D(A), ‖z‖H � 1, (35)

such that

‖(iβI − A)z‖H � 0, (36)

i.e.,

iβu − v � 0, inH2
, (37)

iβρ1v + a1D
4
u + k(x)(u − y) + δk(x)v � 0, inL2

, (38)

iβy − w � 0, inH2
0, (39)

iβρ2w + a2D
4
y − k(x)(u − y) + δk(x)w � 0, inL2

. (40)

Taking the inner product of (36) with z in H and taking
its real part

Re〈(iβI − A)z, z〉H � − δ k
1/2

(x)v
����

����
2

− δ k
1/2

(x)w
����

����
2

� 0,

(41)

yields that

k
1/2

(x)v
����

���� � 0, (42)

k
1/2

(x)w
����

���� � 0. (43)

Taking (42) and (43) into (37) and (39), we obtain

k
1/2

(x)u
����

���� � 0,

k
1/2

(x)y
����

���� � 0.
(44)

Taking (37) into (38) and (39) into (40), we can easily
deduce from (38) and (40) that

a1D
4
u − β2ρ1u � 0, (45)

a2D
4
y − β2ρ2y � 0. (46)

If there exists x0 ∈ [a, b] ⊂ (0, l),

u x0, t(  � 0, y x0, t(  � 0. (47)
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According to the existence-uniqueness theorem of so-
lutions to ordinary differential equations, (45) and (46) have
unique solution, respectively, as follows:

u(x, t) � 0, x ∈ (0, l),

y(x, t) � 0, x ∈ (0, l).
(48)

.en, we obtain

v(x, t) � 0, x ∈ (0, l),

w(x, t) � 0, x ∈ (0, l),
(49)

i.e.,

‖z‖H � 0. (50)

which contradicts with ‖z‖H � 1; thus, the proof of
iR ⊂ ρ(A) is completed.

Now, we use reduction to absurdity to prove (34). If (34)
is false, then there exists a sequence zn ∈ D(A),
zn � (un, vn, yn, wn)T with ‖zn‖H � 1 and a sequence βn ∈ R

with βn⟶∞ as n⟶∞ such that

iβnI − A( zn

����
����H⟶ 0, (51)

i.e.,

iβnun − vn � fn⟶ 0, inH2
, (52)

iβnρ1vn + a1D
4
un + k(x) un − yn(  + δk(x)vn � gn⟶ 0, inL2

,

(53)

iβnyn − wn � Tn⟶ 0, inH2
0, (54)

iβnρ2wn + a2D
4
yn − k(x) un − yn(  + δk(x)wn � Sn⟶ 0, inL2

.

(55)

Our goal is to prove ‖zn‖2H � 0, which contradicts with
‖zn‖2H � 1.

Step 1. Local attenuation
Taking the inner product of (51) with zn in H and then

taking its real part

Re〈 iβnI − A( zn, zn〉H � − δ k
1/2

(x)vn

����
����
2

− δ k
1/2

(x)wn

����
����
2
⟶ 0.

(56)

yields that

k
1/2

(x)vn

����
����⟶ 0,

k
1/2

(x)wn

����
����⟶ 0.

(57)

From (52) and (54), we obtain

k
1/2

(x)βnun

����
����⟶ 0,

k
1/2

(x)βnyn

����
����⟶ 0.

(58)

i.e.,

k
1/2

(x)un

����
����⟶ 0,

k
1/2

(x)yn

����
����⟶ 0.

(59)

Taking the inner product of (53) with k6(x)un and (55)
with k6(x)yn, respectively, because of k(x) ∈ C2, k6(x)un

and k6(x)yn are bounded, we obtain

〈iβnρ1vn + a1D
4
un + k(x) un − yn(  + δk(x)vn, k

6
(x)un〉⟶ 0,

(60)

〈iβnρ2wn + a2D
4
yn − k(x) un − yn(  + δk(x)wn, k

6
(x)yn〉⟶ 0,

(61)

by k(x), and we can easily deduce from (57) and (59) that

〈k(x)un, k
6
(x)un〉 ≤C k

1/2
(x)un

����
����⟶ 0,

〈k(x)yn, k
6
(x)yn〉≤C k

1/2
(x)yn

����
����⟶ 0.

〈δk(x)vn, k
6
(x)un〉⟶ 0,

〈δk(x)wn, k
6
(x)yn〉⟶ 0,

〈k(x)yn, k
6
(x)un〉


 � 〈k(x)un, k

6
(x)yn〉


⟶ 0.

(62)

By (60) and (61), we can obtain that

〈iβnρ1vn + a1D
4
un, k

6
(x)un〉⟶ 0,

〈iβnρ2wn + a2D
4
yn, k

6
(x)yn〉⟶ 0.

(63)

Because

〈iβnρ1vn, k
6
(x)un〉 � − 〈iρ1vn, − ik

6
(x)vn〉 � − ρ1 k

3
(x)vn

����
����
2
⟶ 0,

(64)

〈iβnρ2wn, k
6
(x)yn〉 �〈iρ2wn, − ik

6
(x)wn〉 � − ρ2 k

3
(x)wn

����
����
2
⟶ 0.

(65)

.us,

〈a1D
4
un, k

6
(x)un〉 � a1 〈un

″, k
6

 ″(x)un〉 + 2Re〈un
″, k

6
 ′(x)unn

′ 〉 +〈un
″, k

6
(x)un
″〉 ⟶ 0, (66)

〈a2D
4
yn, k

6
(x)yn〉 � a2[ 〈yn

″, k
6

 ″(x)yn〉 + 2Re〈yn
″, k

6
 ′(x)yn

′〉 +〈yn
″, k

6
(x)yn
″〉 ⟶ 0. (67)
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Because

〈un
″, k

6
 ″(x)un〉 ≤C k

3
(x)un
″

����
���� k

1/2
(x)un

����
����⟶ 0, (68)

〈yn
″, k

6
 ″(x)yn〉 ≤C k

3
(x)yn
″

����
���� k

1/2
(x)yn

����
����⟶ 0, (69)

integrating by part, we obtain that

Re〈un
″, k

6
 ′(x)un

′〉


≤ c k
3
(x)un
″

����
���� k

1/2
(x)un

����
���� + k

1/2
(x)un

����
����
2

 ⟶ 0, (70)

Re〈yn
″, k

6
 ′(x)yn

′〉


≤ c k
3
(x)yn
″

����
���� k

1/2
(x)yn

����
���� + k

1/2
(x)yn

����
����
2

 ⟶ 0. (71)

From (68) to (71), we now take them into (66) and (67) to
obtain that

k
3
(x)un
″

����
����⟶ 0, (72)

k
3
(x)yn
″

����
����⟶ 0. (73)

Because k(x) is continuous and k(x)≥ 0 in (a, b) ⊂ (0, l)

and there exists a constant c such that |k″(x)|≤ ck(x) and
|k′(x)|≤ ck(x), we can easily deduce from (57) that

k
3
(x)vn

����
����⟶ 0,

k
3
(x)wn

����
����⟶ 0.

(74)

Step 2. From local dissipation to global dissipation
Here, were going to use the multiplier method to prove

un
″⟶ 0,

vn⟶ 0,

yn
″⟶ 0,

wn⟶ 0 in (0, l).

(75)

Taking (52) into (53) and (54) into (55), respectively, we
can easily deduce from (53) and (55) that

a1D
4
un − β2nρ1un � gn + iβnρ1fn, (76)

a2D
4
yn − β2nρ2yn � Sn + iβnρ2Tn. (77)

Let q(x) ∈ C2 be a real function, which will be chosen
later. Taking the inner product of (76) with q(x)un

′ and (77)

with q(x)yn
′ in L2, respectively, integrating by part, we

obtain that

Re〈a1D
4
un − β2nρ1un, q(x)un

′〉

� 3a1 
l

0
q′(x) un

″



2dx + 2Re a1 

l

0
q″(x)un

′un
″dx 

− β2nρ1q(x) un



2

l

0 + β2nρ1 
l

0
q′(x) un



2dx

� 2〈gn, q(x)un〉 − 2〈iβnρ1 fnq(x)( ′, un〉,
(78)

Re〈a2D
4
yn − β2nρ2yn, q(x)yn

′〉

� 3a2 
l

0
q′(x) yn

″



2dx + 2Re a2 

l

0
q″(x)yn

′yn
″dx 

− a2q(x) yn
″



2

l

0 + β2nρ2 
l

0
q′(x) yn



2dx

� 2〈Sn, q(x)yn
′〉 − 2〈iβnρ2 Tnq(x)( ′, yn〉.

(79)

Because un
′ and βnun are uniformly bounded in L2 and yn

′
and βnyn are also uniformly bounded in L2, the terms on the
right-hand side of (78) and (79) converge to zero. Taking
q(x) � x, we deduce from (78) and (79) that

3a1 un
″

����
����
2

+ ρ1 vn

����
����
2

− lβ2nρ1 un(l)



2⟶ 0, (80)

3a2 yn
″

����
����
2

+ ρ2 wn

����
����
2

− la2 yn
″(l)



2⟶ 0. (81)

We now take q(x) � 
x

0 k6(s)ds into (78) and (79) to
obtain that

3a1 k
3
(x)un
″

����
����
2

+ ρ1 k
3
(x)vn

����
����
2

+ 2Re a1 
l

0
k
6

 ′(x)un
′un
″dx  − q(l)β2nρ1 un(l)



2⟶ 0, (82)

3a2 k
3
(x)yn
″

����
����
2

+ ρ2 k
3
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����
����
2

+ 2Re a2 
l

0
k
6

 ′(x)yn
′yn
″dx  − q(l)a2 yn

″(l)



2⟶ 0. (83)
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Taking (70), (72), and (74) into (82) and taking (71), (73),
and (76) into (83), we obtain

q(l)β2nρ1 un(l)



2⟶ 0, (84)

q(l)a2 yn
″(l)



2⟶ 0, (85)

i.e.,

β2nρ1 un(l)



2⟶ 0, (86)

a2 yn
″(l)



2⟶ 0. (87)

Taking (86) and (87) into (80) and (81), we obtain

a1 un
″

����
����
2

+ ρ1 vn

����
����
2⟶ 0, (88)

a2 yn
″

����
����
2

+ ρ2 wn

����
����
2⟶ 0. (89)

From (59), (88), and (89), we obtain ‖zn‖2H � 0, which
contradicts with ‖zn‖2H � 1. .us, the proof is completed.

4. Conclusion

In this paper, sufficient findings are provided for the
exponential stability of weakly coupled elastic beam
system with damping control by using the semigroup
theoretical frequency domain multiplier method. By
variable conversion, the elastic beam control system is
transformed into first-order evolution equations and a
linear operator is obtained, and the linear operator-
producing semigroup is proved. When the two beams
have local damping control, from the local dissipation to
the global dissipation, the exponential stability of the
semigroup generated from the linear operator is proved by
reduction to absurdity. .e method in this paper can be
employed to handle other elastic beam systems in the
future.
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[16] A. Bátkai, K.-J. Engel, J. Prüss, and R. Schnaubelt, “Polynomial
stability of operator semigroups,” Mathematische Nach-
richten, vol. 279, no. 13-14, pp. 1425–1440, 2006.

[17] B. Rao and A. Wehbe, “Polynomial energy decay rate and
strong stability of Kirchhoff plates with non-compact resol-
vent,” Journal of Evolution Equations, vol. 5, no. 2, pp. 137–
152, 2005.

[18] J. Rauch, X. Zhang, and E. Zuazua, “Polynomial decay for a
hyperbolic–parabolic coupled system,” Journal de
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uncertain transition rates,” Applied Mathematics and Com-
putation, vol. 337, pp. 399–407, 2018.

[29] Y. Kao, Q. Zhu, and W. Qi, “Exponential stability and in-
stability of impulsive stochastic functional differential equa-
tions with Markovian switching,” Applied Mathematics and
Computation, vol. 271, pp. 795–804, 2015.

[30] Y. Kao, L. Shi, J. Xie, and H. R. Karimi, “Global exponential
stability of delayed Markovian jump fuzzy cellular neural
networks with generally incomplete transition probability,”
Neural Networks, vol. 63, pp. 18–30, 2015.

[31] Y. Liu, C. Zhang, Y. Kao, and C. Hou, “Exponential stability of
neutral-type impulsive markovian jump neural networks with
general incomplete transition rates,” Neural Processing Let-
ters, vol. 47, no. 2, pp. 325–345, 2018.

[32] Y. Liu, Y. Kao, H. R. Karimi, and Z. Gao, “Input-to-state
stability for discrete-time nonlinear switched singular sys-
tems,” Information Sciences, vol. 358-359, pp. 18–28, 2016.

[33] F. Alabau-Boussouira, “A two-level energy method for in-
direct boundary observability and controllability of weakly

coupled hyperbolic systems,” SIAM Journal on Control and
Optimization, vol. 42, no. 3, pp. 871–906, 2003.

[34] F. Alabau, P. Cannarsa, and V. Komornik, “Indirect internal
stabilization of weakly coupled evolution equations,” Journal
of Evolution Equations, vol. 2, no. 2, pp. 127–150, 2009.

[35] F. Alabau-Boussouira, “Indirect boundary stabilization of
weakly coupled hyperbolic systems,” SIAM Journal on Control
and Optimization, vol. 41, no. 2, pp. 511–541, 2009.

[36] I. Lasiecka, Mathematical Control :eory of Coupled PDE’s,
CMBS-NSF Lecture Notes, SIAM Publications, Philadelphia,
PA, USA, 2001.

[37] S. Alimirzaei, M. Mohammadimehr, and A. Tounsi, “Non-
linear analysis of viscoelastic micro-composite beam with
geometrical imperfection using FEM: MSGT electro-mag-
neto-elastic bending, buckling and vibration solutions,”
Structural Engineering and Mechanics, vol. 71, no. 5,
pp. 485–502, 2019.

[38] L. Boulefrakh, H. Hebali, A. Chikh, A. A. Bousahla, A. Tounsi,
and S.Mahmoud, “.e effect of parameters of visco-Pasternak
foundation on the bending and vibration properties of a thick
FG plate,” Geomechanics and Engineering, vol. 18, no. 2,
pp. 161–178, 2019.

[39] F. Y. Addou, M. Meradjah, A. Anis Bousahla, and
S. R. Mahmoud, “Influences of porosity on dynamic response
of FG plates resting on Winkler/Pasternak/Kerr foundation
using quasi 3D HSDT,” Computers and Concrete, vol. 24,
no. 4, pp. 347–367, 2019.

[40] L. A. Chaabane, F. Bourada, M. Sekkal et al., “Analytical study
of bending and free vibration responses of functionally graded
beams resting on elastic foundation,” Structural Engineering
and Mechanics, vol. 71, no. 2, pp. 185–196, 2019.

[41] Z. Boukhlif, M. Bouremana, F. Bourada et al., “A simple quasi-
3D HSDT for the dynamics analysis of FG thick plate on
elastic foundation,” Steel and Composite Structures, vol. 31,
no. 5, pp. 503–516, 2019.

[42] A. Mahmoudi, S. Benyoucef, A. Tounsi, A. Benachour,
E. A. Adda Bedia, and S.Mahmoud, “A refined quasi-3D shear
deformation theory for thermo-mechanical behavior of
functionally graded sandwich plates on elastic foundations,”
Journal of Sandwich Structures & Materials, vol. 21, no. 6,
pp. 1906–1929, 2019.

[43] F. Z. Zaoui, D. Ouinas, and A. Tounsi, “New 2D and quasi-3D
shear deformation theories for free vibration of functionally
graded plates on elastic foundations,” Composites Part B:
Engineering, vol. 159, pp. 231–247, 2019.

[44] Y. Liu, J. Wang, C. Gao, S. Tang, and Z. Gao, “Input-to-state
stability analysis for a class of discrete-time nonlinear input-
saturated switched descriptor systems with unstable subsys-
tems,” Neural Computing and Applications, vol. 29, pp. 417–
424, 2016.

[45] G. Wang, X. Xiao, and Y. Liu, “Dynamic modeling and
analysis of a mine hoisting system with constant length and
variable length,” Mathematical Problems in Engineering,
vol. 2019, Article ID 4185362, 12 pages, 2019.

[46] G. Wang, X. Xiao, C. Ma, G. Cheng, and X. Di, “Nonlinear
dynamic behavior of winding hoisting rope under head sheave
axial wobbles,” Shock and Vibration, vol. 2019, Article ID
7026125, 11 pages, 2019.

[47] Z. Liu and B. Rao, “Frequency domain approach for the
polynomial stability of a system of partially damped wave
equations,” Journal of Mathematical Analysis and Applica-
tions, vol. 335, no. 2, pp. 860–881, 2007.

[48] Z. Liu and Q. Zhang, “Stability and regularity of solution to
the timoshenko beam equation with local kelvin--voigt

8 Mathematical Problems in Engineering



damping,” SIAM Journal on Control and Optimization,
vol. 56, no. 6, pp. 3919–3947, 2018.

[49] K. Liu, Z. Liu, and Q. Zhang, “Eventual differentiability of a
string with local Kelvin-Voigt damping,” ESAIM: Control,
Optimisation and Calculus of Variations, vol. 23, no. 2,
pp. 443–454, 2017.

[50] Z. Liu, A. Magaña, and R. Quintanilla, “On the time decay of
solutions for non-simple elasticity with voids,” ZAMM -
Journal of Applied Mathematics and Mechanics/Zeitschrift für
Angewandte Mathematik und Mechanik, vol. 96, no. 7,
pp. 857–873, 2016.

[51] Z. Liu and Q. Zhang, “Stability of a string with local kelvin--
voigt damping and nonsmooth coefficient at interface,” SIAM
Journal on Control and Optimization, vol. 54, no. 4,
pp. 1859–1871, 2016.

[52] J. Prss, “On the spectrum of C0-semigroups Trans,” Journal of
the American Mathematical Society, vol. 284, no. 2, pp. 847–
857, 1984.

[53] Z. Liu and B. Rao, “Characterization of polynomial decay rate
for the solution of linear evolution equation,” Zeitschrift für
angewandte Mathematik und Physik, vol. 56, no. 4, pp. 630–
644, 2005.

Mathematical Problems in Engineering 9


